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We synergistically apply queueing theory, integer programming, and stochastic simula-
tion to determine an optimal staffing policy for a repair call handling center. A station-
ary Markovian queueing model is employed to determine minimal staffing levels for a
sequence of time intervals with varying call volumes and mean handling times. These
staffing requirements populate an integer program model for determining the mix of call
agent shifts that will achieve service quality standards at minimum cost. Since the ana-
lytical modeling requires simplifying assumptions, expected performance of the optimal
staffing policy is evaluated using stochastic simulation. Computational efficiency of the
simulation is improved dramatically by employing the queueing model to generate an
analytic control variate.

Copyright © 2006 D. C. Dietz and J. G. Vaver. This is an open access article distributed
under the Creative Commons Attribution License, which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Many commercial enterprises and public agencies operate centralized call centers to pro-
vide effective and responsive service for patrons. For example, communication service
providers operate call centers to ensure timely restoration of service following equipment
failures within the communications network or at the customer premises. The call center
is staffed by repair service agents who are trained to effectively interact with the customer,
diagnose the problem, and dispatch appropriate repair resources. Typically, the goal is to
completely restore service within a few hours.

The operating cost of a repair call center is dominated by personnel expense, so the
economic efficiency of the system is determined almost entirely by the quality of the agent
scheduling process. The scheduling problem is characterized by a highly variable demand
pattern and a requirement to schedule agents in shifts that are constrained by labor rules.
Fortunately, the weekly demand profile is quite predictable and seasonally consistent. The
fundamental challenge is to schedule agent shifts such that resulting agent availability will
enable consistent achievement of a specified service level at minimum cost.
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The importance of the call center scheduling problem is indicated by a large body of
relevant literature (see Gans et al. [8]). Reported application areas include retail sales
(Andrews and Parsons [1]), transportation (Linder [16]), public services (Harris et al.
[11]), and the telecommunications industry (Buffa et al. [5], Church [7]). Solution ap-
proaches have incorporated diverse operations research methods such as mathematical
programming (Burns and Carter [6], Segal [21]), analytical queueing models (Sze [23]),
simulation (Paul and Stevens [18]), and various heuristic procedures (Baker [2], Hender-
son and Berry [12]). Brigandi et al. [4] document deployment of a call center modeling
system that delivered $750 million in increased profits for a diverse set of client enter-
prises in a single year. The system relied on simulation as the primary modeling tool, but
used a queueing model to calculate agent requirements and network flow programming
to determine optimal schedules. In this paper, we synergistically apply queueing theory,
integer programming, and simulation to derive and evaluate an optimal staffing policy
for repair call handling. We employ a Markovian queueing model to obtain a conserva-
tive minimum staffing level for each service interval. These staffing requirements popu-
late constraints in an integer programming formulation that selects an optimal mix of
agent shifts. The analytical solution is evaluated using a simulation model that relaxes the
required assumptions of exponential handling times and stationary conditions. The sim-
ulation application is unique in that we employ the analytical queueing model to generate
a novel type of control variate, resulting in substantial improvement in computational ef-
ficiency.

2. Analytical modeling and optimization

The demand profile for a repair call handling center can accurately be predicted from
historical data and appropriate forecasting techniques. Figure 2.1 displays the expected
call volume for each of the 336 30-minute intervals within a single week, along with the
average handling time for calls arriving within each interval. Variability in realized call
volume within an interval can be treated as random, so the customer arrival process can
be modeled as a nonstationary Poisson process with an expected number of arrivals ni for
each interval i. The schedule must ensure that sufficient agents are assigned on each inter-
val to satisfy an overall quality of service requirement. For scheduling purposes, quality of
service is narrowly defined as the probability that a random customer will not wait more
than a specified time for agent contact.

