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Previous mathematical modelling of conflict has been based on Lanchester’s equations,
which relate to the grinding attrition of “industrial-age” warfare. Large blocks of force
interact in order to force defeat by a process of wearing away the other. This is no longer
so relevant as a way of conceptualising warfare, and we generalise the approach so that it
is more appropriate to the “information age” into which we are now moving. It turns out
that the solution to this problem is the development of a theory of what we call “scale-free
systems.” We first develop this theory, and then indicate how it can be applied.
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1. Introduction

Previous mathematical modelling of conflict has been based on Lanchester’s equations.
A comprehensive review is given in Bowen and McNaught [4], with significant contri-
butions by Taylor [9]. These equations relate to the grinding attrition of “industrial-age”
warfare. Large blocks of force interact in order to force defeat by a process of wearing
away the other. This is no longer so relevant as a way of conceptualising warfare, and we
now need to generalise the approach so that it is more relevant to the “information age”
into which we are now moving. One of the key ideas in this transition is the emergent
behaviour of self-organising future forces in conflict (Alberts and Hayes [2]). Can we
develop a mathematical treatment which shows the way forward?

In this paper, we show that the answer is based on the development of a new per-
spective on a certain class of systems which we term “scale-free.” This is a more general
definition than that considered by Barabasi in his development of scale-free networks
(Albert and Barabási [1]). We firstly develop the theory of such scale-free systems, and
then show how it can be applied to our problem.
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2. Scale-free systems

In order to introduce the idea, we firstly consider the classical Lanchester equations in
a scale-free form. These equations represent a conflict of attrition between two warring
parties.

This represents a two-sided conflict between Red and Blue in which each side uses
“aimed fire” to attack the other side (Taylor [9]). Specifically we assume that

(i) each unit on each side is within weapon range of all units on the other side;
(ii) units on each side are identical but the units on one side may have a different kill

rate to the units on the opposing side;
(iii) each firing unit is sufficiently well-aware of the location and condition of all en-

emy units so that when a target is killed, fire may be immediately shifted to a new
target;

(iv) this new target is randomly chosen from the surviving targets.
At time t, and considering the small increment of time between t and t + δt, the number
of Blue casualties δb(t) is given by the number of remaining Red units times the number
of targets they kill, that is, r(t)krδt, where kr is the effectiveness of a single Red unit
engagement, and r(t)δt is a measure of the number of such engagements. From this we
have the relationship db/dt = krr(t). By symmetry we also have a similar relationship for
the attrition of Red units, namely, dr/dt = kbb(t).

Hence, dividing one equation by the other we have db/dr = krr/kbb or kbbdb = krrdr.
Integrating both sides of this equation, and using the initial values r0 and b0 for the num-
ber of Red and Blue units at the start of the conflict, we have the following relationship
(from which the squared-law name derives):

kb
(
b2

0− b2)= kr
(
r2

0 − r2). (2.1)

Now define the nondimensional variables x = 1− r/r0 and y = b/b0. We also define the
nondimensional “Lanchester number:” L= krr

2
0 /kbb

2
0. We term this a “similarity param-

eter,” by which we mean that battles with the same value of L will evolve in a similar
way.

From the expression (2.1) above we have

kb
kr
b2

0

{

1−
(
b

b0

)2
}

= r2
0

{

1−
(
r

r0

)2
}

, (2.2)

thus

kb
kr

b2
0

r2
0

(
1− y2)=

{(
1− r

r0

)2

+ 2
(
r

r0

)(
1− r

r0

)}

, (2.3)

thus

L−1(1− y2)= x2 + 2(1− x)x = x(2− x),

1− y2 = Lx(2− x),
(2.4)
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Figure 2.1. The relationship between the dimensionless variables y, x, and L for the Lanchester square
law.

from which it follows that

y =
{

1− 2Lx
(

1− x

2

)}1/2

. (2.5)

If we plot this relationship for different values of the Lanchester number L, we get Figure
2.1.

