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We analyze a batch arrival queue with a single server providing two kinds of general het-
erogeneous service. Just before his service starts, a customer may choose one of the ser-
vices and as soon as a service (of any kind) gets completed, the server may take a vacation
or may continue staying in the system. The vacation times are assumed to be general and
the server vacations are based on Bernoulli schedules under a single vacation policy. We
obtain explicit queue size distribution at a random epoch as well as at a departure epoch
and also the mean busy period of the server under the steady state. In addition, some
important performance measures such as the expected queue size and the expected wait-
ing time of a customer are obtained. Further, some interesting particular cases are also
discussed.

1. Introduction

The single server queues including the M/G/1 queue with single arrivals and MX/G/1
queue with batch arrivals have been studied by numerous authors including Burke [2],
Gaver [10], Chaudhry [3], Madan [18] and Medhi [23], among several others. Further,
various authors studied this type of queues with server vacations under various vaca-
tion policies including Bernoulli schedules. Various aspects of Bernoulli vacation models
for single server queueing systems including M/G/1 queue have been studied by Keilson
and Servi [11, 12, 13], Scholl and Kleinrock [27], Servi [28], Ramaswamy and Servi [24],
Doshi [8, 9], Takagi [29], Madan [19, 20] and Madan and Baklizi [22], among several oth-
ers. More recently, most of the studies have been devoted to batch arrival vacation models
under different vacation policies because of its interdisciplinary character. Numerous re-
searchers, including Baba [1], Choudhury [4, 5], Choudhury and Borthakur [6], Lee et al.
[14, 15], Lee et al. [16], Rosenberg and Yechiali [25] and Teghem [17], Madan and Abu-
Dayyeh [21] and many others have studied batch arrival vacation queues under different
vacation policies.

All these papers have a common assumption that the system has a single server who
provides only one kind of service to the incoming customers. However, in the present
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paper, we consider an extended MX/G/1 queue with batch arrivals, two types of gen-
eral heterogeneous service and modified Bernoulli schedule server vacations. Just before
a service starts, a customer has the option to choose one of the two kinds of services.
Such a model may find applications in many day-to-day real-life queueing situations en-
countered at automobile stations, post offices, banks or computer centers, and so forth.
where the server may offer two kinds of service one of which may be chosen by each cus-
tomer. Surely, the model may have many more wider applications. Further, our model
assumes that the server vacations are based on modified Bernoulli schedules under a sin-
gle vacation policy which means that just after completing a service selected by a cus-
tomer, the server may take a vacation of random duration or may continue staying in
the system and on completion of a vacation period, the server must be back to the sys-
tem even if there is no customer to serve. This type of modified server vacations under
a single vacation policy was recently studied by Madan and Abu-Dayyeh [21] under the
policy of restricted admissibility. For convenience, we denote the model under our study
as Mx/

(G1
G2

)
/1/G(BS)/Vs queue where

(G1
G2

)
stands for two kinds of parallel general het-

erogeneous service, (one of which has to be chosen by each customer), G(BS) denotes
general service times under Bernoulli schedules and Vs denotes single vacations.

The following assumptions briefly describe the mathematical model of our problem.

2. The mathematical model

Customers (units) arrive at the system in batches of variable size in a compound Pois-
son process. Let λcidt(i = 1,2,3, . . .) be the first order probability that a batch of i cus-
tomers arrives at the system during the short interval of time (t, t + dt], where 0 ≤ ci ≤
1,
∑∞

i=1 ci = 1 and λ > 0 is the mean arrival rate of batches. There is a single server who
provides two kinds of general heterogeneous (one by one) service to customers on a first
come, first served (FCFS) basis. Before his service starts, each customer has the option
to choose first service with probability θ1 or the second service with probability θ2 where
θ1 + θ2 = 1. We assume that the service time random variable Sj of jth kind of service
follows a general probability law with Bj(s j) as the distribution function, bj(s j) as the
probability density function and E(Skj ) as the kth moment (k = 1, 2, . . .) of the service
time, j = 1, 2.