In any given week, repair service agents must be scheduled in shift groupings called
“tours” that span multiple intervals. Each agent is assigned to one tour from a specified
set T , and any number of agents can be assigned to any tour j ∈ T . Each tour is uniquely
characterized by its combination of start time, workday schedule, and shift type (standard
or split). The standard shift consists of 8.5 consecutive hours (4 hours of work, 30 min-
utes off, and another 4 hours of work), whereas the split shift consists of 12 consecutive
hours (4 hours of work, 4 hours off, and another 4 hours of work). There are 48 different
tour start times, which are spaced at 30-minute intervals starting at midnight. Finally,
there are seven different workday schedules. Each schedule has five days of work and two
consecutive days off. Since we require that a shift must have the same start time for every
workday, our basic tour set consists of 2× 48× 7 = 672 different tours. This set may be
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Figure 2.1. Expected call volume and handling time for a typical week.

modified or augmented to facilitate evaluation of alternative scheduling approaches (e.g.,
inclusion of overtime, nonconsecutive days off, or short tours for part-time agents).

The split tours (denoted S ⊂ T) are included in the tour set because standard shifts
alone tend to specify an inefficient set of basis functions for accommodating the call vol-
ume profile. Not suprisingly, agents generally prefer standard tours, so our model in-
cludes the capability to limit the portion of agents p who are assigned to split tours. For
example, setting p = 0.20 will ensure that a typical agent will be assigned to no more than
one split tour every five weeks.

The tour scheme makes it impractical to exactly match staffing levels to the expected
call volume on every interval. We require that a random customer waits no longer than
a specified time t (e.g., 20 s) with probability α (e.g., 0.80). Service quality below α may
be acceptable on some intervals provided the weekly average exceeds α. However, since
reasonable uniformity in service quality is desirable, we specify an associated minimum
standard φ ≤ α that must be achieved on every interval. The corresponding staffing re-
quirement si for a particular interval i can be approximated by assuming exponentially
distributed handling times (with mean of hi s) and stationary conditions (with call ar-
rival rate of ni per interval or ni/1800 per second). Letting Wi represent customer wait-
ing time, we initialize the staffing level at si = �nihi/1800� and then increment si until
P(Wi ≤ t) ≥ φ. Computation of service quality follows from well-known analytical re-
sults for multichannel Markovian queues (e.g., see Gross and Harris [10, pages 69–72]):

P
(
Wi ≤ t

)= F
(
t,ni,hi,si

)

= 1−
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)si exp
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(2.1)
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The assumption of independent stationary operation on each interval may result in
understatement of a particular staffing requirement (Green et al. [9]), but this effect is
overwhelmed by the assumption of exponential handling times. A more realistic handling
time distribution approximates a symmetric triangular form with mean hi and variance
h2
i /24 (much lower than the exponential variance h2

i ), so the analytically derived estimate
of minimum si is predominately conservative. The aggregate conservatism of our analyt-
ical results is verified in subsequent simulation-based performance modeling.

The operational objective is to assign repair service agents to tours such that a staffing
level of at least si is achieved on each interval, while minimizing the total number of agent-
hours assigned for the week. The ancillary restriction on the frequency of split tours must
also be enforced. To satisfy these requirements, we formulate a simple integer program
(Wolsey [24]). We define the decision variable xj as the number of agents assigned to tour
j. Letting I j be the set of intervals covered by tour j (with cardinality |I j|), we write the
formulation.

Minimize
∑

j∈T

∣
∣I j
∣
∣xj

subject to
∑

j∈T : i∈I j
x j ≥ si, i= 1, . . . ,336,

∑

j∈S
xj ≤ p

∑

j∈T
xj ,

xj = 0,1, . . . , j ∈ T.

(2.2)

By employing commercial optimization software (CPLEX), we can solve the model in
a few seconds on a personal computer. Staffing levels resulting from the optimal tour
assignment are derived as

s′i =
∑

j∈T : i∈I j
x j , i= 1, . . . ,336. (2.3)

This solution follows from a particular value of φ. To ensure that aggregate service quality
meets the specified standard, we iteratively adjust the global parameter φ, recalculate each
si, and resolve the integer program until

A
(
t,n,h,s′

)=
∑336

i=1niF
(
t,ni,hi,s′i

)

∑336
i=1ni

≈ α, (2.4)

where n, h, and s′ are the respective vector representations of ni, hi, and s′i , i= 1, . . . ,336.
Table 2.1 displays the expected call volume, average handling times, minimum staffing

requirements, optimal staffing levels, and quality of service estimates for the first 24
scheduling intervals shown in Figure 2.1 (Monday A.M.). All staffing results are based on
t=20 seconds, φ=0.50, and our basic tour set with p=0.20; the corresponding aggregate
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Table 2.1. Interval parameters and analytical results for Monday A.M.