Each of the lines in Figure 2.1 corresponds to an essentially different evolution of the
battle over time, and corresponds to a different value of the similarity parameter L.

A first-order expansion of the expression at (2.5) is of the form

y ∼= 1−Lx
(

1− x

2

)
∼= 1−Lx. (2.6)

The relationship y = 1−Lx corresponds to Lanchester’s linear law (Taylor [9]). Thus we
can see that when x, the proportion of red units destroyed, is small, the linear and square
law relationships evolve in the same way, and then diverge as the nonlinear terms (such
as x2) grow larger.

Figure 2.1 is a normalised plot. This means that it remains valid for a large number of
variations of the initial conditions b0 and r0, and the kill parameters kb and kr . Various
combinations of these simply relate to particular values of the Lancester number L which
is a dimensionless invariant describing a particular flow or evolution of the battle.

In terms of a general approach, we can express these laws in the form

y =Φ(x,L), (2.7)

where Φ is a normalised functional relationship of the two nondimensional parameters
x and L.

This application of nondimensionality thus raises the question of whether it is possible
to obtain the key nondimensional parameters of a system by a systematic means.
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a

a = f (a1, . . . , an)

a1, . . . , an

Figure 2.2. The system S.

2.1. The general approach. More generally, then, we assume that we have a representa-
tion of the system in the form

a= f
(
a1,a2, . . . ,an

)
, (2.8)

where a is a key output of the system, a1,a2, . . . ,an are the key input variables which affect
the behaviour of the system, and f represents some functional relationship between the
two. This represents what we mean by a metamodel of the system, in the sense that the
output of the system is mathematically related in some way to the input variables. There
are two basic ways of trying to determine the nature of the functional relationship f .
The first is to run the system model a sufficient number of times in order to produce a
map of the response surface. Examples of such an approach are discussed, for example,
in Law and Kelton [6]. This is essentially a black-box approach to the problem. We try to
fit inputs to outputs with no understanding of how the system itself “works.” Examples
of this approach are the use of multiple regression analysis and neural networks.

However, in some cases, it is possible to exploit certain symmetries of the system in or-
der to take a rather different approach. Although this is in some ways more challenging,
it has the advantage that it can lead to a more fundamental insight into the behaviour of
the system. One symmetry which can give such insights into system behaviour is invari-
ance under changes to the scale at which we choose to represent the system. We call these
changes in the measurement scale changes. Thus the symmetry we aim to exploit is one of
invariance under changes in the scale, that is, scale invariance.

Principle of scale invariance. We elevate this to a principle that for the systems of interest
(i.e., all scale-free systems), we require that observers using different scales should observe
the same system behaviour. Thus the metamodel we produce should be scale-invariant.
Examples of such systems are those based on fractal effects (since by definition, fractals
are scale-invariant).

Consider now a system S for which we can measure the inputs and output, and these
form a relationship as shown in Figure 2.2.

The system S is thus represented by the relationship a= f (a1, . . . ,an), where the func-
tion f represents the system response. If we now change the scales which we use to mea-
sure the system inputs and output, (e.g., shrinking or expanding the size of the system
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Figure 2.3. The system S′.
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Figure 2.4. The effect of the gauge group G.

by changing our length scale) we have another representation of the system, shown at
Figure 2.3.

In the new representation at Figure 2.3, the variable scales have changed. In general we
also assume that the system response function f ′ differs from f .

We say that the system is invariant under this scale change if the system response is the
same in both cases, in other words, f = f ′. If this is true for all such changes of scale, we
call the system scale-free.

To go from the frame of reference for the system as shown in Figure 2.2 to the frame of
reference as shown in Figure 2.3 we change the scales we use. This corresponds to map-
ping from one representation to the other via a mapping G as shown in Figure 2.4. This
mapping represents the rescaling required of the variables a,a1, . . . ,an. Such rescalings in
fact form a group, which we call a gauge group.

