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A gravity model for trip distribution describes the number of trips between two zones, as
a product of three factors, one of the factors is separation or deterrence factor. The deter-
rence factor is usually a decreasing function of the generalized cost of traveling between
the zones, where generalized cost is usually some combination of the travel, the distance
traveled, and the actual monetary costs. If the deterrence factor is of the power form and
if the total number of origins and destination in each zone is known, then the resulting
trip matrix depends solely on parameter, which is generally estimated from data. In this
paper, it is shown that as parameter tends to infinity, the trip matrix tends to a limit in
which the total cost of trips is the least possible allowed by the given origin and destina-
tion totals. If the transportation problem has many cost-minimizing solutions, then it is
shown that the limit is one particular solution in which each nonzero flow from an origin
to a destination is a product of two strictly positive factors, one associated with the origin
and other with the destination. A numerical example is given to illustrate the problem.

Copyright © 2006 B. Samanta and S. K. Mazumder. This is an open access article distrib-
uted under the Creative Commons Attribution License, which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly
cited.

1. Introduction

The transportation planning process as it is usually carried out consists of a number of
stages and at each stage except the first, use is made of the results of previous stages. Trip
distribution is one of these stages.

Suppose the number of zones in which trips begin is N and the number of zones in
which trips end is M. If the number of trips per unit time beginning in origin zone i is Ai

(i= 1,2, . . . ,N) and the number of trips per unit time ending in destination zone j is Bj

( j = 1,2, . . . ,M), then

N∑

i=1

Ai =
M∑

j=1

Bj =W , (1.1)

Hindawi Publishing Corporation
Journal of Applied Mathematics and Decision Sciences
Volume 2006, Article ID 48632, Pages 1–13
DOI 10.1155/JAMDS/2006/48632

http://dx.doi.org/10.1155/S1173912606486326


2 The constrained gravity model

where W is the total number of trips being made per unit time. Let us denote Tij the
estimated number of trips per unit time, which begins in zone i and ends in zone j. The
trip distribution process is therefore concerned with obtaining a suitable matrix (Tij) of
such estimates, which will be called the trip matrix (Wilson [5, 6]).

Any trip matrix (Tij) must satisfy the following conditions:

M∑

j=1

Tij = Ai, i= 1,2, . . . ,N ,

N∑

i=1

Tij = Bj , j = 1,2, . . . ,M,

Tij ≥ 0 ∀i= 1,2, . . . ,N ; j = 1,2, . . . ,M.

(1.2)

Without loss of generality, it is usually assumed that

Tij = RiSj f
(
ci j
) ∀i, j, (1.3)

where Ri is a factor associated with the origin i = 1,2, . . . ,N and Sj associated with the
destination j = 1,2, . . . ,M. f (∗) is usually a decreasing function and ci j is the generalized
cost of traveling from zone i to zone j. By the term generalized cost, we usually mean some
combination of distance, time, and direct money charges. If Ai, Bj , and ci j are known and
if the function f (∗) is such that f (ci j) > 0 for all i and j, then it has been shown (Evans
[1, 2]) that there is a unique matrix (Tij) which satisfies conditions (1.2)-(1.3). Since Ai,
Bj are strictly positive, so also Ri, Sj and hence Tij are strictly positive.

In this paper, we will consider the function f (ci j)= c−αi j = exp(−α logci j), where α is a
parameter. If this power function is used in the model, then ci j must be strictly positive
for all i and j.

Therefore, the trip distribution model, which we will consider, is defined by the equa-
tions

Tij = RiSj exp
(−α logci j

) ∀i, j, (1.4)

M∑

j=1

Tij = Ri

M∑

j=1

Sj exp
(−α logci j

)= Ai ∀i, (1.5)

N∑

i=1

Tij = Sj

N∑

i=1

Ri exp
(−α logci j

)= Bj ∀ j. (1.6)

It is called the doubly constrained gravity model with cost function as a power function.
If the Ai, Bj , and ci j are given, as they usually are, then all we need is a value for the
parameter α to enable us to solve for the trip matrix (Tij). The matrix (Tij) can therefore
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be regarded as a function of α and the final trip matrix given by model will depend on the
value which has been assigned to α. From (1.4), we might expect α to measure in some
way the extent to which cost is considered when travel decisions are made. Thus we might
expect an increase in the value of α to alter the distribution of trips so that the average cost
per trip becomes lower. The value of α used in the model is generally estimated from data,
for example, from observations of trips being made at present and the corresponding trip
costs. This process is called calibration of the model. The parameter is usually chosen so
that the mean trip cost in the model is equal to the mean cost of the observed trips.