Interval
Call Handling Minimum Optimal Service

volume time staff staff quality

i ni hi si s′i F(20,ni,hi,s′i )

1 (0 : 00) 33.1 299.8 7 10 0.953

2 (0 : 30) 30.3 309.5 7 10 0.966

3 (1 : 00) 20.7 336.0 5 11 0.998

4 (1 : 30) 20.7 349.3 6 10 0.994

5 (2 : 00) 16.6 348.0 5 10 0.999

6 (2 : 30) 15.2 347.0 4 10 0.999

7 (3 : 00) 15.2 385.0 5 10 0.999

8 (3 : 30) 17.9 379.1 5 17 1.000

9 (4 : 00) 17.9 358.9 5 12 1.000

10 (4 : 30) 25.5 341.7 6 17 1.000

11 (5 : 00) 80.0 320.4 16 34 1.000

12 (5 : 30) 111.0 303.0 21 62 1.000

13 (6 : 00) 317.9 322.8 60 99 1.000

14 (6 : 30) 456.5 324.1 86 141 1.000

15 (7 : 00) 971.0 334.2 185 204 0.987

16 (7 : 30) 1100.6 334.7 210 233 0.994

17 (8 : 00) 1482.0 334.6 281 281 0.532

18 (8 : 30) 1537.2 333.0 290 290 0.535

19 (9 : 00) 1463.4 335.5 278 279 0.582

20 (9 : 30) 1450.3 335.7 276 277 0.597

21 (10 : 00) 1402.0 335.7 267 271 0.745

22 (10 : 30) 1308.9 334.9 249 250 0.606

23 (11 : 00) 1185.5 336.2 227 228 0.625

24 (11 : 30) 1114.4 338.5 215 222 0.858

service quality is A(t,n,h,s′)= 0.798. The optimal solution assigns 306 agents to 59 stan-
dard tours (with 28 unique start times), and 76 agents to 12 split tours (with 8 unique start
times). All seven off-day schedules are employed, with the largest group of agents having
Saturday and Sunday off (224), and only three agents having Monday and Tuesday off.
Overall efficiency of the tour set in covering staffing requirements can be computed as

∑336
i=1 si∑336
i=1 s

′
i

= 27365
30560

= 0.895. (2.5)

A full-week comparison of the minimum staffing requirements s and optimal staffing
levels s′ is presented in Figure 2.2.
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Figure 2.2. Minimum staffing requirements and optimal tour-based staffing.
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Figure 2.3 illustrates the relationship between minimum service quality φ, aggregate
service quality A(t,n,h,s′), and the total personnel requirement. The personnel require-
ment is expressed in 40-hour “full-time equivalents” (

∑336
i=1 s

′
i /80). Diminishing returns

for increased staffing are apparent, though it is noteworthy that aggregate service quality
could be increased from 0.80 to 0.90 with only a 3% increase in total personnel. Note
that if staffing levels could be idealized on every interval (s′ = s), the plots for minimum
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and aggregate service quality would be identical. The difference between the two plots is
therefore an informative indicator of tour set efficiency.

Other relationships can be conveniently studied using the analytical modeling. For
example, sensitivity analysis of the split tour restriction reveals that not many split tours
are needed to achieve almost all of the realizable benefit. The solution associated with p =
0.20 yields a personnel requirement of 382, which represents only a slight increase over
the 378 personnel required to achieve the same aggregate service quality when split tours
are completely unrestricted (p = 1). The corresponding personnel requirement when no
split tours are permitted (p = 0) is 444. Similar insights on other scheduling issues could
be obtained by including additional constraints in the integer program (e.g., overtime
restrictions).

3. Analytically controlled simulation

The analytical models described in the previous section require some simplifying as-
sumptions, so we are compelled to employ stochastic simulation to more accurately pre-
dict performance of the optimal staffing policy. Unlike the analytical model, the simula-
tion captures the nonstationary arrival process and generates call handling times from ap-
propriate triangular distributions. The service quality response is produced by explicitly
tracking the portion of arriving customers who begin service within t seconds after their
arrival. The simulation must be applied on a repetitive basis since each week offers a new
call volume profile and the available tour set may be arbitrarily modified. For every case
considered, we must replicate the simulation to generate statistical confidence limits on
the mean response. We are therefore interested in maximizing computational efficiency
through an appropriate variance reduction technique. Fortunately, we can leverage our
existing analytical model by employing a control variate approach to variance reduction
(Lavenberg and Welch [14]).

