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Many systems consist of a set of agents which must acquire exclusive access to resources
from a shared pool. Coordination of agents in such systems is often implemented in the
form of a centralized mechanism. The intervention of this type of mechanism, how-
ever, typically introduces significant computational overhead and reduces the amount
of concurrent activity. Alternatives to centralized mechanisms exist, but they generally
suffer from the need for extensive interagent communication. In this paper, we develop a
randomized approach to make multiagent resource-allocation decisions with the objec-
tive of maximizing expected concurrency measured by the number of the active agents.
This approach does not assume a centralized mechanism and has no need for intera-
gent communication. Compared to existing autonomous-decentralized-decision-making
(ADDM)-based approaches for resource-allocation, our work emphasizes achieving the
highest degree of agent autonomy and is able to handle more general resource require-
ments.

1. Introduction

In many applications, a set of agents must acquire exclusive access to resources from a
shared pool. Consider, for instance, a network of computers with access to shared pe-
ripheral devices [11]. Peripheral devices in such systems (e.g., tape drives and printers)
often have characteristics which require that they be used by only one computer at a time.
In addition, the high cost of these peripheral devices can create an economic incentive to
keep them as busy as possible.

Consider another example in project management [1]. A project is typically broken
down into a set of activities that correspond to the individual tasks that must be com-
pleted as part of the project. No activity can begin until the activities which logically
precede it are completed and most activities must acquire resources before they can be-
gin. Some of these resources may be such that they can be used for only one activity at
a time. If one considers an agent to be equivalent to a project activity [8], then a project
is similar to the network of computers described previously. Both are systems of agents
where the agents require some number of mutually exclusive resources.
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In the literature, the multiagent resource-allocation problem is generally being solved
using two different approaches [6, 9]. The first approach assumes the presence of a cen-
tralized mechanism that takes as input agent resource requests and generates a system-
wide optimal or near-optimal resource assignment. The second approach is based on
decentralized control where individual agents or small groups of agents make resource-
allocation decisions “locally” given partial information regarding resource availability
and other agents’ status.

A centralized approach is computationally expensive and therefore does not scale well
as the number of the involved agents increases (e.g., when a large number of agents are
to be involved in a complex negotiation scheme [2]). A decentralized approach that in-
volves extensive interagent communications suffers similar problems with computation
and communication overhead. In this paper, we focus on a special class of the decentral-
ized approach that allows the agents to act autonomously and unilaterally in accessing re-
sources with no interagent communication. This type of approach is called autonomous
decentralized decision making (ADDM) in the literature [11].

The “slotted Aloha” protocol, widely used in computer networks, can be viewed as a
special type of ADDM [12]. We summarize this approach in nontechnical terms. Several
agents are competing for one single unit of resource. When resource congestion, that is,
two or more agents wanting to reserve the same resource, occurs, each agent will wait for
a random period of time before retrying. The key control variable is the one that governs
the generation of random waiting times. When the waiting times are long on average, the
probability of congestion recurring is low but resource utilization is also low. When the
waiting times are short on average, the probability of congestion is high with potentially
higher resource utilization.

Previous work done by Pasquale demonstrates that an ADDM process using random-
ization is an effective multiagent resource-allocation mechanism to deal with more than
one unit of resources [11]. This mechanism allows the agents to act unilaterally in access-
ing resources, and therefore eliminates the need for a centralized allocation mechanism.
Furthermore, the mechanism does not introduce the need for the agents to communicate
directly with one another. Pasquale’s method is based on the calculation of a probability
α that determines the likelihood with which an agent will choose to bid or not bid for
the resource it needs. Pasquale shows how each agent, using the number of agents in the
system and the number of resources, can determine for itself an optimal value of α that
guarantees maximum performance defined as the weighted difference between resource
utilization and resource congestion.

The objective assumed in Pasquale’s work is applicable to applications where resource
utilization is the primary consideration. For instance, in the above example concerning
the computers sharing networked peripheral devices, maximizing the utilization of these
devices in a decentralized manner without communication can be achieved by Pasquale’s
method. In many other applications, however, objectives other than resource utilization
are more relevant.

Consider the following two application settings.
(a) In project management, many activities may be competing for certain units of re-

sources from a common pool (e.g., man power). A typical project management objective
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in this context is to maximize the number of the activities that can acquire the resources
needed successfully and in turn be completed.

(b) In parallel and distributed computing, a number of computational tasks are wait-
ing to be executed. Each task needs exclusive access to a CPU and a certain amount of in-
ternal memory space. The most critical consideration in scheduling these tasks on given
computational resources is to maximize the number of tasks that can be completed.