We suppose that the data, which is available, consists of two matrices, a matrix of the
observed number of trips per unit time between each origin and destination, and the ma-
trix of costs applied when these trips were observed. We need to find the Ri, the Sj , and
α such that the resulting matrix [Ri Sj exp(−α logci j)] is in some sense the best possible
fit of this model to the data. It is certainly true that for any particular value of α, we can
find Ri and Sj such that these row and column constraints are satisfied and all the Tij are
nonnegative. The problem is therefore to find α such that the solution to the model with
these row and column constraints has a mean trip cost equal to the mean trip costing the
data. Since the number of trips in the model is equal to the number of trips in the data,
this is equivalent to choosing α, so that the total cost in the model is the same as the total
cost in the data. The structure of this paper is as follows: in Section 2, we will give an
alternative minimization formulation of the gravity model to be used in many of the sub-
sequent proofs. It will also help to give a clear understanding of the role of α in the model.
Section 3 deals with the total cost of trips as a function of α. The results connecting the
cost functions will be proved in a more comprehensive form. Section 4 will be concerned
with a more detailed discussion of the transportation problem. A numerical example is
provided in support of the existence of the problem.

2. The gravity model and an equivalent minimization formulation

2.1. The doubly constrained gravity model with power function as cost function (see
Mazumder and Das [4] and Wilson [7]). The problem is to find a matrix of trips (Tij)
such that

Tij = RiSj exp
(−α logci j

)
,

M∑

j=1

Tij =Ai, i= 1,2, . . . ,N ,

N∑

i=1

Tij = Bj , j = 1,2, . . . ,M,

(2.1)

where the Ai, Bj , ci j , and the parameter α are assumed known. There is a unique ma-
trix (T∗i j ) which satisfies (2.1) and T∗i j is strictly positive for all i and j. We will now
re-express this as a problem of minimization in which it is required to minimize an ob-
jective function F(∗) by a choice of (Tij) subject to certain constraints. In this context, it
is convenient to regard N ×M matrix (Tij) as an NM-dimensional vector denoted by τ.
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2.2. An equivalent minimization formulation. We define first the objective function
F(∗) by

F(τ)=
N∑

i=1

M∑

j=1

Tij logTij +α
N∑

i=1

M∑

j=1

(
logci j

)
Tij . (2.2)

The expression Tij logTij is defined for all Tij > 0 and we can extend its domain of defi-
nition to include the origin by assigning it the value zero at that point. This makes sense
since

Lt
Tij→0+

Tij logTij = 0. (2.3)

Therefore, the function F(∗) is denoted for all τ having Tij > 0 for all i and j.
Hence the problem is that of minimizing F(τ) subject to the constraints

M∑

j=1

Tij = Ai, i= 1,2, . . . ,N , (2.4)

N∑

i=1

Tij = Bj , j = 1,2, . . . ,M, (2.5)

Tij ≥ 0 ∀i= 1,2, . . . ,N ; j = 1,2, . . . ,M. (2.6)

Obviously, conditions (2.4)–(2.6) define a region in NM-dimensional Euclidean space
which we will call the feasible region and will be denoted by �. Thus we are required to
minimize the objective function F(τ) over the feasible region �.

To show that this is equivalent to trip distribution problem given in Section 2.1, we
form the Lagrangian

L(τ,α,β)=
N∑

i=1

M∑

j=1

Tij logTij+α
N∑

i=1

M∑

j=1

Tij
(

logci j
)

+
N∑

i=1

αi

⎛
⎝

M∑

j=1

Tij−Ai

⎞
⎠+

M∑

j=1

βi

⎛
⎝

N∑

i=1

Tij−Bj

⎞
⎠

(2.7)

and take the partial derivative of L. Equating this to zero will give the conditions, which
τ must satisfy to be a stationary point of L and hence stationary point of F(τ) subject to
the conditions (2.4)–(2.6). Here one thing to be noted that ∂L/∂Ti j does not exist at the
point Tij = 0 so that the solution will only be valid if every component of Tij is strictly
positive.