To understand what we mean by this more precisely, we have to define what is called
a fundamental gauge class for the system (Sedov [8], Barenblatt [3]). We define a funda-
mental gauge class to mean the set of dimensions which we will use to define the dimen-
sionality of each of our system variables a and a1,a2, . . . ,an. For example, this might be
the dimensions {force, length, time} as used in the Lanchester example. It may need to
be extended to include dimensions such as heat and temperature.
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As shown in Figure 2.4, the effect of the gauge group G is thus to “scale” the input
and output variables a,a1, . . . ,an. However the system response f remains the same. This
system is scale-free since its representation does not depend on particular fixed gauges or
scales for the input and output values.

In terms of our fundamental gauge class, we can then define the dimensionality of the
output variable a and the input variables a1,a2, . . . ,an. From this, some of the input vari-
ables will have “independent dimensions.” This means that their dimensions cannot be
defined in terms of products of powers of the dimensions of the other variables. Call these
variables a1, . . . ,ak. Consider now the remaining “dependent dimension” variables. There
are n− k of these. Relabel them as b1, . . . ,bn−k. For simplicity we continue the explanation
assuming that n− k = 2; that is, we have just two dependent dimension variables: b1 and
b2. However, everything we say can be easily generalised to the case of more than two such
variables.

Our general metamodel relation is then of the form

a= f
(
a1,a2, . . . ,ak,b1,b2

)
. (2.9)

We assume our metamodel is scale-free, as discussed above. If we change the gauge of each
of our independent dimension variables a1, . . . ,ak, their values will change (i.e., increase
or decrease dependent on the nature of the gauge change). Since these are the variables
with independent dimensions, these changes are independent of each other. Thus we can
represent such a gauge change as the mapping G:

a′1 = A1a1, a′2 = A2a2, a′k =Akak, (2.10)

where A1,A2, . . . ,Ak can be varied independently.
The variables b1 and b2 have dependent dimensions, thus if we consider b1; it is possi-

ble to find products of powers of the dimensions of a1, . . . ,ak which equal the dimension
of b1. The same applies to b2. Thus we can write (using square brackets to denote “di-
mension of”)

[
b1
]= [a1

]p1 ···[ak
]r1 ,

[
b2
]= [a1

]p2 ···[ak
]r2 .

(2.11)

Since b1 and b2 do not contribute additional dimensionality to the metamodel in terms
of independent dimensions, it also follows that

[a]= [a1
]p ···[ak

]r
. (2.12)

Under the gauge transformation G we then have

b′1 = A
p1

1 ···Ar1
k b1, b′2 =A

p2

1 ···Ar2
k b2, a′ = A

p
1 ···Ar

ka. (2.13)

The transformation group G generated by {A1, . . . ,Ak} is a continuous gauge group.
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It follows from (2.11) and (2.12) that the expressions

Π= a

a
p
1 ···ark

,

Π1 = b1

a
p1

1 ···ar1
k

,

Π2 = b2

a
p2

1 ···ar2
k

(2.14)

are dimensionless, and hence gauge invariant—this means that they remain invariant
under the action of the gauge group G.

Consider now the expression

Π= a

a
p
1 ···ark

= f
(
a1, . . . ,ak,b1,b2

)

a
p
1 ···ark

= f
(
a1, . . . ,ak,Π1a

p1

1 ···ar1
k ,Π2a

p2

1 ···ar2
k

)

a
p
1 ···ark

.

