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We present the nonlinearity and dispersion effects involved in the propagation of optical
solitons which can be understood by using a numerical routine to solve the generalized
nonlinear paraxial equation. A sequence of code has been developed in Mathematica to
explore in depth several features of the optical soliton’s formation and propagation. These
numerical routines were implemented through the use of Mathematica and the results
give a very clear idea of this interesting and important practical phenomenon.

1. Introduction

The field of nonlinear optics has developed in recent years as nonlinear materials have
become available and widespread applications have become apparent. This is particularly
true for optical solitons and other types of nonlinear pulse transmission in optical fibres.
Subsequently, this form of light propagation can be utilized in the future for very high ca-
pacity dispersion-free communications. The purpose of this paper is to describe the use
of a very powerful tool to solve the generalized nonlinear paraxial equation that has stable
solutions called optical solitons [1]. The solitary wave (or soliton) is a wave that consists
of a single symmetrical hump that propagates at uniform velocity without changing its
form. The physical origin of solitons is the Kerr effect, which relies on a nonlinear dielec-
tric constant that can balance the group dispersion in the optical propagation medium.
The resulting effect of this balance is the propagation of solitons, which has the form of a
hyperbolic secant [6].

2. Nonlinear paraxial equation

The electric field is considered as a monochromatic wave propagating along the z-axis
with the wave number k and angular frequency ω, that is, the field E is assumed to be in
the expansion form:

E(r,θ,z, t)=
∞∑

l=−∞
El(r,θ,ξ,τ;ε)exp

[
i(kz−ωt)

]
. (2.1)
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With E−l = E∗l (complex conjugate) where kl = lk, ωl = lω and the summation is taken
over all harmonics generated by the nonlinearity due to the Kerr effect and El(r,θ,ξ,τ;ε)
is the envelope of the lth harmonic changing slowly in z and t. The slow variables ξ and τ
are defined by:

ξ = ε2z, τ = ε
(
t− z

Vg

)
. (2.2)

From (2.1) and (2.2), the displacement is found by:

D = ε×E =
∑

Dl exp
[
i
(
klz−ωlt

)]
. (2.3)

It has been shown by [2] that El(r,θ,ξ,τ;ε) can be expanded in terms of ε:

El(r,θ,ξ,τ;ε)=
∞∑
n=1

εnE(n)
l (r,θ,ξ,τ). (2.4)

From which the generalised nonlinear paraxial equation for u(1)
1 (ξ,τ) is obtained [4]:

i
∂u

∂ξ
+

1
2
∂2u

∂τ2
+ |u|2u=−iΓu+ iδ

∂3u

∂τ3
. (2.5)

The importance of (2.5) is that it can be solved into normalized reference coordinates. A
clear view of the evolution of the envelope along the normalised propagation path results.
This will also allow us to study the different cases, such as the classical situation, where
Γ= 0, which results in the standard nonlinear paraxial equation [4, 7].

2.1. Initial conditions. The solution of the nonlinear paraxial equation can be solved
exactly by the inverse scattering method. A planar stationary light beam in a medium
with a nonlinear refractive index can be described as a dimensionless form [7]:

i
∂u

∂ξ
+
∂2u

∂τ2
+ k|u|2u= 0. (2.6)

The method used to solve the exact inverse scattering method is applicable to equa-
tions of the type:

∂u

∂ξ
= Ŝ[u], (2.7)

where Ŝ is a nonlinear operator differential in z, which can be represented in the form:

∂L̂

∂ξ
= i[L̂,Â]. (2.8)
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Figure 3.1. The simple soliton; pulse definition 2η sech[2η( j − z0)]; displacement constant z0 = 32,
amplitude η = 0.1, and time divisions, τ = 64.