Now ∂L/∂Ti j = 0 gives Tij = exp(−1−αi)exp(−βj)exp(−α logci j), therefore

Tij = RiSj exp
(−α logci j

) ∀i, j. (2.8)

Thus τ is a stationary point if and only if it satisfies condition (2.8) and constraints (2.4)-
(2.5) together with strict inequality of (2.6). Since (2.1) are identical to (2.8), (2.4), and
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(2.5), the unique solution τ∗ to (2.1) is the only solution to (2.4)–(2.8) and T∗i j > 0 for all
i and j.

The solution τ∗ to the trip distribution problem of Section 2.1 is therefore the only
stationary point of F(τ) that has strictly positive terms 1/T∗i j along the diagonal and zeros
everywhere else. It is therefore positive definite and this means that τ∗ is a strict local
minimum of F(τ).

Now we know (Hadley [3]) that if, for a convex function defined on a convex set,
there exists a strict local minimum, it is also the unique minimum over the entire convex
set. The feasible region � is certainly convex since it is defined by linear equalities and
inequalities. Now we prove a stronger result that F(∗) is strictly convex in �.

Result 2.1. The function
∑N

i=1

∑M
j=1Tij logTij , and hence the function F(∗), is strictly

convex in �.
There is no difficulty in proving that

∑N
i=1

∑M
j=1Tij logTij is strictly convex on � since

no τ in the interior of � can have a zero component, and thus the matrix of second-
order derivatives is always positive definite there. This argument cannot however extend
to include the boundary of � since the partial derivatives with respect to Tij do not exist
at Tij = 0.

Let

T(τ)=
N∑

i=1

M∑

j=1

Tij logTij ,

C(τ)=
N∑

i=1

M∑

j=1

Tij log
(
ci j
)
.

(2.9)

Then

F(τ)= T(τ) +αC(τ). (2.10)

2.3. About the function F(∗). The function F(∗) is the weighted sum of two terms
T(τ) and C(τ) with weights 1 and α, respectively. The negative of the first term can be
regarded as a measure of the probability that the trip matrix (Tij) will occur in practice if
it is assumed that each of the γ trips that are made is equally likely to occur between any
of the NM-possible origin-destination pairs, if γ is the total number of trips being made,
then the probability that the trip matrix (Tij) will occur is

[
γ!∏

i, j

(
Tij
)
!

](
1
γ

)γ

. (2.11)

Taking logarithms and using Stirling’s approximation for the factorials give

−
N∑

i=1

M∑

j=1

Tij logTij , (2.12)

which is −T(τ) as required.
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Therefore, if we examine maximizing−T(τ), that is, minimizingT(τ) subject to origin-
destination constraints (2.4)-(2.5), we get a matrix of the form

Tij = RiSj ∀i, j, (2.13)

whence Tij =AiBj/γ for all i and j.
This proportional matrix can be regarded as the most probable matrix under the as-

sumptions that we have made so far.
The second term C(τ) is the total cost of trips made as a function of trip matrix (Tij)

and it has weight α which is the function F(τ) to be minimized. It is obvious that as
α increases, the term αC(τ) dominates the minimization and it is reasonable that as α
increases without limit C(τ), it approaches the minimum possible value M consistent
with the constraints (2.4)–(2.6).

3. Varying the parameter α

3.1. Some properties of the function α. Let

F
(
τ̂(α),α

)=min
τ∈D

F(τ,α) for each α, (3.1)

F
(
τ̂(α),α

)
< F(τ,α) ∀τ �= τ̂(α). (3.2)

Since C(τ̂(α)) and T(τ̂(α)) are functions of α alone, we will denote them by Ĉ(τ) and
T̂(τ), respectively.

Result 3.1. If (logci j) is a nontrivial cost matrix, then

(i) Ĉ(τ) is a strictly decreasing function of α,
(ii) T̂(τ) is a strictly increasing function of α for α > 0 and strictly decreasing function

of α for α < 0.
To prove, suppose α �= β and that neither α nor β is zero. Then

F
(
τ̂(α),α

)
< F

(
τ̂(β),α

)
,

F
(
τ̂(β),β

)
< F

(
τ̂(α),β

)
,

(3.3)

that is,

T̂(α) +αĈ(α) < T̂(β) +αĈ(β),

T̂(β) +βĈ(β) < T̂(α) +βĈ(α).
(3.4)