Our objective is to obtain a precise estimate of μY = E[Y], where the random variable
Y is the simulation response for aggregate service quality. To reduce variance in the esti-
mate of μY , we will exploit another random variable, Z, which is correlated with Y and
has known expectation μZ . A new controlled response

Y(b)= Y − b
(
Z−μZ

)
(3.1)

can thus be constructed for each simulation replication, where the constant b is called the
control coefficient. The variance of Y(b) is given by

Var
[
Y(b)

]=Var[Y] + b2 Var[Z]− 2bCov[Y ,Z], (3.2)

and the value of b that minimizes Var[Y(b)], which can be found by differentiating (3.2),
is

β = Cov[Y ,Z]
Var[Z]

. (3.3)
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The true value of Cov[Y ,Z] is unknown but, for r replications, β can be estimated by

β̂ =
∑r

j=1

(
Yj − Ȳ

)(
Zj − Z̄

)

∑r
j=1

(
Zj − Z̄

)2 , (3.4)

where Ȳ and Z̄ are the respective means of the r observations of Y and Z. A controlled
estimate of μY can then be obtained as

Ȳ
(
β̂
)= 1

r

r∑

j=1

[
Yj − β̂

(
Zj −μZ

)]
. (3.5)

The approach can be extended to exploit multiple random variables that are correlated
with Y and have known expectation.

Traditional control variate methods are classified as either internal or external. The
internal method is poorly suited for our application since we have a very large num-
ber of equally valid control variate candidates (336 call volumes and 336 mean handling
times) (Lavenberg and Welch [14]). The external method is also inappropriate because
the assumption of stationary operation makes it impractical to create an efficient aux-
iliary simulation that corresponds exactly with our analytical model (a methodological
requirement). Instead, we employ the analytic control variate (ACV) concept first pro-
posed by Nelson [17]. This approach can be considered a hybrid of both internal and
external methods since an external analytical model is used to produce a single control
variate that is a function of multiple internal random variables.

To illustrate how our ACV is generated, consider a particular simulation replication
with response Y . Let N = (N1,N2, . . . ,N336) be the vector of generated call volumes with
E[N]= (n1,n2, . . . ,n336). Similarly, letH=(H1,H2, . . . ,H336) be the vector of realized mean
handling times with E[H]=(h1,h2, . . . ,h336). The analytical result Z=A(t,N ,H ,s′) should
be highly correlated with Y , and is therefore well suited for employment in (3.5). We note
that if NiHi/1800≥ s′i for some i, we must let F(t,Ni,Hi,s′i )= 0 in the computation of Z.

We now require a value for μZ . If the analytical result Z was a linear function of N and
H , then the linearity of the expectation operator would ensure that μZ = E[A(t,N ,H ,s′)]
= A(t,E[N],E[H],s′)= A(t,n,h,s′). Unfortunately, the analytical model is nonlinear, so
computation of μZ in this manner will produce a biased result (Sharon and Nelson [22]).
Analytical determination of μZ is impractical, but Irish et al. [13] have shown that it can
be accurately estimated through an empirical approach. Since the joint distribution of N
and H is known, we can generate a very large number of static random samples from this
distribution (denoted Ñk, H̃k, k = 1, . . . ,m), and then estimate μZ as

μ̂Z = 1
m

m∑

k=1

A
(
t,Ñk,H̃k,s′

)
(3.6)

since μ̂Z → μZ as m→∞.
Repair call arrivals occur according to a memoryless process on each interval i, so each

call volume Ñk
i can be independently generated from a Poisson distribution with mean

ni (Ross [20, page 76]). The sampling of a mean handling time is more complex since
the distribution of H̃k

i is dependent on the associated realization of Ñk
i . We generate each
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Figure 3.1. ACV performance for 50 batches of 10 replications each.