(2.15)

Thus we can write

Π= F
(
a1,a2, . . . ,ak,Π1,Π2

)
, (2.16)

where F represents some functional relationship.
If we now consider the parameter a1, then since a1 has independent dimensions, we

can change the value of a1 through a change of gauge without changing the values of the
other independent dimension variables a2, . . . ,ak. Since Π, Π1, and Π2 are dimensionless,
they are also invariant under this change of gauge. Thus we can find a group parameter
A such that

Π= F
(
Aa1,a2, . . . ,ak,Π1,Π2

)= F
(
a1,a2, . . . ,ak,Π1,Π2

)
. (2.17)

Since A is a free parameter, it can take any value. The only way the expression at (2.17)
can then hold is that Π is independent of the variable a1. The same argument can also
be applied individually to the variables a2, . . . ,ak. Thus Π must be independent of the
variables a1, . . . ,ak. It follows from (2.17) that Π is a function only of Π1 and Π2. If we
denote this function as Φ, then the expression for our gauge invariant metamodel must
be of the form

Π=Φ
(
Π1,Π2

)
. (2.18)

Now recall that Π= a/a
p
1 ···ark = f (a1, . . . ,ak,b1,b2)/a

p
1 ···ark.

Thus any metamodel function f which defines a scale-free relationship of the form

a= f
(
a1,a2, . . . ,an

)
, (2.19)
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where there are n input variables, k = n− 2 of which have independent dimensions, and
two (b1 and b2) have dependent dimensions, can be written as a gauge invariant function
of two nondimensional variables in the following special form

a= f
(
a1,a2, . . . ,an

)= f
(
a1,a2, . . . ,ak,b1,b2

)= a
p
1 ···arkΦ

(
Π1,Π2

)
. (2.20)

The argument clearly generalises to the case where there are m = n− k input variables
with dependent dimensions, b1, . . . ,bm, and the metamodel in this case must have the
gauge invariant form

a= a
p
1 ···arkΦ

(
Π1,Π2, . . . ,Πm

)
. (2.21)

2.2. Power laws. One signature of complex emergent systems is that of power law re-
lationships between input and output variables, as discussed by Moffat [7]. We can see
from the expression at (2.21) that such power laws (i.e., relations of the form y = xα) are
to be expected for the type of scale-free systems we have considered, and they emerge
naturally from our approach to metamodelling.

3. The renormalisation group

To keep things simple, we assume again that we have just two similarity parameters Π1

and Π2 corresponding to two input variables b1 and b2 which have dependent dimen-
sions. Our metamodel is thus of the form

a= f
(
a1,a2, . . . ,ak,b1,b2

)
. (3.1)

We can then turn this into a scale-free metamodel of the form

Π=Φ
(
Π1,Π2

)
. (3.2)

The metamodel is then invariant under the continuous gauge group G of changes to the
scale of the parameters with independent dimensions {a1, . . . ,ak}.

We now consider what happens if we require our metamodel to be invariant under
a renormalisation group. Firstly consider the limit of Φ(Π1,Π2) as Π2 tends to 0. If this
limit is a constant, then for small values of Π2 we can ignore this variable and just write
our metamodel in the form

Π=Φ
(
Π1
)

(3.3)

which is much simpler. This is equivalent to requiring that our metamodel is (in the limit)
invariant under the group transformation ai→ ai, b1 → b1, b2 → Bb2 with 0 < B < 1 since
repeated application of this group transformation will produce Bnb2 which tends to 0 as
n→∞.

What happens if Φ(Π1,Π2) does not tend to a constant as Π2 tends to 0? What does
the gauge invariant function Φ(Π1,Π2) look like then?

As before, we let b2, and hence Π2, become small, and this is equivalent to continually
multiplying it by a factor B with 0 < B < 1. For each iteration of the factor B, we have
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a change of scale in the parameter b2 and we renormalise the variables b1 and a in order
to ensure that our metamodel at (3.1) remains invariant under this change in the scale of
one of the inputs with dependent dimensions.

This is achieved using the following renormalisation-group transformations (from
Barenblatt [3]):

b′2 = Bb2,

b′1 = Bα1b1,

a′i = ai, for 1≤ i≤ k,

a′ = Bα2a.