Eliminating T̂s from (3.4) gives

Ĉ(β)(β−α) < Ĉ(α)(β−α) from which (i) follows. (3.5)
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Similarly, eliminating Ĉs from (3.4),

T̂(α)(β−α) < T̂(β)(β−α) : α,β > 0,

T̂(α)(β−α) > T̂(β)(β−α) : α,β < 0
(3.6)

from which (ii) follows.
It is easy to show that � is closed and bounded, so that T and C are bounded above

and below on � and hence Ĉ(τ) and T̂(τ) are also bounded below and above. Result 3.1
also implies that the limits of T̂(τ) and Ĉ(τ) as α→±∞ exist. Let us now identify the
limits.

3.2. The limits of Ĉ(α). Here we will give a formal definition of the transportation prob-
lem and show that the limits of Ĉ(α) are the minimum and maximum values, which are
sought in that problem. Now we consider the minimum transportation problem and the
limit of Ĉ(α) as α→ +∞. The corresponding results for the maximum transportation
problem and the limit of Ĉ(α) as α→−∞ will follow by symmetry.

In the minimum transportation problem, it is required to minimize the function

C(τ)=
N∑

i=1

M∑

j=1

Tij log
(
ci j
)

(3.7)

by a suitable choice of τ subject to

M∑

j=1

Tij = Ai, i= 1,2, . . . ,N , (3.8)

N∑

i=1

Tij = Bj , j = 1,2, . . . ,M, (3.9)

Tij ≥ 0 ∀i= 1,2, . . . ,N ; j = 1,2, . . . ,M. (3.10)

Conditions (3.8)–(3.10) define the feasible region � so that it is required to minimize
the function C(τ) over �. Let us denote the minimum possible value for C(τ) subject to
(3.8)–(3.10) is λ. It is also convex by Result 2.1 and hence contains either one member
or infinitely many. It usually contains just one, but will contain infinitely many if certain
relations between the log(ci j) hold.

Result 3.2. The function Ĉ(α) tends to λ as α tends to +∞.
To prove, let Limα→∞ Ĉ(α)= λ′, λ′ ≥ λ, by the definition of λ and there exists τ0 in �

such that C(τ0)= λ.
Suppose λ′ > λ. Let T∗and t∗ be the upper and lower bounds, respectively, of the func-

tion T in � and choose α∗ so that

α∗ >
T∗ − t∗

λ′ − λ
. (3.11)
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Then

F
(
τ0,α∗

)−F(τ̂
(
α∗
)
,α∗

)= T
(
τ0
)− T̂

(
α∗
)

+α∗
(
C(τ0)− Ĉ

(
α∗
))

≤ T∗ − t∗ +α∗{λ− λ′} < 0 (using (3.11))
(3.12)

which contradicts (3.2). Hence λ �⊂ λ′, that is, λ′ = λ. This completes the proof of Result
3.2.

4. Relevant aspects of the transportation problem and its solution

The constraints (3.8) and (3.9) consist of (N +M) equations of which (N +M − 1) are
independent. If [NM− (N +M− 1)] of the variables Tij are set to zero and if the resulting
equations in the remaining (N +M − 1) variables can be solved, then we obtain a basic
solution. If in addition all the Tij are nonnegative, then condition (3.10) is also satisfied
and we have a basic feasible solution. In any feasible, the [NM− (N +M− 1)] variables
which were set to zero are known as nonbasic variables and the remaining (N +M − 1)
are called basic variables. A basic feasible solution will be called nondegenerate if all its
basic variables are strictly positive. It is known that the solution set of the minimum
transportation problem contains at least one basic feasible solution. The conditions are
expressed in terms of two new sets of variables ui, i = 1,2, . . . ,N , and vj , j = 1,2, . . . ,M,
called the dual variables, such that for each basic feasible solution

ui + vj = ηi j , where ηi j = logci j , ∀(i, j). (4.1)

Since there are (N +M) unknown and only (N +M− 1) equations in (4.1), an arbitrary
value is assigned to one of the unknowns, say u1 = 0. It can be shown that a basic feasible
solution is a cost-minimizing solution if and only if the corresponding ui and vj obtained
from (4.1) satisfy the conditions

ui + vj ≤ ηi j ∀(i, j) such that Tij is nonbasic. (4.2)