In the above two settings and many other practical resource-allocation applications,
the objective is to maximize the number of activities or tasks that can acquire needed
resources (as opposed to maximizing resource utilization). Pasquale’s work, which is
resource-centric by nature, is not applicable to these task- or activity-centric applica-
tion settings.

In this paper, we study an ADDM-based multiagent resource-allocation mechanism
aimed at maximizing the expected number of activities simultaneously in progress. The
rest of the paper is structured as follows. Section 2 reviews Pasquale’s work on ADDM in
detail. Section 3 presents the model and decision procedures of our ADDM-based multi-
agent resource-allocation mechanism. This mechanism differs from the existing ADDM
work in targeting a different system objective relevant to many important applications
such as project management and parallel computing. Our mechanism is also capable of
handling more general types of resource requirements than existing approaches. Related
computational issues are discussed in Sections 4 and 5. Section 6 provides bounds for sit-
uations where the agents require multiple resources at the same time. Section 7 discusses
the contribution of our research in the broader context of multiagent systems research
and proposes two computational measures for agent autonomy. We conclude the paper
in Section 8 with a summary of our research.

2. Review of Pasquale’s ADDM model

Pasquale considers a system in which there are s units of a single resource and N agents
compete for exactly one of the s units of resource [11]. The duration for which any unit
of resource is utilized is one period long. The competition for resources is totally decen-
tralized. The only information common to the agents at the instant of decision making
is s, N , and β, the relative benefit of advancing by using a unit of resource relative to the
cost of failing to proceed due to a conflict over a unit of the resource.

The ADDM procedure consists of a single decision making instant. Each agent inde-
pendently follows a two-step strategy.

ADDM procedure. (1) The agent decides whether or not to bid at this time by random-
izing the binary choice with probability α of bidding.

(2) If the agent decides to bid, then it selects one of the s units to bid for using a
uniform probability distribution. That is, it chooses a unit to bid for by sampling with
equal probability 1/s of choosing each unit. If the agent does not choose to bid, it waits
until the next decision-making instant.

There are three possible resource states: utilized, congested, and wasted. A unit of re-
source for which there is only one bidding agent is utilized. If a unit is bid for by two
or more agents, the unit is congested. Units for which no bid is received are wasted. Our
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work focuses on the agents, so we provide three analogous definitions for the three possi-
ble states of an agent: active, blocked by congestion, and blocked by choice. If an agent is the
only one to bid for a particular unit of resource, we will call this agent active. If an agent
is a member of a set of two or more agents that bid for the same unit of resource, we will
call this agent and all others in the set blocked by congestion. If an agent fails to bid, we will
call it blocked by choice.

The gain G of the system is a random variable given by

G=U −βC, (2.1)

where U is the number of units of resource utilized and C is the number of congested
units. Pasquale’s objective is to maximize the gain where β is a design parameter used
to weight the relative benefit of utilization versus congestion. When β = 0, utilization is
maximized with no concern for the amount of congestion. When β = 1, utilization and
congestion are equally important.

The only decision variable in Pasquale’s ADDM model is α, the probability with which
any agent chooses to bid. He demonstrated how to calculate the optimal bid probability
α∗ for the agents using his notion of gain, and how to calculate the maximum expected
gain EG∗ as a function of N , s, and β [11]. A measure of the adequacy of resources he pro-
poses is the maximum expected gain available per unit of resource, EG∗/s, as a function
of the number of agents competing for the resource units, and he computes the optimal
number of agents to compete for exactly s units of resource in terms of this expected gain
per unit of resource.

3. ADDM for concurrency maximization

In this section, we develop a new ADDM model with the objective of maximizing the
expected number of active agents, that is, expected concurrency. This model can also
handle more general resource requirements than Pasquale’s model.

3.1. Decision procedures. Let N be the total number of agents in the system and let
n denote the number of agents which wish to be active where 1 ≤ n ≤ N . Let s be the
number of units of available resources and let ti be the number of units required by the
ith agent where 1 ≤ ti ≤ s (we assume that the resource requirements of the individual
agents are feasible). Observe that if ti = 0, we can simply eliminate this agent from the set
of those which will consider whether or not to bid. We define a revised decision-making
procedure for an individual agent as follows.

Revised ADDM procedure. (1) Decide with probability α whether or not to bid for suffi-
cient units of resource to proceed.

(2) Select at random a subset Si of size ti from the set S of s units of the resource
which are available. In the random selection, assign some positive probability mass to
each possible subset of size ti. (Various probability mass assignments are possible. In this
paper, we discuss only one type of assignment. See Section 4.2.)

The revised ADDM procedure is readily applicable to situations where all agents are
independent. Whenever resource-allocation decisions need to be made, this procedure
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can be invoked to assign resources to needing agents. Agents that fail to acquire needed
resources will bid in later invocations if necessary. Every invocation will be conducted as
completely independent of each other.