Let µj(x) be the conditional probability of completion of type j service during the
interval (x,x+dx], given that the elapsed time is x, so that

µj(x)= bj(x)

1−Bj(x)
, j = 1, 2, (2.1)

and therefore,

bj
(
s j
)= µj

(
s j
)

exp

(
−
∫

0s j µ j(x)dx

)
; j = 1, 2. (2.2)

As soon as the service of a customer is complete, the server may take a vacation with
probability p or else with probability 1− p he may continue serving the next customer, if
any (or may remain idle, in case there is no customer in the system). We further assume
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that the vacation time random variable Y follows a general probability law with V(y) as
the distribution function, v(y) as the probability density function and E(Yk) as its k th
moment (k = 1, 2, . . .).

Let η(x) be the conditional probability of completion of a vacation period during the
interval (x, x+dx], given that the elapsed vacation time is x, so that

η(x)= v(x)
1−V(x)

, (2.3)

and therefore,

v(y)= η(y)exp

(
−
∫ y

0
η(x)dx

)
. (2.4)

We further assume that whenever the server takes a vacation, it is always a single vacation.
In other words, on completion of a vacation, the server must be back to the system even
if there is no customer present in the system. Such a system with modified Bernoulli
schedules has been recently studied by Madan and Abu-Dayyeh [21].

Remark 2.1. Here we may remark that this assumption is unlike the assumptions of sev-
eral other authors who assume that on completion of a vacation, if the server finds no
customers in the queue, then he must take another vacation.

Finally, it is assumed that the inter-arrival times of the customers, the service times
of each kind of service and vacation times of the server, all these stochastic processes
involved in the system are independent of each other.

3. Definitions, notations, and equations governing the system

Assuming that the steady state exists, let Pn, j(x) denote the steady state probability that
there are n(≥ 1) customers in the queue including one customer in type j service, j =
1, 2 and the elapsed service time of this customer is x. Accordingly, Pn, j =

∫∞
0 Pn, j(x)dx

denotes the corresponding steady state probability irrespective of the elapsed service time
x. Next, we define Qn(x) as a steady state probability that there are n(≥ 0) customers in
the queue and the server is on vacation and the elapsed vacation time of the server is x.
Accordingly, Qn =

∫∞
0 Qn(x)dx is the corresponding steady state probability, irrespective

of the elapsed vacation time x. Finally, let ‘E0’ denote the steady state probability that
the server is idle but available in the system and there is no customer in the system. In
addition, we define the following probability generating functions (PGFs):

Pj(x,z)=
∞∑
n=1

Pn, j(x)zn, Pj(z)=
∞∑
n=1

Pn, jz
n, j = 1, 2, (|z| ≤ 1), (3.1)

Q(x,z)=
∞∑
n=0

Qn(x)zn, Q(z)=
∞∑
n=0

Qnz
n, |z| ≤ 1, (3.2)

C(z)=
∞∑
i=1

ciz
i, |z| ≤ 1. (3.3)



126 On Mx/
(G1
G2

)
/1/G(BS)/Vs vacation queue

Then, following the argument of Cox [7], we obtain the following steady state equations
for our model (n≥ 1):

d

dx
Pn,1(x) +

(
λ+µ1(x)

)
Pn,1(x)= λ

n∑
i=1

ciPn−i,1(x), (3.4)

d

dx
Pn,2(x) +

(
λ+µ2(x)

)
Pn,2(x)= λ

n∑
i=1

ciPn−i,2(x)1, (3.5)

d

dx
Qn(x) +

(
λ+η(x)

)
Qn(x)= λ

n∑
i=1

ciQn−i(x), (3.6)

d

dx
Q0(x) +

(
λ+η(x)

)
Q0(x)= 0, (3.7)

E0 = (1− p)

[∫∞
0
P1,1(x)µ1(x)dx+

∫∞
0
P1,2(x)µ2(x)dx

]
+
∫∞

0
Q0(x)η(x)dx, (3.8)

where P0, j(x)= 0 for j = 1, 2, appearing in (3.4) and (3.5).
The above equations have to be solved subject to the boundary conditions:

Pn,1(0)=(1− p
)
θ1

(∫∞
0
Pn+1,1(x)µ1(x)dx+

∫∞
0
Pn+1,2(x)µ2(x)dx

)

+ θ1

∫∞
0
Qn(x)η(x)dx+ λθ1cnE0, n≥ 1,

(3.9)

Pn,2(0)=(1− p
)
θ2

(∫∞
0
Pn+1,1(x)µ1(x)dx+

∫∞
0
Pn+1,2(x)µ2(x)dx

)

+ θ2

∫∞
0
Qn+1(x)η(x)dx+ λθ2cnE0, n≥ 1,

(3.10)

Qn(0)= p

(∫∞
0
Pn+1,1(x)µ1(x)dx+

∫∞
0
Pn+1,2(x)µ2(x)dx

)
, (3.11)

(n≥ 0), and the normalizing condition

E0 +
2∑
j=1

∞∑
n=1

∫∞
0
Pn, j(x)dx+

∞∑
n=0

∫∞
0
Qn(x)dx = 1. (3.12)

Now, proceeding in the usual manner with equations (3.4)–(3.8) we obtain

P1(x,z)= P1(0,z)
[
1−B1(x)

]
e−λ(1−C(z)), x > 0, (3.13)

P2(x,z)= P2(0,z)
[
1−B2(x)

]
e−λ(1−C(z)), x > 0, (3.14)

Q(x,z)=Q(0,z)
[
1−V(x)

]
e−λ(1−C(z)), x > 0. (3.15)
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Next, we multiply equations (3.9)–(3.11) by suitable powers of z, take summation over all
possible values of n and use equations (3.1)–(3.3) and (3.8) and simplify. Thus we obtain

[
z− (1− p)θ1B

∗
1

(
λ− λC(z)

)]
P1(0,z)

= (1− p)θ1P2(0,z)B∗2
(
λ− λC(z) + zθ1Q(0,z)V∗(λ− λC(z)

))
+ zλθ1

(
C(z)− 1

)
E0,

(3.16)[
z− (1− p)θ2B

∗
2

(
λ− λC(z)

)]
P2(0,z)

= (1− p)θ2P1(0,z)B∗1
(
λ− λC(z)

)
+ zθ2Q(0,z)V∗(λ− λC(z)

)
+ zλθ2

(
C(z)− 1

)
E0,

(3.17)

zQ(0,z)= p
[
P1(0,z)B∗1

(
λ− λC(z)

)
+P2(0,z)B∗2

(
λ− λC(z)

)]
, (3.18)

where

G∗j
[
λ−λe(z)

]=
∫∞

0
e−(λ−λe(z))xdGj(x), j=1,2, V∗[λ−λe(z)

]=
∫∞

0
e−(λ−λe(z))xdB(x)

(3.19)

are the Laplace-Stieltjis transforms of type 1, type 2 service times and vacation time,
respectively.

Then substituting for Q(0,z) from (3.18) into (3.16) and (3.17), we obtain

[
z− {(1− p) + pV∗(λ− λC(z)

)}
θ1B

∗
1

(
λ− λC(z)

)]
P1(0,z)

= {(1− p) + pV∗(λ− λC(z)
)}
θ1P2(0,z)B∗2

(
λ− λC(z)

)
+ zλθ1

(
C(z)− 1

)
E0,

(3.20)

[
z− {(1− p) + pV∗(λ− λC(z)

)}
θ2B

∗
2

(
λ− λC(z)

)]
P2(0,z)

= {(1− p) + pV∗(λ− λC(z)
)}
θ2P1(0,z)B∗1

(
λ− λC(z)

)
+ zλθ2

(
C(z)− 1

)
E0.

(3.21)

Solving (3.20) and (3.21) for P1(0,z) and P2(0,z) and simplifying we have

P1(0,z)= λzθ1
(
1−C(z)

)
E0

D(z)
, (3.22)

P2(0,z)= λzθ2
(
1−C(z)

)
E0

D(z)
, (3.23)

where

D(z)= [(1− p) + pV∗(λ− λC(z)
)][

θ1B
∗
1

(
λ− λC(z)

)
+ θ2B

∗
2

(
λ− λC(z)

)]− z.