It can also be shown that an optimal basic feasible solution is the unique optimal solution
if the corresponding ui and vj satisfy ui + vj < ηi j for all (i, j) such that Tij is nonbasic.
Thus if the optimal solution is not unique, there exist an optimal basic feasible solution
and the corresponding ui and vj such that

ui + vj = ηi j for at least one (i, j) for which Tij is nonbasic. (4.3)

All the other optimal solutions can be obtained by allowing Tij to be nonzero for all (i, j)
such that ui + vj = ηi j and requiring conditions (3.8)–(3.10) to be satisfied as usual. A
sufficient condition for nonuniqueness is that there exist a nondegenerate optimal basic
feasible solution and the corresponding ui and vj , where ui + vj = ηi j for at least one (i, j)
for which Tij is nonbasic.

We consider the transportation problem when the solution is not unique and suppose
that we have an optimal solution, which is also basic. This mean that there exist one or
more pairs (i, j) corresponding to nonbasic variables Tij for which ui + vj = ηi j .
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Let Γ= {(i, j) : ui + vj = ηi j}, then Γ contains the pairs just referred to as well as those
corresponding to basic variable. It is obvious that Γ is independent of the particular basic
optimal solution with which we started.

Also we define Ω= {(i, j) : ui + vj < ηi j}.
Every optimal solution τ satisfies

Tij = 0 ∀(i, j)∈Ω (4.4)

as well as usual conditions (2.8)–(3.1).
Let the function τ̂(α) tends to τ∗ as α tends to ∞. We can now express τ∗ as the limit

of a different function of α as α tends to∞.
We recall that τ̂(α) is the solution to the gravity model of Section 2.1 with parameter

α. It satisfies constraints (2.8) and (2.13) which apply to the transportation problem but
all its elements T̂i j(α) are strictly positive and of the form T̂i j(α)= Ri(α)Sj(α)exp(−αηi j)
for all i and j.

The limit τ∗ is an optimal solution to the minimum transportation problem and hence

T∗i j = 0 ∀(i, j) in Ω. (4.5)

Thus for all (i, j) in Ω, T̂i j(α)→ 0 as α→∞.
Neither the solution to the gravity model for any parameter α nor the solution to the

transportation problem is affected by the addition of a positive or a negative constant to
all the costs in any row or column. Hence without changing the problem, we can subtract
ui from each cost in row i and vj from each cost in column j of the cost matrix (ηi j) so
that

ηi j = 0 ∀(i, j) in Γ. (4.6)

We now define a new function of α, τ̃(α), such that

T̃i j =
⎧
⎨
⎩

0 ∀(i, j) in Ω,

Ri(α)Sj(α) ∀(i, j) in Γ.
(4.7)

Clearly τ̃(α) tends to τ∗ as α tends to∞.
Introduce a matrix E = (ei j), where

ei j =
⎧
⎨
⎩

0 ∀(i, j) in Ω,

1 ∀(i, j) in Γ.
(4.8)

Then T̃i j = Ri(α)Sj(α)ei j for all (i, j).
It is easy to see that τ∗ is a solution of the following problem.
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Problem 4.1 (E,A,B). Here E = (ei j)N×M and the problem is defined as

T∗i j ≥ 0 ∀i, j,
M∑

j=1

T∗i j = Ai ∀i,

N∑

i=1

T∗i j = Bj ∀ j,

(4.9)

where T̃∗i j = Limα→∞Ri(α)Sj(α)ei j for all i and j.
The transportation problem is said to be nondegenerate if no partial sum of the Ai is

equal to a partial sum of the Bj . Therefore, τ∗ must be an interior solution to Problem 4.1
so that T∗i j must be of the form

T∗i j = RiSjei j ∀i, j. (4.10)

This means that

T∗i j =
⎧
⎨
⎩

0 ∀(i, j) in Ω,

RiSj ∀(i, j) in Γ.
(4.11)

But if there is a partial sum of the Ai which is equal to a partial sum of the Bj , then
the problem is said to be degenerate and in such case, τ∗ is a boundary solution of the
problem so that T∗i j has the form

T∗i j = RiSj ẽi j ∀i, j, (4.12)

where the matrix Ẽ = (ẽi j)N×M is such that

ẽi j =
⎧
⎨
⎩

1 if T∗i j > 0,

0 if T∗i j = 0.
(4.13)