This procedure can also be easily adapted to applications where simple forms of agent
interdependencies, such as precedence constraints, are present (e.g., typical of project
management). In such cases, only agents that have no uncompleted predecessors will par-
ticipate in bidding of resources. Agents that are waiting for some predecessors to finish
first will participate in later rounds of bidding when these predecessor agents are com-
pleted.

3.2. Objective function. The objective function appropriate for our situation is the ex-
pected number of active agents. In particular, we are interested in the expected number
of agents which are active at the same point in time. Thus, we define EC, the expected
concurrency, as an adaptation of the gain function defined in Section 2. We define A to
be the total number of agents which are active such that A is equal to the sum of inde-
pendent 0–1 random variables Ai where Ai is one when the ith agent is active and zero
otherwise. We define B as the total number of agents blocked by congestion such that B
is equal to the sum of independent 0–1 random variables Bi where Bi is one when the ith
agent is blocked by congestion and zero otherwise. We define X to be the total number
of agents blocked by choice such that X is equal to the sum of independent 0–1 random
variables Xi where Xi is one when the ith agent is blocked by choice and zero otherwise.
Note that when Xi = 1, Bi = 0 by definition. However, when Xi = 0, Bi may be either zero
or one. We let Di = Bi +Xi and observe that Di ∈ {0,1}. We define D = B +X and define
the gain as

G= A−βD. (3.1)

When ti = 1 for all i, this model is similar to Pasquale’s model. U and A represent
the same quantity in our model and Pasquale’s, since for Pasquale each agent requires
exactly one unit of resource. The blocked agents are those which conflict over a single
resource unit (i.e., they congest the resource). However, B �= C, because several agents
could congest the same resource.

In addition, in our gain definition, we include the number of agents that do not bid,
since they adversely affect our objective. One could reduce the “gain” by assigning some
positive, nonzero value to β. Observe, however, that D = N −A at all times, since each
agent either bids or does not, and if it bids, it becomes either active or blocked by conges-
tion. Thus, G = A− β(N −A) and maximizing its expected value is equivalent to maxi-
mizing the expected number of concurrently active agents EC. In other words, the value
of β will have no impact on the decision procedure.

4. Calculation of the probability of agent activation

In this and the next section, we derive explicit solutions for our ADDM model. We first
determine the probability that an agent will be active under ADDM. We begin with the
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assumption that each agent demands one unit of resource and then extend this to more
general resource requirements.

4.1. Each agent demands a single unit of resource. We begin by determining the prob-
ability of activation, Pr(activation), for the case where we consider only those agents that
have decided to bid then extend the result to consider all agents in the system.

Observation 4.1. In the case where we consider only the agents that have chosen to bid,
the probability of a particular agent’s activation is given by

Pr(activation)=
(

1− 1
s

)k−1

, (4.1)

where k ≤N is the number of agents in the bidding set, s is the number of resources, all
units of resource are interchangeable, k,N ,s≥ 1, and each agent needs exactly one unit of
resource.

Proof. First, consider that this problem is analogous to having each of k agents draw one
of s different numbers from a hat where each number in the hat represents one unit of
resource and these units are interchangeable. Since all agents select resources simultane-
ously, this is equivalent to drawing the numbers with replacement. Based on the analogy,
we prove that the probability that any particular agent will get the resource it needs with-
out conflict with any other agent is (1− 1/s)k−1.

Assume that agents are indexed by i and resources by j. The probability that the ith
agent will draw the jth resource is 1/s. After the ith agent draws a resource, it is returned
to the hat and the (i + 1)th agent draws next. The probability that the (i + 1)th agent
will draw a resource different than the one drawn by the ith agent is the total number of
resources less one divided by the total number of resources; (s− 1)/s.

After the (i+ 1)th agent draws, the resource is again returned to the hat prior to the
draw of the next agent. This continues until all agents have drawn a resource. Given that
the drawings are independent events, we find that the probability that all agents will draw
a resource different from that of the ith agent is the product of the probabilities that each
individual agent will draw something other than the resource drawn by the ith agent;
(1− 1/s)k−1. �

Observation 4.2. In the case where we consider all agents in the system (i.e., bidding and
nonbidding), the probability of activation of a given agent is:

Pr(activation)= α
N−1∑
k=0

(
N − 1
k

)
αk(1−α)N−1−k

(
1− 1

s

)k
, (4.2)

where α is the probability that an agent will choose to bid and is the same for all agents in
the system, k is the number of agents which choose to bid including the given agent, N is
the total number of agents in the system, s is the number of resources, all units of resource
are interchangeable, k,N ,s≥ 1, and each agent needs exactly one unit of resource.
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Proof. Observation 4.1 gives the probability that an agent will be activated given that
only bidding agents were under consideration. In that result, we saw that the probability
of activation of any particular agent was a function of the number of other agents in the
bidding set. However, the number of other agents in the bidding set cannot be known
prior to bidding since it is a function of the probability α that agents will choose to bid.
Thus, to extend our previous result to the case where we do not know the number of
bidding agents, we need a means by which to determine the likelihood that a particular
number of agents will choose to bid. The process of agent activation as described thus far
is a Bernoulli process. A Bernoulli process must satisfy the following conditions.