(3.24)

Now, utilizing (3.22)–(3.23) into (3.18), we obtain

Q(0,z)= pλ
[
θ1B

∗
1

(
λ− λC(z)

)
+ θ2B

∗
2

(
λ− λC(z)

)][
1−C(z)

]
E0

D(z)
, (3.25)

where D(z) is given by (3.24).
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Next, from (3.13) and (3.22), we obtain

P1(z)=
∫∞

0
P1(x,z)dx =

[
1−B∗1

(
λ− λC(z)

)]
zθ1E0

D(z)
. (3.26)

Then, from (3.14) and (3.23), we obtain

P2(z)=
∫∞

0
P2(x,z)dx =

[
1−B∗2

(
λ− λC(z)

)]
zθ2E0

D(z)
. (3.27)

Finally, from (3.15) and (3.25), we obtain

Q(z)=
∫∞

0
Q(x,z)dx

= p
[
θ1B

∗
1

(
λ− λC(z)

)
+ θ2B

∗
2

(
λ− λC(z)

)][
1−V∗(λ− λC(z)

)]
E0

D(z)
.

(3.28)

The unknown probability E0 can be determined by utilizing the normalizing condition
(3.12) which is equivalent to E0 +P1(1) +P2(1) +Q(1)= 1. Thus we have on simplifying

E0 = 1− ρ, (3.29)

where ρ = λE(I)[θ1E(S1) + θ2E(S2) + pE(Y)] < 1 is the utilization factor of this system
and E(I) is the mean size of an arriving batch.

Further, utilizing (3.29) and putting z = 1 into equations (3.26)–(3.28) yield

Pr(the server is busy providing type 1 serviceat a random epoch)= λE(I)E(S1)θ1,
(3.30)

Pr(the server is busy providing type 2 serviceat a random epoch)= λE(I)E(S2)θ2,
(3.31)

Pr(the server is on vacation at a random epoch)= pλE(I)E(Y). (3.32)

Now, we let PQ(z)= E0 +P1(z) +P2(z) +Q(z) denote the steady state PGF of the sys-
tem size distribution at a random epoch. Then adding (3.26)–(3.29), we obtain on sim-
plifying

PQ(z)= (1− z)(1− ρ)
[
θ1B

∗
1

(
λ− λC(z)

)
+ θ2B

∗
2

(
λ− λC(z)

)]
[
(1− p) + pV∗(λ− λC(z)

)][
θ1B

∗
1

(
λ− λC(z)

)
+ θ2B

∗
2

(
λ− λC(z)

)]− z
,

(3.33)

where ρ = λE(I)[θ1E(S1) + θ2E(S2) + pE(Y)] < 1.
Thus (3.33) gives the PGF of Mx/

(G1
G2

)
/1/G(BS)/Vs queue with batch arrivals, two

kinds of general heterogeneous service and general vacation times with Bernoulli sched-
ules based on single vacations.
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Note that if θ2 = 0 (i.e., θ1 = 1), which means that the server provides only the type 1
service, then (3.33) reduces to

PQ(z)= (1− z)(1− ρ)
[
B∗1
(
λ− λC(z)

)]
[
(1− p) + pV∗(λ− λC(z)

)][
B∗1
(
λ− λC(z)

)]− z
, (3.34)

where ρ = λE(I)[E(S1) + pE(Y)] < 1.
Note that (3.34) gives the PGF of the queue size distribution at a random epoch of

the Mx/G/1/G(BS)/Vs queue with batch arrivals, general service and general vacation
times with single vacations under Bernoulli schedules. Further, it may be noted that a
particular case of this result is equivalent to the result obtained recently by Medhi [23]
for an M/G/1 queue with general second optional service. In fact, this model was first
studied by the present first author Madan [18] who considered first service general and
the second optional service as exponential. He also gives interesting applications of such
models in day to day life situations.