In either case, we can find τ∗ explicitly by solving Problem 4.1. The matrix E can be
found by first using a standard process to find an optimal basic feasible solution to the
transportation problem then solving (4.1) for the corresponding ui and vj , and setting

ei j =
⎧
⎨
⎩

1 ∀(i, j) such that ηi j = ui + vj ,

0 elsewhere.
(4.14)
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Numerical example. Consider a problem with three origins and three destinations, where
A= (8,7,5) and B = (5,9,6), and the cost matrix is

⎛
⎜⎝

3 3 4
7 5 4
5 4 3

⎞
⎟⎠ . (4.15)

The following matrix is a nondegenerate basic feasible solution to the transportation
problem in which the row and column totals are the origin and destination totals, re-
spectively. Solving the equation ηi j = ui + vj for all (i, j) such that Tij is nonzero in this
basic feasible solution gives

(
u1 = 2 u2 = 4 u3 = 3

v1 = 1 v2 = 1 v3 = 0

)
(4.16)

and these values satisfy the optimality condition ui + vj ≤ ηi j for all (i, j)such that Tij is
nonzero in the above basic feasible solution. For i = 3, and j = 2, the optimality condi-
tion is satisfied as an equality and because the above optimal basic feasible solution is
nondegenerate, this implies that there are many optimal solutions to the transportation
problem. Hence the limiting matrix τ∗ must be found by solving Problem 4.1, where

⎛
⎜⎝

1 1 0
0 1 1
0 1 1

⎞
⎟⎠ , A= (8,7,5), B = (5,9,6). (4.17)

Since e11 �= 0, τ∗ must be an interior solution and is of the form

T∗i j = RiSjei j ∀i, j. (4.18)

It is easily verified that

τ∗ =
⎛
⎜⎝

5 3 0
0 3.5 3.5
0 2.5 2.5

⎞
⎟⎠ . (4.19)

Since this matrix has the right marginal totals and is of the form

T∗i j = RiSjei j ∀i, j, (4.20)

where

⎛
⎜⎝
R1 = 1 R2 = 7

6
R3 = 5

6

S1 = 5 S2 = 3 S3 = 3

⎞
⎟⎠ , (4.21)
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the matrix τ̃(α) has been calculated for various values of α using iterative procedure
briefly explained in the appendix with the following result:

τ̃(0)=
⎛
⎜⎝

2 3.6 2.4
1.75 3.15 2.1
1.25 2.25 1.5

⎞
⎟⎠ ,

τ̃(5.0)=
⎛
⎜⎝

4.97 3.03 0.00
0.00 3.49 3.51
0.03 2.48 2.49

⎞
⎟⎠ ,

τ̃(10.0)=
⎛
⎜⎝

5 3 0
0 3.5 3.5
0 2.5 2.5

⎞
⎟⎠ .

(4.22)

The above result tells us the interesting fact that τ̃(α) tends to τ∗ as α increases.

5. Conclusion

The solution to the gravity model for trip distribution with given origin and destination
totals and cost functions Exp(−α logci j) = Exp(−αηi j) varies with the parameter α. As
α tends to ∞, the solution tends to a limit, which is a cost-minimizing solution to the
transportation problem of which the marginal totals are the given origin and destination
totals. If the transportation problems have many optimal solutions, then the limit is one
particular solution so that each nonzero flow is of the form RiSj from an origin i to a
destination j. When the transportation problem is nondegenerate, the only zero flows are
possible, which are zeros for optimal solutions. However, if the transportation problem
is degenerate, other zero flows may occur.

Appendix

Iterative procedure

Consider Problem 4.1.
The procedure starts at stage zero with

E0 = E. (A.1)

At each stage 2n the row sums of the matrix E2n are made to agree with the Ai and at each
stage (2n+ 1) column sums of the matrix E2n+1 are made to agree with the Bj . Therefore,
row i of E2n must be multiplied by the factor

⎛
⎝ Ai∑M

j=1 ei j,2n

⎞
⎠ to make

M∑

j=1

ei j,2n = Ai ∀i. (A.2)
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Similarly, column j of the matrix E2n+1 must be multiplied by the factor

⎛
⎝ Bj
∑N

i=1 ei j,2n+1

⎞
⎠ (A.3)

so that
∑N

i=1 ei j,2n+1 = Bj for all j.
The procedure which we apply to solve the above-constrained gravity model is simply

an iterative process applied in [Exp(−αηi j),A,B].
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