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The exact distribution of the ratio |X/Y | is derived when X and Y are, respectively, Pear-
son type VII and Bessel function random variables distributed independently of each
other. The work is motivated by previously published approximate relationships between
these two distributions. An application of the result is provided by computing “correction
factors” for some of these approximations.

1. Introduction

For given random variables X and Y , the distribution of the ratio X/Y is of interest in bio-
logical and physical sciences, econometrics, and ranking and selection. Examples include
Mendelian inheritance ratios in genetics, mass to energy ratios in nuclear physics, target
to control precipitation in meteorology, and inventory ratios in economics. Another im-
portant example is the stress-strength model in the context of reliability. It describes the
life of a component which has a random strength Y and is subjected to random stress X .
The component fails at the instant that the stress applied to it exceeds the strength and the
component will function satisfactorily whenever Y > X . Thus, Pr(X < Y) is a measure of a
component reliability. It has many applications especially in engineering concepts such as
structures, deterioration of rocket motors, static fatigue of ceramic components, fatigue
failure of aircraft structures and aging of concrete pressure vessels.

The distribution of X/Y has been studied by several authors especially when X and
Y are independent random variables and come from the same family. For instance, see
Marsaglia [14] and Korhonen and Narula [9] for normal family, Press [18] for Student’s t
family, Basu and Lochner [1] for Weibull family, Shcolnick [23] for stable family, Hawkins
and Han [5] for non-central chi-squared family, Provost [19] for gamma family, and
Pham-Gia [17] for beta family. However, there is relatively little work of this kind when
X and Y belong to different families. In the applications mentioned above, it is indeed
quite possible that X and Y could arise from different but similar distributions.

Pearson type VII distributions (which contain Student’s t distributions as particular
cases) are becoming of increasing importance in classical as well as in Bayesian statistical
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modeling. These distributions have been perhaps unjustly overshadowed—for at least
seventy years—by the normal distribution. Pearson type VII distributions are of cen-
tral importance in statistical inference. Their applications are a very promising path to
take. Classical analysis is soundly bend on the normal distribution while Pearson type
VII distributions (in particular, Student’s t distributions) offer a more viable alternative
with respect to real-world data particularly because its tails are more realistic. We have
seen unexpected applications in novel areas such as cluster analysis, discriminant analy-
sis, multiple regression, robust projection indices and missing data imputation.

Pearson type VII distributions (in particular, Student’s t distributions) for the past
fifty years have also played a crucial role in Bayesian analysis. They serve as the most
popular prior distribution (because elicitation of prior information in various physical,
engineering and financial phenomena is closely associated with Student’s t distributions)
and generate meaningful posterior distributions. For further discussion of applications,
the reader is referred to Kotz and Nadarajah [11].

On the other hand, Bessel function distributions (which contain logistic distributions
as particular cases) have found applications in a variety of areas that range from im-
age and speech recognition and ocean engineering to finance. They are rapidly becom-
ing distributions of first choice whenever “something” with heavier than Gaussian tails
is observed in the data. For further discussion of applications, the reader is referred to
Kotz et al. [10].

There has been considerable work on the relationship between the Student’s t and lo-
gistic distributions (which are particular cases of Pearson type VII and Bessel function
distributions, resp.). The similarities in the shapes of the logistic and the normal distri-
butions have been noted by several authors. An excellent summary of these properties is
found in Johnson and Kotz [7]. However, Mudholkar and George [15] showed that the
Student’s t distribution function with 9 degrees of freedom, when standardized to have
variance one provides a better fit of a standardized logistic distribution than the stan-
dard normal. George and Ojo [3] and George et al. [2] extended this result by showing
that

Pr(T ≤ t)≈ 1
1 + exp(−at) , (1.1)

whereT is a Student’s t random variable with ν degrees of freedom and a=π
√

(ν−2)/(3ν).
This approximation (1.1) was obtained by equating the cumulant of the Student’s t distri-
bution with that of the logistic distribution. The approximation was found to be accurate
to two decimal places for middle values of t and to three decimal places at the tails. A
better approximation between the Student’s t and logistic distributions has been recently
proposed by Li and De Moor [13].