(3.4)

If we substitute these into our metamodel and let R denote one iteration of this renor-
malisation process, then we have

Ra= a′ = a′ p1 ···a′rk f
(

b′1
a′ p1

1 ···a′r1
k

,
b′2

a′ p2

1 ···a′r2
k

)

. (3.5)

Thus

Bα2a= a
p
1 ···ark f

(
Bα1b1

a
p1

1 ···ar1
k

,
Bb2

a
p2

1 ···ar2
k

)

. (3.6)

From this we can see that the form of the metamodel

Π=Φ
(
Π1,Π2

)= f

(
b1

a
p1

1 ···ar1
k

,
b2

a
p2

1 ···ar2
k

)

(3.7)

is transformed by the renormalisation-group action into

Π= B−α2Φ
(
Bα1Π1,BΠ2

)
. (3.8)

This has the same from as the “static-scaling” renormalisation group discussed in Moffat
[7]. There we express this in the form

Rb,φu(x, t)= b−αu
(
bφx,bt

)
. (3.9)

If we make the substitutions

b = B, α2 = α, α1 = φ, u=Φ, x =Π1, t =Π2, (3.10)

then these two expressions are the same.
Moffat [7] also shows that the limiting invariant form of the renormalised function

u(x, t) is

u∗(x, t)= tαũ∗
(
x

tφ

)
. (3.11)
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Making the substitutions above, this tells that the limiting form of Φ(Π1,Π2) is

Φ∗(Π1,Π2
)=Πα2

2 Φ̃∗
(
Π1

Πα1
2

)

. (3.12)

This expression is then invariant under the action of the renormalisation-group.
We assume that our scale-free system is renormalisation-group invariant and thus has

a form as shown at (3.12).

4. Application to Lanchester’s equations

Our application of the above methods is to a generalisation of Lanchester’s equations of
conflict (described in the introduction), to take account of the transition from industrial-
age conflict (mass on mass) as exemplified in the original equations, to the more dispersed
and interactive conflict of the information age. We call this extension the fractal attrition
equation.

The two key inputs to our metamodel, as we assume, are the unit effectiveness k and
the time interval δt. Note that the variable k has dimensions FT−1F−1 = T−1 (with F the
dimension of force, and T the dimension of time); thus kδt is dimensionless. The key
output is the attrition to the opposing force per time interval. We thus assume a meta-
model of the form E(δb/δt)∝ kr(t)Φ(Π), with the dimensionless variable Π= kδt. E is
a statistical expectation over some time period T which we normally assume to be sig-
nificantly greater than δt. The next question is the precise functional form of the system
response function Φ. This is governed by whether the system is fractal or not.

4.1. Investigation of the fractal nature of force laydown. We carried out an investiga-
tion of this using a combination of results from the HiLOCA closed form simulation
model (an agent-based model of land conflict), and from field trials of tactical forces
equipped with GPS receivers in order to record their positions during the battle. These
trials took place at the suffield trials site in Canada, using UK forces, and go under the
name of BATUS (British Army Training Unit (Suffield)) trials.

In order to determine the best estimate for a fractal dimension associated with the po-
sitions of deployed units, it is necessary to freeze the action, place a grid of cells across the
battlefield, and analyse a graph of the log of the number of occupied cells versus log(1/d),
where d is the cell size. This then yields a measure of the fractal dimension, if the distribu-
tion of units is fractal. Figure 4.1 shows the graph for the whole range of d values for the
Blue forces near the start of a HiLOCA run. This shows a graph which is broadly linear
but has a hook shape at small d (high 1/d) and blocking effects at large d. It is there-
fore necessary to determine a range of d values that generate a good linear representation
(if possible), omitting these end effects. This range is expressed as a percentage of the full
range of d values. Figure 4.2 shows the same data with a range filter of 5–50% applied and
a best linear fit shown. The gradient of this line is the estimate of the fractal dimension of
the data (1.4 in this case).

Our research also showed that the fractal dimension of combined Red and Blue force
dispositions varied over time and followed the advance, defence, and attack phases of the
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Figure 4.1. Computed fractal dimension of HiLOCA Blue forces.
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Figure 4.2. Range filter applied to the HiLOCA Blue force data.

simulation, as shown in Figure 4.3, indicating that we should expect the fractal dimension
to adjust as circumstances change.