Further, if there are no server vacations, then with p = 0, (3.33) reduces to

PQ(z)= (1− z)(1− ρ)
[
θ1B

∗
1

(
λ− λC(z)

)
+ θ2B

∗
2

(
λ− λC(z)

)]
[
θ1B

∗
1

(
λ− λC(z)

)
+ θ2B

∗
2

(
λ− λC(z)

)]− z
, (3.35)

where ρ = λE(I)[θ1E(S1) + θ2E(S2)] < 1.
Note that (3.35) gives the PGF of a Mx/

(G1
G2

)
/1 queue with two types of general hetero-

geneous service without server vacations.
Further, if there is only one kind of service and also no server vacations, then with

θ2 = 0, θ1 = 1, (3.35) yields

PQ(z)= (1− z)(1− ρ)B∗1
(
λ− λC(z)

)
B∗1
(
λ− λC(z)

)− z
, (3.36)

where ρ = λE(I)E(S1) < 1.
Further, note that the result in (3.36) is equivalent to the result obtained by Gaver [10]

for an ordinary Mx/G/1 queue. Therefore, our main result in (3.33) is a generalization of
the results obtained by Gaver [10], Madan [18], Medhi [23] and Choudhury [5].

Remark 3.1. Alternatively, (3.34) can also be obtained from (3.18) with p = 0.

4. Queue size distribution at a departure epoch

Sahbazov [26] and Chaudhry [3] obtained the PGF of queue size for the Mx/G/1 queue at
a departure epoch through different approaches. In this section, we derive the queue size
distribution at a departure epoch for our model Mx/

(G1
G2

)
/1/G(BS)/Vs as a generalization

of the result obtained by Sahbazov [26] and Chaudhry [3]. Following the argument of
PASTA (e.g., see Wolff [30]), we state that a departing customer will see ′ j′ customers in
the queue just after his departure if and only if there were j + 1 customers in the queue
just before his departure. Let us denote {πj , j ≥ 0} as the probability that there are ′ j′
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customers in the queue at a departure epoch. Then we have

πj = K0(1− p)

[∫∞
0
Pj+1,1(x)µ1(x)dx+

∫∞
0
Pj+1,2(x)µ2(x)dx

]
, (4.1)

( j ≥ 0) where K0 is the normalizing constant.
Next, we define the PGF of {πj , j ≥ 0} as

Π(z)=
∞∑
j=0

πjz
j , |z| ≤ 1. (4.2)

Then using (3.22)–(3.24) and (4.2), (4.1) yields

Π(z)= K0(1− p)λz
(
1−C(z)

)[
θ1B

∗
1

(
λ− λC(z)

)
+ θ2B

∗
2

(
λ− λC(z)

)]
E0[

(1− p) + pV∗(λ− λC(z)
)][

θ1B
∗
1

(
λ− λC(z)

)
+ θ2B

∗
2

(
λ− λC(z)

)]− z
. (4.3)

Now, using the normalizing condition Π(1)= 1, we get from (4.3)

K0 = 1− ρ

λ(1− p)E(I)E0
. (4.4)

Thus using (3.33) into (4.5) we get

Π(z)= (1− ρ)z
(
1−C(z)

)[
θ1B

∗
1

(
λ− λC(z)

)
+ θ2B

∗
2

(
λ− λC(z)

)]
E(I)

{[
(1− p) + pV∗(λ− λC(z)

)][
θ1B

∗
1

(
λ− λC(z)

)
+ θ2B

∗
2

(
λ− λC(z)

)]− z
} ,

(4.5)

where ρ = λE(I)[θ1E(S1) + θ2E(S2) + pE(Y)] < 1.
Thus from (3.33) and (4.5) we recover an interesting relationship between Π(z) and

PQ(z) as follows:

Π(z)=
((

1−C(z)
)
z

E(I)(1− z)

)
PQ(z)=A(z)PQ(z), (4.6)

where {A(z) = (1−C(z))z}/{E(I)(1− z)} is the PGF of the number of units placed be-
fore an arbitrary (tagged) customer in a batch in which the tagged customer arrives. This
number is given as a backward recurrence time in the discrete time renewal process, where
the successive renewal points are generated by the arrival size random variable. This is due
to the randomness nature of arrival size random variable.