Here L̂ and Â are linear differential operators containing the sought function u(z, t) in
the form of a coefficient. The result in (2.6) can be verified in (2.8) with the operator’s L̂
and Â taking the form of the nonlinear paraxial equation [4]:

u(z, t)= 2η sech
[
2η
(
z− z0

)
+ 8ηξt

] · exp
[
i
(− 2ξx− 4

(
ξ2−η2))t+φ

]
, (2.9)

where η, ξ, φ, t, z0 are scaling parameters. This form of the solution can also be known
as a soliton that has a stable formation. Using this solution and beginning at the origin
z = 0, a wave formation can be acknowledged by [4]:

u(0, t)= η sech
[
t− t0

]
. (2.10)

3. Finite difference solution

In order to compute a valid solution, (2.10) is converted to a finite-difference equation
[4, 5] using z = ξ and t = τ. The time discretisation will be indicated by an n superscript
and the spatial position will have an associated integer subscript i. Thus u(z, t) is denoted
by uni . The various z values become i∆z where ∆z is the mesh width and i= 0,1,2, . . . ,I .
Similarly, the time variable becomes n∆t where ∆t is the time step n= 0,1,2, . . . ,N . Fol-
lowing a standard explicit procedure, the finite-difference version for (2.5) is found [4]:

i
uni+1−uni−1

2∆z
+
un−1
i − 2un−1

i +un−1
i−1

2(∆t)2
+
∣∣un−1

i

∣∣2
un−1
i

=−iΓun−1
i + iδ

un+2
i − 2un+1

i + 2un−1
i −un−2

i

2(∆t)3
.

(3.1)

The computer software Mathematica [2] has all the tools to code this finite-difference
equation, to solve it and to produce the output graphics in two and three dimensions.

3.1. Numerical results. This section investigates a numerical result of the nonlinear
paraxial equation (2.9), for the formation of solitons with Mathematica [4, 7] for the
following cases: Figures 3.1 and 3.2 show the propagation of a simple soliton. Figure 3.3
shows two solitons plotted on the same graph. Figure 3.4 shows the propagation of a
square wave soliton. Figure 3.5 shows propagation of a simple soliton with a phase angle.
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Figure 3.2. The effect of excluding the amplitude constant η from the pulse definition. This graph is
obtained from pulse= 2η sech[2η( j− z0)].
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Figure 3.3. Two solitons with amplitude at η = 0.25 and η = 0.1 respective to z0 = 38 and z1 = 32;
plotted on the same graph, to illustrate the difference made by varying the amplitude and lateral
displacement.
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Figure 3.4. Square wave soliton.
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Figure 3.5. Here the program has been allowed to set the scales automatically, at 0–60, to accommo-
date the square array in order that the program may successfully compile.

Figure 3.6 shows propagation of two solitons in phase. Figures 3.7–3.9 show propagation
of two solitons in different stages of collisions.
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Figure 3.6. Two solitons following in phase.
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Figure 3.7. Two solitons in phase: the displacement constants are set at z0 = 30 and z0 = 100. Two
solitons in early stage of collision.
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Figure 3.8. Two solitons in phase: the later displacement constants are set at z0 = 100 and z1 = 30.
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Figure 3.9. The final effect for the soliton collision with z0 = 80 and z1 = 50.

4. Conclusion

The formation and propagation of solitons has been observed and understood in this
paper by implementing a numerical routine to solve the nonlinear paraxial equation [4,
7]. A sequence of code has been developed to explore in depth several features of the
soliton’s formation and propagation. This paper investigated changes in the solutions
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of the nonlinear paraxial equation when the parameters η, ξ, φ, t, z0 are modified in
the following way. The parameter η has most noticeable effect on the amplitude of the
wave. When η > 0.1, this condition usually encountered a square wave. When η < 0.1, a
normal plane soliton is resulted. Changing the inequality sign has no noticeable effect.
The parameter ξ gives the wave a phase angle. This phase angle becomes noticeable above
0.001. A phase angle above 0.1 tends to separate the soliton solution into a row of peaks.
The results were found to be most useful at a phase angle of 0.07. The direction of the
phase changes with the sign. The parameter t0 moves the soliton peak back and forth
along the t-axis. Finally the timer divisions, on the same scale as t0, are constant in the
Mathematica program [4]. This constant investigates the spread of the graph along the t-
axis. This constant was shown to be most useful when the time divisions were set at 64. A
time division of 128 was used in this paper at the stage soliton collisions [2]. Nonlinearity
and dispersion effects involved in the propagation of optical solitons have been presented
in graphical form, using a numerical routine for Mathematica.

References

[1] P. G. Drazin and R. S. Johnson, Solitons: An Introduction, Cambridge Texts in Applied Mathe-
matics, Cambridge University Press, Cambridge, 1989.