4.2. BATUS trials data fractal analysis. BATUS exercise data taken at the trials range
in Canada has been analysed in a similar way to the HiLOCA data. Figure 4.4 shows the
whole range of d values for the Blue forces in a particular BATUS trial, taken at a partic-
ular point during the trial, and based on GPS readings of the unit locations. Figure 4.5
shows the same data with a range filter applied. The straight line obtained indicates a
fractal dimension of 0.8 in this case.

In Figure 4.6 we show how the fractal dimension varies over time for one of the BA-
TUS exercises, computed in the way indicated above, at time steps of 5 minutes over the
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Figure 4.3. The fractal dimension of combined red and blue simulated force over time.
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Figure 4.4. Calculation of the fractal dimension for a snapshot of the battlefield during a particular
BATUS trial, based on GPS trials data.

BATUS fractal dimension range filter 5–50%

3.4

3.2

3

2.8

2.6

2.4

2.2

2

Ln
(N

)

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

Ln(1/d)

Fractal dimension = 0.8265

Figure 4.5. Calculation of the fractal dimension for BATUS data with the range filter applied.

duration of the data set. Only noncasualty vehicles are included. The graph shows the
fractal dimension over time computed using two different fractal calculators. The linear
calculator assumes a linear reduction in cell size during the calculation. The “Grainger
logarithmic” approach assumes halving of the cell size at each step of the calculation. We
have found that when these both give consistent plots, it is a useful indicator of a stable
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Figure 4.6. An example of the variation in fractal dimension over time for the BATUS trials data.

fractal clustering. The pattern of fractal dimension is to show a general increase, followed
by a levelling off. There is some instability towards the end, possibly due to reduction in
vehicles caused by casualties. A number of other BATUS data sets have been analysed in
the same way and show similar characteristics.

5. Resultant theory

This evidence that our system is fractal in nature leads us to hypothesise that the function
Φ is homogeneous, and so has the form Φ(x)= xξ with ξ an “anomalous dimension,” as
discussed by Barenblatt [3].

Thus we have the relationship

E0<t<T

(
δb

δt

)
∝ kξ+1δtξr(t). (5.1)

In Lauren [5], a number of experiments were carried out using the cellular automata-
based combat model ISAAC. For a number of different cases, the mean attrition rate for
Blue was plotted against the Red kill probability. The data suggest that the exponent of k
is of the form D/2 with D the Red force fractal dimension. Hence we assume that

ξ + 1= D

2
, (5.2)

where D is the fractal dimension of the Red force clustering.
Thus

ξ =−
(

1− D

2

)
. (5.3)

5.1. Correspondence requirement. When there is no dispersed fractal clustering, and
Red agents form an uncorrelated set spread over the battlespace, with fractal dimension
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D =2, we require that this relationship reverts to the square law Lanchester equation:

E0<t<T

(
δb

δt

)
∝ kr(t). (5.4)

This occurs when ξ = 0, which gives the correct exponent for k and also eliminates the
term in δt as required.

5.2. General form. We thus assume that the fractal attrition relationship takes the gen-
eral form

E0<t<T

(
δb

δt

)
= E0<t<T

(− ckD/2δt−(1−D/2)r(t)
)
, (5.5)

where c is the constant of proportionality and D is a function of time t in general. There
is a corresponding relationship for δr/δt in terms of the Blue fractal dimension.

This then is the extension of Lanchester equations into the information age which we
propose.

6. Conclusions

We have introduced the idea of a “scale-free” system in the context of defence mod-
elling. We have demonstrated this approach by applying it to an important problem con-
cerned with the mathematical modelling of information age conflict. This generalises
the “industrial-age” Lanchester equations to make them more appropriate to the “infor-
mation age.” The resultant mathematical relationship gives us a new paradigm for con-
sideration of information age conflict, and also acts as a useful adjunct to agent-based
simulation modelling.
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