Remark 4.1. We may observe from (4.6) that the queue size distribution of Mx/
(G1
G2

)
/

1/G(BS)/Vs queue at a departure epoch is the convolution of the following two indepen-
dent random variables: (1) the PGF due to the arrival size random variable, and (2) the
stationary PGF of queue size at a random epoch. This verifies that the well-known de-
composition property, which is known to hold for many vacation models, also holds for
our model.
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Now if θ2 = 0,θ1 = 1 (i.e., there is no type 2 service), then the result (4.5) will reduce
to

Π(z)= (1− ρ)z
(
1−C(z)

)[
B∗1
(
λ− λC(z)

)]
E(I)

{[
(1− p) + pV∗(λ− λC(z)

)][
B∗1
(
λ− λC(z)

)]− z
} , (4.7)

where ρ = λE(I)[E(S1) + pE(Y)] < 1.
Note that (4.7) yields the PGF of an Mx/G/1/G(BS)/Vsqueue with batch arrivals, gen-

eral service and general vacation times with Bernoulli schedule server vacations under a
single vacation policy at a departure epoch. This result is equivalent to the result obtained
by Choudhury [5]. Further, if we put p = 1 in (4.7) then we obtain

Π(z)= (1− ρ)z
(
1−C(z)

)[
B∗1
(
λ− λC(z)

)]
E(I)

{[
V∗(λ− λC(z)

)][
B∗1
(
λ− λC(z)

)]− z
} , (4.8)

where ρ = λE(I)[E(S1) +E(Y)] < 1.
Further, note that (4.8) is the PGF of the queue size distribution of an Mx/G/1queue

with limited service. A particular case of this model was studied by Takagi [29], for the
single Poisson arrivals.

5. The mean queue size at a random epoch and the mean waiting time

Let LQ denote the mean queue size at a random epoch for the Mx/
(G1
G2

)
/1/G(BS)/Vs queue

for two kinds of general heterogeneous service, Bernoulli schedule server vacations under
the single vacation policy. Then we obtain from (3.33)

LQ = d

dz
PQ(z)|z=1 = ρ+ λ2(E(I)

)2

=
[
θ1E

(
S2

1

)
+ θ2E

(
S2

2

)
+ pE

(
Y 2
)

+ 2pE(Y)
(
θ1E

(
S1
)

+ θ2E
(
S2
))]

2(1− ρ)
+
ρE
(
XR
)

(1− ρ)
,

(5.1)

where ρ = λE(I)[θ1E(S1) + θ2E(S2) + pE(Y)] < 1 and E(XR)= {E(I(I − 1))}/{E(I)} is the
mean residual batch size.

It may be noted that when θ2 = 0, θ1 = 1 (i.e., there is no type 2 service), then the
result (5.1) yields

LQ = ρ+
λ2
(
E(I)

)2[
E
(
S2

1

)
+ 2pE(Y)E

(
S1
)

+ pE
(
Y 2
)]

2(1− ρ)
+
ρE
(
XR
)

1− ρ
, (5.2)

where ρ = λE(I)
[
E(S1) + pE(Y)

]
< 1.

Thus (5.2) gives the mean queue size for an Mx/G/1/G(BS)/Vs vacation queue with
batch arrivals, general service and general; vacation times with Bernoulli schedule server
vacations based on a single vacation policy. This result is equivalent to the result obtained
by Choudhury [5].
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Further if p = 0 (i.e., no server vacation) then (3.30) reduces to

LQ = ρ+
λ2
(
E(I)

)2[
E
(
S2

1

)]
2(1− ρ)

+
ρE
(
XR
)

1− ρ
, (5.3)

where ρ = λE(I)E(S1) < 1.
Note that (5.3) can also be written as

LQ = ρ+
λE(I)ρE

(
SR
)

1− ρ
+
ρE
(
XR
)

1− ρ
, (5.4)

where E(SR)= E(S2
1)/2E(S1) is the mean residual service time.