The above discussion naturally raises the important question: what is the exact distri-
bution of the ratio of Student’s t and logistic random variables? This question does not
appear to have been addressed in the literature. In this paper, we discuss the more general
problem: the exact distribution of the ratio |X/Y |whenX andY are independent random
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variables having the Pearson type VII and Bessel function distributions with the pdfs

f (x)= Γ(M− 1/2)√
NπΓ(M− 1)

(
1 +

x2

N

)1/2−M
, (1.2)

f (y)= |y|m√
π2mbm+1Γ(m+ 1/2)

Km

(∣∣∣∣ yb
∣∣∣∣
)

, (1.3)

respectively, for −∞ < x <∞, −∞ < y <∞, b > 0, m> 1, M > 1 and N > 0, where

Km(x)=
√
πxm

2mΓ(m+ 1/2)

∫∞
1

(
t2− 1

)m−1/2
exp(−xt)dt (1.4)

is the modified Bessel function of the second kind. We also provide an application section
and compute “correction factors” for the approximation provided by (1.1).

The Pearson type VII distribution is related to the Student’s t distribution as follows:
if M = 1 + a/2 and

U =
√

a

N
X (1.5)

then U is a Student’s t random variable with degrees of freedom a. Note that the pdf of a
Student’s t random variable with degrees of freedom ν is given by

f (x)= 1√
νB(ν/2,1/2)

(
1 +

x2

ν

)−(1+ν)/2

(1.6)

for−∞ < x <∞. Nadarajah and Kotz [16] have shown that the cdf corresponding to (1.6)
can be expressed as

F(x)=




1
2

+
1
π

arctan
(

x√
ν

)
+

1
2π

∑(ν−1)/2
l=1 B

(
l,

1
2

)
νl−1/2x(
ν + x2

)l , if ν is odd,

1
2

+
1

2π

∑ν/2
l=1B

(
l− 1

2
,
1
2

)
νl−1x(

ν + x2
)l−1/2 , if ν is even.

(1.7)

The representations in (1.5) and (1.7) will be crucial for the calculations of this note. The
calculations involve the Euler psi function defined by

Ψ(x)= d logΓ(x)
dx

, (1.8)
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the Struve function defined by

Hν(x)= 2xν+1

√
π2ν+1Γ(ν + 3/2)

∞∑
k=0

1
(3/2)k(ν + 3/2)k

(
− x2

4

)k
, (1.9)

the Bessel function of the first kind defined by

Jν(x)= xν

2νΓ(ν + 1)

∞∑
k=0

1
(ν + 1)kk!

(
− x2

4

)k
, (1.10)

the hypergeometric functions defined by

E(a;x)=
∞∑
k=0

1
(a)k

xk

k!
, H(a;b,c;x)=
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k=0

(a)k
(b)k(c)k

xk

k!
(1.11)

and, the Lommel functions defined by

sµ,ν(x)= xµ+1

(µ− ν + 1)(µ+ ν + 1)
H
(

1;
µ− ν + 3

2
,
µ+ ν + 3

2
;−x2

4

)
,

Sµ,ν(x)= sµ,ν(x) +
2µ+ν−1Γ(ν)Γ

(
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) E
(

1 + ν;−x2
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(1.12)

where (e)k = e(e + 1)···(e + k − 1) denotes the ascending factorial. We also need the
following important lemma.

Lemma 1.1 (Prudnikov et al. [20, 21, equation (2.16.3.14), volume 2]). For c > 0, z > 0
and ν >−1,

∫∞
0

xν+1(
x2 + z2

)ρ Kν(cx)dx = (2z)ν(z/c)1−ρΓ(ν + 1)S−ν−ρ,1+ν−ρ(cz). (1.13)

Further properties of the above special functions can be found in Prudnikov et al.
[20, 21] and Gradshteyn and Ryzhik [4].

2. Cdf

Theorem 2.1 derives an explicit expression for the cdf of |X/Y | in terms of the Lommel
function.
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Theorem 2.1. Suppose X and Y are distributed according to (1.2) and (1.3), respectively. If
a= 2(M− 1) is an odd integer then the cdf of Z = |X/Y | can be expressed as

F(z)= I(a) +
2am/2Γ(m+ 1)

π3/2bm+1Γ(m+ 1/2)rm

(a−1)/2∑
k=1

ak/2B(k,1/2)
b1−krk

S−(m+k),1+m−k
(√

a

br

)
, (2.1)

where I(·) denotes the integral

I(a)= 1
π3/22m−2bm+1Γ(m+ 1/2)

∫∞
0

arctan
(
r y√
a

)
ymKm

(
y

b

)
dy, (2.2)

and r =√a/Nz.