(1) There is some number of identical trials of a random experiment for which there
are only two possible outcomes.

(2) The possible outcomes are mutually exclusive (i.e., the occurrence of one out-
come guarantees the “nonoccurence” of the other outcome).

(3) Each trial is independent from all other trials (i.e., the outcome of any partic-
ular trial does not change the probabilities associated with the outcomes of any
other trial).

The outcome of each trial is generally referred to as a success or failure where success
and failure can be assigned arbitrarily to the possible outcomes. In our case, each agent
behaves identically in reaching a decision to bid or not bid and the choice each agent
makes is equivalent to one trial of a random experiment with the two possible outcomes.
If we refer to a decision to bid as a success, then we find that the probability of success
is given by α, and the probability of not bidding, in other words failure, is 1− α. Given
this, the bid decision process consists of N − 1 identical trials of a random experiment.
Furthermore, any agent that chooses to bid cannot also choose not to bid and vice versa.
Thus, the possible outcomes are mutually exclusive. Finally, all agents make the decision
to bid independent of all others. Thus, the trials are independent.

Given that we have a Bernoulli process, the binomial theorem provides a formula by
which we can determine the probability of a specified number of successes in a given
number of trials. Applying the binomial formula, we have

Pr
(
exactly k of N − 1 bid|Pr(bid)= α

)=
(
N − 1
k

)
αk(1−α)N−1−k, (4.3)

where k is some arbitrary number of agents such that 0 ≤ k ≤ N − 1. We use N − 1 be-
cause the agent which wishes to determine the probability of its own activation will do
so in consideration of the number of the agents other than itself which might choose to
bid. With this in hand, we now observe that for the agent which has chosen to bid, the
probability of activation is the product of the probability that k agents choose to bid and
the probability that all k choose a resource different from that selected by the particular
agent, which is given by

Pr(activation)= Pr
(
exactly k of N − 1 bid|Pr(bid)= α

)(
1− 1

s

)k
. (4.4)
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Now substituting for Pr(exactly k of N − 1 bid|Pr(bid)= α) from the binomial formula,
we have

Pr(activation|k agents choose to bid)=
(
N − 1
k

)
αk(1−α)N−1−k

(
1− 1

s

)k
. (4.5)

The previous result gives us the probability that a particular agent will be activated given
that exactly k other agents choose to bid. To arrive at the desired result, we must now
consider all possible values of k from 0 to N − 1. Since these possibilities are disjoint
events, our previous result summed over all possible values of k yields

Pr(activation)=
N−1∑
k=0

(
N − 1
k

)
αk(1−α)N−1−k

(
1− 1

s

)k
. (4.6)

Finally, we recognize that the probability of agent activation is also a function of its own
decision to bid and therefore the previous result is multiplied by α to yield

α
N−1∑
k=0

(
N − 1
k

)
αk(1−α)N−1−k

(
1− 1

s

)k
. (4.7)

�

4.2. Each agent demands multiple units of resource. In this section, we extend our re-
sults to consider a system in which agents 1,2, . . . ,N require t1, t2, . . . , tN units of resource,
respectively.

As we discussed previously, in the ADDM procedure some probability of selection of
each subset must be determined. This is because each autonomous agent does not know
the needs of the other agents. Therefore it must make some prior probability assumption.
We assume that the values of ti are such that 1≤ ti ≤ s, but that

∑
i ti > s.

In this paper, we assume that each agent assigns the probability mass in two steps.

(i) First, the s possible values of the demand by other agents, from 1 to s, are equal-
ly likely. (A requirement of zero units is not considered, because the analysis is
restricted to agents which require resources.)

(ii) Second, independently, each subset of the size k chosen is equally likely. Since
there are ( s

k ) such subsets, the second-stage probability is the reciprocal of that
quantity.