mean handling time as

H̃k
i =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
Ñk

i

)−1∑Ñk
i

j=1 Tri

[

hi,
h2
i

24

]

if Ñk
i ≤ 5,

Norm

[

hi,
h2
i

24Ñk
i

]

otherwise,

(3.7)

where the functions Tri[μ,ν] and Norm[μ,ν] represent random samplings from symmet-
ric triangular and normal distributions respectively (each with mean μ and variance ν).
The employment of a normal approximation for Ñk

i > 5 in (3.7) balances statistical pre-
cision with computational efficiency by making appropriate use of the central limit the-
orem. Using this approach, we can obtain an accurate estimate of μZ (based on m= 104

samples) in about 245 seconds on a personal computer. In comparison, a single replica-
tion of the simulation consumes more than 297 seconds of run time on the same com-
puter. We generate the required Poisson random variables using the procedure cited by
Ross [19, pages 194-195], which is particularly efficient for large mean values. The trian-
gular samples are produced using a standard inverse-transform method (Law and Kelton
[15, page 469]), and the normal samples are obtained using the efficient numerical pro-
cedure offered by Beasley and Springer [3].

Figure 3.1 illustrates the efficacy of the ACV method by comparing uncontrolled and
controlled 95% confidence intervals for fifty batches of ten replications each. The ACV
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Table 3.1. Average efficiency results for different batch sizes.

Batch Number Correlation Uncontrolled Controlled Percent reduction

size of batches coefficient CI half-width CI half-width in CI half-width

5 100 0.930 0.0259 0.0138 46.7

10 50 0.912 0.0154 0.0089 42.0

20 25 0.910 0.0102 0.0061 40.6

50 10 0.906 0.0062 0.0038 39.2

100 5 0.905 0.0043 0.0027 38.9

500 1 0.909 0.0019 0.0012 38.6
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Figure 3.2. Graphical comparison of confidence interval half-widths.

method reduces the confidence interval half-width by an average of more than 40%. No
evidence of appreciable bias in the controlled response is apparent. Using the uncon-
trolled mean response for all 500 simulation runs as a surrogate for truth (represented by
the dotted line at Y = 0.837), we find that realized uncontrolled coverage (48/50= 96%)
and realized controlled coverage (47/50= 94%) both approximate the nominal expecta-
tion.

Table 3.1 presents a summary of average efficiency results when the 500 runs are par-
titioned into different batch sizes. The estimated control coefficient maintains a value
near 0.91, and substantial variance reduction is consistently achieved. The graphical de-
piction in Figure 3.2 highlights the realizable computational savings. Note that the same
statistical precision achieved by 500 uncontrolled replications can be achieved by about
150 replications when the ACV method is applied (a 70% reduction). The computational
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overhead required to execute the ACV method is minimal, and the only accommodation
required within the simulation itself is the collection of generated values of N and H for
each replication.

Applying the ACV method, a single batch of ten simulation runs yields a 95% con-
fidence interval of 0.83± 0.01 on aggregate service quality. This result offers strong as-
surance that the staffing policy recommended by the analytical modeling is conservative
and will provide service quality well in excess of 0.80. The computational cost of attain-
ing this assurance (including the cost of estimating μZ) is about 54 minutes of run time.
The computational burden is light enough that iterative application of the analytical and
simulation models might be considered to develop a very comprehensive understanding
of the relationship between service quality and personnel requirements.

4. Concluding remarks

We have synergistically applied a Markovian queueing model, integer program, and sto-
chastic simulation to derive and evaluate staffing policies for a repair call handling center.
The objective is to minimize total personnel requirements while strictly enforcing service
quality standards. Due to the transient nature of the call center operation, only stochastic
simulation can produce an accurate estimate of aggregate service quality. However, the
large size of the candidate tour set precludes enumerative simulation of alternative poli-
cies. We therefore employ analytical modeling to obtain an approximate optimal solution,
and then evaluate the performance of this solution through detailed simulation. While
this approach is commonly adopted in operations research practice, we carry the synergy
further by exploiting our analytical queueing model to substantially improve the com-
putational efficiency of the simulation study. Computational savings of about 70% are
realized when we apply an ACV method with empirical estimation of the control variate
expectation. Our implementation demonstrates that this variance reduction technique
can be applied to a range of problems beyond the queueing network examples reported in
the current literature. Arguably, any simulation model is a candidate for the ACV method
if we can formulate an approximate analytical model that captures key stochastic inputs,
and if we can properly model dependencies between these inputs in estimating the con-
trol variate expectation.