[2] A. Hasegawa, Optical Solitons in Fibers, Springer, Berlin, 1989.
[3] H. A. Haus, Optical fiber solitons, their properties and uses, Proc. IEEE 81 (1993), no. 7, 970–983.
[4] F. Osman, Nonlinear paraxial equation at laser plasma interaction, Ph.D. thesis, University of

Western Sydney, Sydney, 1998.
[5] G. D. Smith, Numerical Solution of Partial Differential Equations. Finite Difference Method, 3rd

ed., Oxford Applied Mathematics and Computing Science Series, The Clarendon Press, Ox-
ford University Press, New York, 1985.

[6] G. B. Whitham, Linear and Nonlinear Waves, Pure and Applied Mathematics, John Wiley &
Sons, New York, 1974.

[7] V. E. Zakharov and A. B. Shabat, Exact theory of two-dimensional self-focusing and one-
dimensional self-modulation of waves in nonlinear media, Soviet Physics JETP 34 (1972),
no. 1, 62–69.

Frederick Osman: School of Quantitative Methods and Mathematical Sciences, University of
Western Sydney, Penrith, NSW 1797, Australia

E-mail address: f.osman@uws.edu.au

Robert Beech: School of Quantitative Methods and Mathematical Sciences, University of Western
Sydney, Penrith, NSW 1797, Australia

E-mail address: 98167845@day.uws.edu.au

mailto:f.osman@uws.edu.au
mailto:98167845@day.uws.edu.au


Mathematical Problems in Engineering

Special Issue on

Modeling Experimental Nonlinear Dynamics and
Chaotic Scenarios

Call for Papers

Thinking about nonlinearity in engineering areas, up to the
70s, was focused on intentionally built nonlinear parts in
order to improve the operational characteristics of a device
or system. Keying, saturation, hysteretic phenomena, and
dead zones were added to existing devices increasing their
behavior diversity and precision. In this context, an intrinsic
nonlinearity was treated just as a linear approximation,
around equilibrium points.

Inspired on the rediscovering of the richness of nonlinear
and chaotic phenomena, engineers started using analytical
tools from “Qualitative Theory of Differential Equations,”
allowing more precise analysis and synthesis, in order to
produce new vital products and services. Bifurcation theory,
dynamical systems and chaos started to be part of the
mandatory set of tools for design engineers.

This proposed special edition of the Mathematical Prob-
lems in Engineering aims to provide a picture of the impor-
tance of the bifurcation theory, relating it with nonlinear
and chaotic dynamics for natural and engineered systems.
Ideas of how this dynamics can be captured through precisely
tailored real and numerical experiments and understanding
by the combination of specific tools that associate dynamical
system theory and geometric tools in a very clever, sophis-
ticated, and at the same time simple and unique analytical
environment are the subject of this issue, allowing new
methods to design high-precision devices and equipment.

Authors should follow the Mathematical Problems in
Engineering manuscript format described at http://www
.hindawi.com/journals/mpe/. Prospective authors should
submit an electronic copy of their complete manuscript
through the journal Manuscript Tracking System at http://
mts.hindawi.com/ according to the following timetable:

Manuscript Due February 1, 2009

First Round of Reviews May 1, 2009

Publication Date August 1, 2009

Guest Editors

José Roberto Castilho Piqueira, Telecommunication and
Control Engineering Department, Polytechnic School, The
University of São Paulo, 05508-970 São Paulo, Brazil;
piqueira@lac.usp.br

Elbert E. Neher Macau, Laboratório Associado de
Matemática Aplicada e Computação (LAC), Instituto
Nacional de Pesquisas Espaciais (INPE), São Josè dos
Campos, 12227-010 São Paulo, Brazil ; elbert@lac.inpe.br

Celso Grebogi, Department of Physics, King’s College,
University of Aberdeen, Aberdeen AB24 3UE, UK;
grebogi@abdn.ac.uk

Hindawi Publishing Corporation
http://www.hindawi.com

http://www.hindawi.com/journals/mpe/
http://www.hindawi.com/journals/mpe/
http://mts.hindawi.com/
http://mts.hindawi.com/

	1Call for Papers4pt
	Guest Editors