Other methods are also possible. For instance, one could assume that all possible sub-
sets of the s units of resources are equally likely. This yields a different probability mass for
each subset. For example, consider s= 3. If each subset is equally likely, then the probabil-
ity of each is 1/8 (or 1/7 if we do not allow the empty subset); so the probability that ti = 2
is 3/8 (or 3/7). If each size is equally likely, then Pr(ti = 2) = 1/4 (or 1/3 if size 0 is not
allowed). Since there are 3 subsets of size 2, the probability of a specific subset with two
members is (1/4)(1/3) = 1/12 (or (1/3)(1/3) = 1/9). So the two probability mass func-
tions are not the same. They therefore will give different results for the expected concur-
rency and for the optimal value of α. In this paper, we analyze only the density produced
by the bulleted randomization procedure above.
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In the following, let Cy,x denote the number of ways of selecting x items from y items
at a time where

Cy,x =
(
y
x

)
= y!

x!(y− x)!
. (4.8)

Observation 4.3. In the case where agents may require more than one unit of resource,
the probability of agent activation for the first agent is given by

Pr(activation)= α

(
N − 1

0

)
α0(1−α)N−1

(
1
s

)0

+α

(
N − 1

1

)
α1(1−α)(N−1)−1

(
1
s

)1 s∑
t2=1

Cs−t1,t2

Cs,t2

+α

(
N − 1

2

)
α2(1−α)(N−1)−2

(
1
s

)2
[ s∑

t2=1

s∑
t3=1

Cs−t1,t2Cs−t1−t2,t3

Cs,t2Cs,t3

]

+ ···+α

(
N − 1
N − 1

)
αN−1(1−α)(N−1)−(N−1)

(
1
s

)N−1

×
[ s∑

t2=1

s∑
t3=1

···
s∑

tN=1

Cs−t1,t2Cs−t1−t2,t3 ···Cs−t1−t2−···−tN−1,tN

Cs,t2Cs,t3 ···Cs,tN

]
,

(4.9)

where α is the probability that an agent will choose to bid and is the same for all agents
in the system, N is the total number of agents in the system, s is the total number of
resources, all units of resource are interchangeable, N ,s ≥ 1, and each agent 1,2, . . . ,N
requires exactly t1, . . . , tN units of resource, respectively.

Proof. First, we consider only bidding agents and we further assume that there are only
two bidding agents. Agent 1 needs t1 units of resource and agent 2 needs t2 units of
resource. Agent 1 wishes to determine the probability that it will be activated. Agent 1
knows the value of t1 and we will assume for the moment that it also knows the value of
t2. Under these circumstances, agent 1 can calculate the probability of activation as

Pr
(
activation|agent 2 needs t2

)= Cs,t1Cs−t1,t2

Cs,t1Cs,t2
(4.10)

which can be simplified to

Pr
(
activation|agent 2 needs t2

)= Cs−t1,t2

Cs,t2
. (4.11)

Cs−t1,t2 is the number of ways that agent 2 can select t2 units of resource from the s− t1
units of resource that remain after agent 1 has made its selection of t1 units of resource
from the pool of s units of resource. Cs,t2 is the number of ways that agent 2 can select
t2 units of resource from a total pool of s units of resource. The ratio of these is the
probability of activation.
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Of course agent 1 will not know the value of t2; thus, for agent 1 to determine its
probability of activation, it must find

Pr(activation|agent 2 bids)= Pr
(
activation|agent 2 needs t2

)
×Pr

(
agent 2 needs t2|agent 2 bids

)
.

(4.12)

This value is determined by considering all possible values of t2 that agent 2 might need,
multiplied by the probability that agent 2 will choose that particular value of t2, under
the assumption that agent 2 is certain to bid.

In the following, we assume that the possible values of t2 ∈ {1,2, . . . ,s} are equally
likely. Again, we point out that other decision rules are possible, such as treating every
subset as equally likely, so that subsets of size t2 would have probability C−1

s,t2 of occurring,
but we calculate only for our chosen rule.

In addition, we claim that summing over the values of t2 from 1 to s is valid since
Cs−t1,t2 = 0 for all t2 > s− t1 and, therefore, has no impact on the result of the calculation.

Having stated these facts, we conclude that

Pr(activation|only agent 2 bids)=
(

1
s

) s∑
t2=1

Cs−t1,t2

Cs,t2
. (4.13)

Now we extend the previous result to three agents so that the general form for N agents
will be apparent. Again, we note that summing over the values of t2 and t3 from 1 to s is
valid since Cs−t1,t2 = 0 for all t2 > s− t1 and Cs−t1−t2,t3 = 0 for all t3 > s− t1− t2. Thus, we
get

Pr(activation|only agents 2 and 3 bid)= 1
s2

s∑
t2=1

s∑
t3=1

Cs−t1,t2Cs−t1−t2,t3

Cs,t2Cs,t3
. (4.14)

We now state the general form for the probability of agent activation considering N
bidding agents:

Pr(activation|N − 1 other agents bid)

= 1
sN−1

s∑
t2=1

s∑
t3=1

···
s∑

tN=1

Cs−t1,t2Cs−t1−t2,t3 ···Cs−t1−t2−···−tN−1,tN

Cs,t2Cs,t3 ···Cs,tN
.