We have implemented our analytical approach in call center operations at Qwest Com-
munications. Specifically, we have produced monthly schedules for customer support of
“designed services” (complex business accounts). In this application, we employ many
weeks of historical data to obtain the shape of the call volume profile, and then scale this
profile to reflect recent trends in total volume. We have also applied our methods to moni-
tor and evaluate contracted call handling for a separate Qwest operation that delivers inte-
grated video, data, and voice service via telephone lines in select geographic markets. Our
current activities focus on supporting managerial efforts to efficiently maintain service
quality standards. The telecommunications industry is extremely competitive, so high
service quality and operational efficiency are both essential to future corporate success.
In our experience, we observe a 10–15% reduction in personnel requirements from those
produced by previous scheduling methods. Beyond operational utility, our methods have
useful applications in strategic planning. For example, during labor negotiations, we have
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applied our models to reveal the economic consequences of changes in contract restric-
tions on overtime or split tours. We can also provide analytical support for human re-
sources planning that considers seasonal or macroeconomic fluctuation in demand. More
generally, our synergistic approach to call center modeling could be applied to myriad ap-
plication areas such as travel reservations, public services, and retail sales.

References

[1] B. H. Andrews and H. L. Parsons, L. L. Bean chooses a telephone agent scheduling system, Inter-
faces 19 (1989), no. 6, 1–9.

[2] K. R. Baker, Scheduling a full-time workforce to meet cyclic staffing requirements, Management
Science 20 (1974), no. 12, 1561–1568.

[3] J. D. Beasley and S. G. Springer, The percentage points of the normal distribution, Applied Statistics
26 (1977), no. 1, 118–121.

[4] A. J. Brigandi, D. R. Dargon, M. J. Sheehan, and T. Spencer, AT&T’s Call processing simulator
(CAPS) operational design for inbound call centers, Interfaces 24 (1994), no. 1, 6–28.

[5] E. S. Buffa, M. J. Cosgrove, and B. J. Luce, An integrated work shift scheduling system, Decision
Sciences 7 (1976), no. 4, 620–630.

[6] R. N. Burns and M. W. Carter, Work force size and single shift schedules with variable demands,
Management Science 31 (1985), no. 5, 599–607.

[7] J. G. Church, Sure staf: a computerized staff scheduling system for telephone business offices, Man-
agement Science 20 (1973), no. 4, 708–720.

[8] N. Gans, G. Koole, and A. Mandelbaum, Telephone call centers: tutorial, review, and research
prospects, Manufacturing & Service Operations Management 5 (2003), no. 2, 79–141.

[9] L. V. Green, P. J. Kolesar, and J. Soares, Improving the SIPP approach for staffing service systems
that have cyclic demands, Operations Research 49 (2001), no. 4, 549–654.

[10] D. Gross and C. M. Harris, Fundamentals of Queueing Theory, 3rd ed., Wiley Series in Probability
and Statistics: Texts and References Section, John Wiley & Sons, New York, 1998.

[11] C. M. Harris, K. L. Hoffman, and P. B. Saunders, Modeling the IRS telephone taxpayer information
system, Operations Research 35 (1987), no. 4, 504–523.

[12] W. B. Henderson and W. L. Berry, Heuristic methods for telephone operator shift scheduling, Man-
agement Science 22 (1976), no. 12, 1372–1380.

[13] T. H. Irish, D. C. Dietz, and K. W. Bauer, Replicative use of an external analytical model in simu-
lation variance reduction, IIE Transactions 35 (2003), no. 9, 879–894.

[14] S. S. Lavenberg and P. D. Welch, A perspective on the use of control variables to increase the effi-
ciency of Monte Carlo simulations, Management Science 27 (1981), no. 3, 322–335.

[15] A. M. Law and W. D. Kelton, Simulation Modeling and Analysis, 3rd ed., McGraw-Hill, New
York, 1999.

[16] R. W. Linder, The development of manpower and facilities planning methods for airline telephone
reservation offices, Operational Research Quarterly 20 (1976), no. 1, 3–21.

[17] B. L. Nelson, On control variate estimators, Computers & Operations Research 14 (1987), no. 3,
219–225.