Proof. Using the relationship (1.5), one can write the cdf as Pr(|X/Y | ≤ z)= Pr(|U/Y | ≤
r), which can be expressed as

F(r)= 1√
π2mbm+1Γ(m+ 1/2)

∫∞
−∞

{
F
(
r|y|)−F

(− r|y|)}|y|mKm

(∣∣∣∣ yb
∣∣∣∣
)
dy

= 1√
π2m−1bm+1Γ(m+ 1/2)

∫∞
0

{
F(r y)−F(−r y)

}
ymKm

(
y

b

)
dy,

(2.3)

where F(·) inside the integrals denotes the cdf of a Student’s t random variable with de-
grees of freedom a. Substituting the form for F given by (1.7) for odd degrees of freedom,
(2.3) can be reduced to

F(r)= I(a) +
2r

π3/2
√
a2mbm+1Γ(m+ 1/2)

(a−1)/2∑
k=1

akr−2kB
(
k,

1
2

)
J(k), (2.4)

where J(k) denotes the integral

J(k)=
∫∞

0

ym+1Km(y/b)(
y2 + a/r2

)k dy. (2.5)

By direct application of Lemma 1.1, one can calculate (2.5) as

J(k)= 2mm!a(m−k+1)/2bk−1rk−m−1S−(m+k),1+m−k
(√

a

br

)
. (2.6)

The result of the theorem follows by substituting (2.6) into (2.4). �

Theorem 2.2 is the analogue of Theorem 2.1 for the case when the degrees of freedom
2(M− 1) is an even integer.
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Figure 2.1. Plots of the pdf of (2.1) and (2.7) for M = 6, N = 1 and m= 2,3,5,10.

Theorem 2.2. Suppose X and Y are distributed according to (1.2) and (1.3), respectively. If
a= 2(M− 1) is an even integer then the cdf of Z = |X/Y | can be expressed as

F(z)= 2am/2Γ(m+ 1)
π3/2bm+1Γ(m+ 1/2)rm

a/2∑
k=1

ak/2B(k− 1/2,1/2)
b3/2−krk

S1/2−m−k,3/2+m−k
(√

a

br

)
, (2.7)

where r =√a/Nz.

Proof. Substituting the form for F given by (1.7) for odd degrees of freedom, (2.3) can be
reduced to

F(r)= 2r
π3/2

√
a2mbm+1Γ(m+ 1/2)

a/2∑
k=1

ak−1/2r1−2kB
(
k− 1

2
,
1
2

)
J(k), (2.8)

where J(k) denotes the integral

J(k)=
∫∞

0

ym+1Km(y/b)(
y2 + a/r2

)k−1/2 dy. (2.9)

By direct application of Lemma 1.1, one can calculate (2.9) as

J(k)= 2mm!a(m−k+3/2)/2bk−3/2rk−m−3/2S1/2−m−k,3/2+m−k
(√

a

br

)
. (2.10)

The result of the theorem follows by substituting (2.10) into (2.8). �

Figure 2.1 illustrates possible shapes of the pdf of |X/Y | for M = 6, N = 1 and a range
of values of m. Note that the shapes are unimodal and that the value of m largely dictates
the behavior of the pdf near z = 0.

Table 2.1 provides percentage points of the random variable Z = |X/Y |, where X is
Student’s t random variable and Y is the logistic random variable (see the next section).
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Table 2.1. Percentage points of Z = |X/Y |, where X is Student’s t and Y is logistic.