(4.15)

To this point, we have assumed that we know the number of agents that may choose to
bid, but as was the case earlier, this cannot be known prior to bidding. So our formulation
must consider every possible number of bidding agents where the number of bidding
agents is the result of N − 1 Bernoulli trials and the possibility of success in each trial
is given by α. As was the case for Observation 4.2, this can be done using the binomial
theorem to determine the probability that 0 to N − 1 agents will choose to bid multiplied
by the probability that the bid of the ith agent will be disjoint from the other bidding
agents. This is summed over all possible numbers of bidding agents from 0 to N − 1.
Finally, we recognize that the previous formulation is based on the assumption that the
ith agent has chosen to bid. Thus, to get the final probability of activation, we multiply by
the probability of bidding α to yield the result of the observation. �
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4.3. Multiple resource pools. We have assumed to this point that agents compete for re-
sources by placing bids for the number of units they require where all resources are in a
single pool available to all agents and that all resources within the pool are interchange-
able. A more realistic assumption for our purposes is that agents will require different
types of resources which may not be interchangeable. Thus, we consider multiple pools
of resources where individual units within pools are interchangeable, but units are not
interchangeable across pools.

Assume a total of M pools of resources; each pool will contain some total number of
units, s1,s2, . . . ,sM . Agents may place separate bids for resources from any number of these
pools. The quantities they bid for within each pool may be from 0 up to the total number
of units within the pool. Under these circumstances, an agent will be activated if and only
if all of its bids for resources are successful.

Observation 4.4. In the case where agents can bid for resources from multiple resource
pools, the probability of agent activation for the ith agent is given by

Pr(activation)=
∏

m∈Mi

Pr(activation|m), (4.16)

where Mi ⊂M consists of all resource pools from which the ith agent requires resources
and Pr(activation|m) is the probability that the ith agent’s bid for resources from the mth
pool will be disjoint from the bids of all other agents which bid for resources from the
mth pool. The value of Pr(activation|m) is computed exactly as was done for the case of
a bid for a quantity of ti resources from a single pool of resources defined in the previous
section.

Proof. Since the bids for resources from multiple pools are independent events,
Observation 4.4 is true based on the product rule for joint probabilities which states
that for any two independent events A and B, the probability for the occurrence of both,
Pr(A,B) is the product of the probability that either will occur, Pr(A)Pr(B). �

5. Calculation of expected concurrency and optimal bid probability

5.1. Expected concurrency. Given the assumption that the number of units of resource
required by other agents are equally likely (i.e., all possible values of ti ∈ {1,2, . . . ,s} are
equally likely for all i agents), the expected number of concurrently active agents, or EC,
is given by the sum of the probabilities for each agent, since the agents operate indepen-
dently, and each one activated contributes 1 to the random variable A. The optimal bid
probability α∗ can be determined by differentiating (4.9) with respect to α and solving
the first-order condition, a polynomial equation in α. Since it is not possible to find roots
of polynomials of degree greater than 3, the following technique can be used to estimate
α∗. First fit a fourth-degree polynomial to the probability function above. Its derivative is
a cubic polynomial and there is a closed-form formula for its roots. Since the probability
is 0 if α= 0 and the probability is also 0 if α= 1 (since every agent will bid, and there are
not enough resources to go around, by assumption), any root between 0 and 1 will be a
maximum. This procedure is fast enough for convenient implementation in an agent.
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As mentioned previously, instead of assuming that ti ∈ {1,2, . . . ,s} are all equally likely,
one could alternatively assume that every subset of required resources is equally likely.
In this case, we derive EC differently. We use indexes i, j, k for agents. Each bidding
agent i satisfies its resource requirements by selecting a subset Si from the set of available
resources S where |S| = s. The total number of resources selected by agent i is |Si| = ti.
Given a system of two agents, i and k, where both agents choose to bid for resources in
the set S, we wish to know the likelihood that the two will independently select disjoint
subsets of resources Si and Sk (i.e., Si∩ Sk =∅). The answer can be formulated as follows:

φ(i,k)= Pr
{
Si∩ Sk =∅ | i,k bid

}= Cs−tn,ti

Cs,tk
. (5.1)

Clearly, φ as formulated here is based on the condition that both i and k choose to
bid. However, we wish to arrive at a formulation conditional only on i bidding. We can
find this by recalling that the probability an agent will bid for resources is the same for all
agents in the system and is given by α. This observation yields

αφ(i,k)= Pr{k bids}Pr
{
Si∩ Sk =∅ | i,k bid

}= Pr
{
Si∩ Sk =∅ | i bids

}
. (5.2)