[18] R. J. Paul and R. E. Stevens, Staffing service activities with waiting line models, Decision Sciences
2 (1971), no. 2, 206–218.

[19] S. M. Ross, A Course in Simulation, Macmillan, New York; Collier Macmillan, London, 1990.
[20] , Stochastic Processes, 2nd ed., Wiley Series in Probability and Statistics: Probability and

Statistics, John Wiley & Sons, New York, 1996.
[21] M. Segal, The operator-scheduling problem: a network-flow approach, Operations Research 22

(1974), no. 4, 808–823.



D. C. Dietz and J. G. Vaver 13

[22] A. P. Sharon and B. L. Nelson, Analytic and external control variates for queueing network simu-
lation, Journal of the Operational Research Society 39 (1988), no. 6, 595–602.

[23] D. Y. Sze, A queueing model for telephone operator scheduling, Operations Research 32 (1984),
no. 2, 229–249.

[24] L. A. Wolsey, Integer Programming, Wiley-Interscience Series in Discrete Mathematics and Op-
timization, John Wiley & Sons, New York, 1998.

Dennis C. Dietz: Qwest Communications International, Boulder, CO 80301, USA
E-mail address: dennis.dietz@qwest.com

Jon G. Vaver: Qwest Communications International, Boulder, CO 80301, USA
E-mail address: jon.vaver@qwest.com

mailto:dennis.dietz@qwest.com
mailto:jon.vaver@qwest.com


Mathematical Problems in Engineering

Special Issue on

Modeling Experimental Nonlinear Dynamics and
Chaotic Scenarios

Call for Papers

Thinking about nonlinearity in engineering areas, up to the
70s, was focused on intentionally built nonlinear parts in
order to improve the operational characteristics of a device
or system. Keying, saturation, hysteretic phenomena, and
dead zones were added to existing devices increasing their
behavior diversity and precision. In this context, an intrinsic
nonlinearity was treated just as a linear approximation,
around equilibrium points.

Inspired on the rediscovering of the richness of nonlinear
and chaotic phenomena, engineers started using analytical
tools from “Qualitative Theory of Differential Equations,”
allowing more precise analysis and synthesis, in order to
produce new vital products and services. Bifurcation theory,
dynamical systems and chaos started to be part of the
mandatory set of tools for design engineers.

This proposed special edition of the Mathematical Prob-
lems in Engineering aims to provide a picture of the impor-
tance of the bifurcation theory, relating it with nonlinear
and chaotic dynamics for natural and engineered systems.
Ideas of how this dynamics can be captured through precisely
tailored real and numerical experiments and understanding
by the combination of specific tools that associate dynamical
system theory and geometric tools in a very clever, sophis-
ticated, and at the same time simple and unique analytical
environment are the subject of this issue, allowing new
methods to design high-precision devices and equipment.

Authors should follow the Mathematical Problems in
Engineering manuscript format described at http://www
.hindawi.com/journals/mpe/. Prospective authors should
submit an electronic copy of their complete manuscript
through the journal Manuscript Tracking System at http://
mts.hindawi.com/ according to the following timetable:

Manuscript Due February 1, 2009

First Round of Reviews May 1, 2009

Publication Date August 1, 2009

Guest Editors

José Roberto Castilho Piqueira, Telecommunication and
Control Engineering Department, Polytechnic School, The
University of São Paulo, 05508-970 São Paulo, Brazil;
piqueira@lac.usp.br

Elbert E. Neher Macau, Laboratório Associado de
Matemática Aplicada e Computação (LAC), Instituto
Nacional de Pesquisas Espaciais (INPE), São Josè dos
Campos, 12227-010 São Paulo, Brazil ; elbert@lac.inpe.br

Celso Grebogi, Department of Physics, King’s College,
University of Aberdeen, Aberdeen AB24 3UE, UK;
grebogi@abdn.ac.uk

Hindawi Publishing Corporation
http://www.hindawi.com

http://www.hindawi.com/journals/mpe/
http://www.hindawi.com/journals/mpe/
http://mts.hindawi.com/
http://mts.hindawi.com/

	1. Introduction
	2. Analytical modeling and optimization
	3. Analytically controlled simulation
	4. Concluding remarks
	References
	1Call for Papers4pt
	Guest Editors