ν p = 0.9 p = 0.95 p = 0.975 p = 0.99 p = 0.995 p = 0.999

3 5.562765 11.38354 22.97968 58.01899 116.9898 590.5066

4 6.262781 12.71831 25.40326 64.11429 126.6723 631.2136

5 6.571752 13.28467 26.69873 66.59717 134.2463 683.6856

6 6.713695 13.57901 27.17702 68.55331 137.8122 661.8825

7 6.785755 13.71471 27.67064 69.98242 139.2899 706.187

8 6.851048 13.84042 27.70334 69.84954 137.9891 718.6892

9 6.890786 13.90781 27.73966 69.55903 137.6793 699.746

10 6.896549 14.00395 28.24329 70.84583 142.5509 725.8325

11 6.95357 14.02722 28.11031 69.5793 137.904 696.0801

12 6.972723 14.09180 28.12042 69.88332 137.7253 672.2092

13 6.98896 14.14476 28.17688 70.4751 141.4761 693.2014

14 7.009541 14.11228 28.33336 71.51355 140.8694 705.5214

15 7.037168 14.21723 28.54814 70.52729 140.4317 672.6095

16 7.016891 14.15984 28.35549 71.11684 143.1923 749.5653

17 7.036384 14.22758 28.58657 71.57068 141.4651 688.2397

18 6.997855 14.16037 28.31962 70.2939 141.4549 705.8531

19 7.013366 14.24295 28.55525 71.99197 144.5075 760.897

20 7.05649 14.23309 28.37539 71.53259 142.1804 711.128

21 7.079385 14.23683 28.82255 71.48645 140.3166 698.9362

22 7.068098 14.29088 28.87514 71.84303 144.8472 720.8385

23 7.065508 14.24519 28.45713 71.72072 142.1739 707.4103

24 7.08719 14.26229 28.42829 71.54304 144.2094 744.5381

25 7.088949 14.22109 28.56216 71.27478 141.8147 700.2782

26 7.075956 14.22041 28.37632 69.83216 138.6226 714.1018

27 7.061162 14.19190 28.37419 71.1976 140.5687 766.0238

28 7.103002 14.28380 28.55252 72.33449 144.1237 715.3463

29 7.087898 14.35654 28.80674 72.79021 144.8118 713.6059

30 7.07424 14.2707 28.63380 71.4855 141.3878 698.7528

31 7.089486 14.25152 28.65639 72.30395 145.2743 741.7811

32 7.06058 14.19111 28.56882 72.30109 146.1088 691.8094

33 7.137295 14.41838 28.77831 71.79008 143.2821 708.5934

34 7.09389 14.28261 28.41822 70.6438 139.7121 716.6218

35 7.085203 14.25356 28.53685 71.72688 143.7028 682.4963

36 7.109764 14.32743 28.82298 71.98 143.0642 729.9266

37 7.103148 14.32635 28.89781 72.73917 144.9194 720.3259

38 7.119519 14.37951 29.07110 72.8409 147.2216 729.187

39 7.099915 14.36532 28.65924 71.41699 144.1128 748.3013

40 7.097136 14.24074 28.39764 70.28753 139.6711 709.3462

41 7.121472 14.36992 28.91728 71.5884 145.9546 687.5026

42 7.122682 14.34184 28.83802 72.30898 143.8715 708.7313
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Table 2.1. Continued.

ν p = 0.9 p = 0.95 p = 0.975 p = 0.99 p = 0.995 p = 0.999

43 7.136523 14.31962 28.82072 72.56791 145.7568 726.197

44 7.073623 14.31739 28.59732 70.96285 143.9753 684.8288

45 7.098625 14.29619 28.63336 70.971 141.1438 771.8231

46 7.076823 14.29069 28.68125 71.09681 141.0267 691.0396

47 7.133042 14.37075 28.72546 72.23762 144.6101 741.7482

48 7.111953 14.33463 28.78489 71.15746 141.5647 746.4949

49 7.109182 14.25147 28.80318 72.11692 142.8293 700.7086

50 7.119438 14.31630 28.71464 72.46818 144.9791 702.7882

3. Application

In this section, we provide “correction factors” for the approximation (1.1). These fac-
tors are computed as the percentage points zp associated with the cdfs (2.1) and (2.7)
when X is a Student’s t random variable with degrees of freedom ν and Y is a logistic
random variable with the scale parameter π

√
(ν− 2)/(3ν). Evidently, this involves com-

putation of the Lommel and Bessel functions. Fortunately routines for these calculations
are widely available. We used the functions LommelS1(·), LommelS2(·), and BesselK(·)
in the algebraic manipulation package, MAPLE. Table 2.1 provides the numerical values
of zp for ν = 3,4, . . . ,50 and p = 0.9,0.95,0.975,0.99,0.995,0.999. We hope these num-
bers will be of use to the practitioners of the approximation (1.1). Similar tabulations
could be easily derived for other values of ν by using the LommelS1(·), LommelS2(·),
and BesselK(·) functions in MAPLE.
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