We may now formulate a choice function η that represents the probability that either (a)
Si is disjoint from Sk given that k bids, or (b) k does not bid which is independent of
whether i bids. (If k chooses not to bid, then Sk =∅ and is, therefore, disjoint from Si by
definition.) To do this, first recognize that the probability that k will choose not to bid is
1−α. Using this and the result previously obtained, we have

η(i,k,α)=

1−α+αφ(i,k) if i �= k,

1 otherwise.
(5.3)

We note that the actions of agents are independent and, therefore, the probability that the
bid of agent i is disjoint from the bids of all other agents is the product of the probabilities
that the bids of all pairs of agents are disjoint. Thus, we have

W(i,α)= Pr
{∀k, Si∩ Sk =∅ | i bids

}= N∏
k=1

η(i,k,α) (5.4)

which represents the probability that all other Sk are disjoint from Si conditional on i
bidding.

Observe that W is a decreasing function of α for any i. This is because the φ are be-
tween 0 and 1, so as α increases, the factors α(φ− 1) decrease in size while still nonneg-
ative. The product must therefore decrease. Figure 5.1 graphs for N = 7, t = (1,2,3,4,2,
1,1), and s= 10 the first four agents’ W functions.

We define

ECn(α)= Pr{n is active} = αW(n,α) (5.5)
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Figure 5.1. Behavior of W as a function of α for agents with resource requirements of 1, 2, 3, and 4
when N = 7, s= 10.

and the total expected concurrency

EC = α
N∑
j=1

W( j,α). (5.6)

Observe that the random variable Di = 1−Ai, for if an agent is not active then it must be
either blocked by congestion or blocked by choice. Thus ED =N −EC. Then

EG(α,β)= EC(α)−βED(α)= (1 +β)EC(α)−βN. (5.7)

Observe that EG(α,0)= EC(α), and for positive β the graph of EG is just a negative trans-
late of an expansion less than two times that for EC. The gain is maximized for the same
bid probability α as that for EC.

Figure 5.2 shows the expected concurrency for the example of N = 7, resource require-
ments t = (1,2,3,4,2,1,1), and s= 10. Figure 5.3 shows the expected concurrency for the
first four individual agents which demand 1, 2, 3, and 4 units of resource, respectively.

5.2. Optimal bid probability. While the function EC can easily be computed even for
agent sets with disparate resource requests, the agents need to determine α readily. Dif-
ferentiating EC(α) and setting the first-order condition equal to zero is not easily accom-
plished. A large (degree N − 1) polynomial results whose roots between 0 and 1 must be
determined.

We know that EC(0)= 0, because if no agents bid then none can become active. Also
EC(1) ∈ [0,N], because if all bid, one can imagine little success (for s = 1) or a lot of
success when s is very much larger than the requirements of the agents.
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Figure 5.3. Individual ECn(α) for agents with resource requirements of 1, 2, 3, and 4 when N = 7,
s= 10, and t = (1,2,3,4,2,1,1).

However, since the function EC is smooth, it is relatively easy to fit a fourth-degree
polynomial P(x) to an array of values of EC(α) for a modest number of values of α= x.
This allows us to estimate α∗ from the five-polynomial coefficients c0 ≈ 0, . . . ,c4 deter-
mined by least-squares polynomial regression using, say, 21 values of α on [0,1].
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Figure 5.4. The best fitting quartic polynomial to 21 marked values of ECn(α), for agents with re-
source the requirements of 1, 2, 3, and 4 when N = 7, s= 10, and t = (1,2,3,4,2,1,1).

The first-order condition is a cubic polynomial P′(x) = c1 + 2c2x + 3c3x2 + 4c4x3, whose
roots are easily determined with a closed-form calculation of complexity O(1). Observe
that the degree of P is the highest possible for which a closed-form calculation of the
roots of the derivative exists. If there is no real root between 0 and 1, then the optimal bid
probability is α∗ = 1, since α = 0 must be a minimum on [0,1]. The second-order suf-
ficient condition is a quadratic polynomial P′′(x)= 2c2 + 6c3x + 12c4x2. Note that c4 < 0
from the shape of the function being fit.

Figure 5.4 shows the best fourth-degree polynomial fit to the expected concurrency
for the example of N = 7, t = (1,2,3,4,2,1,1), and s = 10, using 21 values of α evenly
spaced on [0,1]. The fit has an R2 = 1 and residuals less than 0.0027 over the interval.
The estimated value of the α∗ is 0.45.

The accuracy of an estimate obtained in this fashion is very satisfactory for the agents.
Since they will use it for sampling to decide whether or not to bid, it need not be exact to
give a good probability of the agent becoming active.

6. Determination of bounds for the multiple-resource case

Now we proceed to the multiple-resource scenario, in which there are r resources indexed
by q; each agent requires t

q
i units of the qth resource.