Note that (5.4) is the mean queue size at a random epoch for an Mx/G/1 queue and
this verifies the results obtained by Chaudhry [3].

Next, let LD denote the mean queue size at a departure epoch, then we have form (4.5)

LD = d

dz
Π(z)

∣∣
z=1 = LQ +E

(
XR
)
. (5.5)

Equation (3.33) shows that LD > LQ and equality holds if and only if E(XR) = 0. This
depicts an interesting phenomenon that the mean queue size as observed by a departing
customer is larger than the mean queue size observed by an arbitrary (tagged) customer.

Further we can also obtain WQ, the mean waiting time as WQ = LQ/λ.

6. Mean busy period

In this section, we obtain the mean busy period for our model Mx/
(G1
G2

)
/1/G(BS)/Vs

queue with batch arrivals, two kinds of general heterogeneous service and general va-
cation times with Bernoulli schedule server vacations based on a single vacation policy.
We define the busy period as the length of the time interval during which the server re-
mains busy and this continues till the instant when the server becomes free again. This
busy period is equivalent to the ordinary busy period generated by the units which ar-
rive during the vacation period plus an idle period, which we may call as generalized idle
period. We now define

(i) T0 = length of the generalized idle period,
(ii) Tb = length of the busy period.

Now since T0 and Tb generate an alternating renewal process, therefore we may write

E
(
Tb
)

E
(
T0
) = Pr

[
Tb
]

1−Pr
[
Tb
] . (6.1)

Now, from Section 3, we have

Pr
[
Tb
]= P1(1) +P2(1)= λE(I)

[
θ1E

(
S1
)

+ θ2E
(
S2
)]
. (6.2)

Again due to the well-known property of the Poisson input queueing system, we have

E
(
T0
)= 1

λ
+ pE(Y). (6.3)
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Next, utilizing (6.2) and (6.3) into (6.1), we get on simplifying

E(Tb)= E
(
I
)[
θ1E

(
S1
)

+ θ2E
(
S2
)][

1 + pλE
(
Y
)]

1−E
(
I
)[
θ1E

(
S1
)

+ θ2E
(
S2
)] . (6.4)

Further, it is clear that the fraction of time the server remains in the generalized idle state
T0 (i.e., idle plus on vacation) is equivalent to

E
(
T0
)

E
(
T0
)

+E
(
Tb
) . (6.5)

Now, using E(T0) and E(Tb) from (6.3) and (6.4) in the expression (6.5) and simplifying
it, one may verify that

E
(
T0
)

E
(
T0
)

+E
(
Tb
) = (1− ρ) + pλE

(
I
)
E
(
Y
)

= Pr[the server is idle] + Pr[server is on vacation]= Pr[T0],
(6.6)

as it should be.
Now, If we assume that θ1 = 1, θ2 = 0, which means that the server provides only one

type of service, then in this case (6.4) will reduce to

E
(
Tb
)= E

(
I
)
E
(
S1
)[

1 + pλE
(
Y
)]

1−E
(
I
)
E
(
S1
) . (6.7)

We note that (6.7) agrees with the result obtained by Choudhury [5].
Further, if we take p = 0 (i.e., no server vacations), then (6.7) will reduce to

E
(
Tb
)= E

(
I
)[
θ1E

(
S1
)

+ θ2E
(
S2
)]

1−E
(
I
)[
θ1E

(
S1
)

+ θ2E
(
S2
)] , (6.8)

which is the mean busy period for an ordinary MX/
(G1
G2

)
/1 queueing system without

server vacations. In addition, if θ1 = 1, θ2 = 0 (there is no type 2 service), then in this
case (6.5) will reduce to

E
(
Tb
)= E

(
I
)
E
(
S1
)

1−E
(
I
)
E
(
S1
) , (6.9)

which agrees with the result obtained by Chaudhry [3].
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