We assume for our lower bound that agents decide to bid independently for each
resource, using the optimal αq for each resource calculated as in the previous section.
Then the probability that agent i will get all the resources it needs to proceed is

Pr{i is active} =
r∏

q=1

αqWq
(
i,αq

)
. (6.1)
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Define m=mini Pr{i is active}. Then the distribution of the number of active agents
arising from independent trials is given by the binomial distribution with individual
probability m, so that in M = �1/m attempts, the expected number of times that an
arbitrary agent would be able to start will be at least 1.

Since each agent is proceeding completely independently, we can write the expected
concurrency as

EC =
N∑
i=1

Pr{i is active} =
N∑
i=1

r∏
q=1

αqWq
(
i,αq

)
. (6.2)

Observe that this strategy requires the bidders to calculate a whole set of values of αq,
one for each resource; this loop increases complexity by a factor of O(r).

The complexity could be lowered by calculating a single α to use for all resources and
all agents, as in the previous case. One could use the most congested resource measured
by the ratio of the sum of number of units demanded by each agent to the total number
of units available.

7. ADDM and agent autonomy

The ADDM mechanism provides a means by which agents can make independent deci-
sions in regard to accessing resources from a set of shared resources. In the case where the
agent actions can be coordinated without a central controller or interaction with other
agents, their behavior is autonomous.

There have been numerous definitions for autonomy in the literature. Rozenblit de-
fines autonomy as the ability of a system to function independently subject to its own
laws and control principles [13]. Jennings and Wooldridge define it to be an ability to
solve problems without interaction with humans or other entities [7]. Davidssonet et al.
define it as an ability to interact independently with the environment through sensors
and effectors [3]. Haddawy defines it as an ability to manipulate the environment in the
course of satisfying needs and desires [5]. Maes defines it as an ability to operate without
intervention in the process of relating sensory inputs to motor outputs in such a way as
to achieve goals [10].

Although all the previous definitions capture the same essence of autonomy, none is
particularly well suited for the purpose of deriving a practical, objective measure. A def-
inition which is easier to operationalize can be found in [11], where it is suggested that
coordinating mechanisms which best promote autonomy are those which support fast
decision making with limited shared information in a minimally conflicting manner. If
we focus on computer-based environments, Pasquale’s statement appears to be based on
the generally accepted notion that we wish to use time and space as wisely as possible in
any computer-based system. Furthermore, we can infer from the definitions of autonomy
given earlier that 100% autonomy exists only where no amount of time or space is de-
voted to the coordination of agents. Thus, we provide the following two measures of
autonomy.

(i) Relative space autonomy. Given a specific problem setting, the relative space auton-
omy is a function of the amount of computer memory required for the coordination of
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agents relative to the total amount of memory required by the system. This can be com-
puted as 1−CM/TM, where CM is the memory required for agent coordination and
TM is the total memory. To make the measure more precise, we compute the relative
space autonomy using the worst-case analysis; that is, for a given problem description,
given a problem size of, say, n agents, what is the minimum value of 1−CM/TM taken
over all problems of size n? This term is expressed as a function of n.

(ii) Relative time autonomy. Given a specific problem setting, the relative time auton-
omy is a function of the amount of CPU time required for the coordination of agents
relative to the total amount of CPU time required by the system. This can be computed
as 1− CT/TT where CT is the CPU time required for agent coordination and TT is
the total CPU time required by the system. As in relative space autonomy, this mea-
sure is made more precise by computing the relative time autonomy using the worst-case
analysis; that is, for a given problem description, given a problem size of, say, n agents
(represented precisely by the problem input requirements), what is the minimum value
of 1− CT/TT taken over all problems of size n? This term is expressed as a function
of n.

These measures of autonomy are obviously based on ideas derived from the field of
algorithm analysis as used to determine the computational complexity of algorithms. One
of the primary advantages of this approach is the existence of well-defined formalisms
for conducting such analyses. Although it is beyond the scope of this paper, we believe
that future research should be dedicated to furthering the establishment of a generally
accepted objective measure of autonomy.

8. Conclusion

In this work, we have developed a randomized ADDM approach to make multiagent
resource-allocation decisions with the objective of maximizing the number of the active
agents. We have shown the means by which an optimal value of decision variable (se-
lected by each agent) α can be calculated for this problem and extended it to more general
resource requirements. This idea has potential for application to resource-constrained
project scheduling problems and parallel computing where maximization of active agents
is of essence [4, 8]. We have also introduced two preliminary objective measures for the
strength of autonomy of a system of agents. Such measures can potentially serve as the
foundation of evaluating and comparing various multiagent resource-allocation mecha-
nisms in a computational context.
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