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Abstract. An inductive method has been presented for finding Stirling numbers of the second
kind. Applications to some discrete probability distributions for finding higher order moments
have been discussed.
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1. Introduction

Stirling numbers of the second kind are used to express xz™, where n is a non-
negative integer, as sums of powers of factorial polynomials not higher than the
n-th. For every non-negative integer n, the function ™ can be expressed as

" = S(n,Dzq) +Sn,2)re) + ...+ S0N,n)rMm) (L.1)

where z(,) = z(x —1)...(z — r + 1) is the factorial polynomial of order r(r =
1,2,...,n), and S(n,1),S(n,2),...,S(n,n) are called Stirling numbers of the sec-
ond kind. It may be mentioned that S(n,r) is the number of ways to distribute n
distinguishable balls into r indistinguishable urns with no

urn empty. These numbers are called Stirling numbers of the second kind after the
British mathematician James Stirling (1692 - 1770).

In this note we present an inductive proof to derive Stirling numbers of the
second kind. For a combinatorial proof the reader is referred to Roberts (1984, pp.
182-183). We also demonstrate the application of Stirling numbers in calculating
moments of some discrete distributions. The usual method of deriving raw mo-
ments of higher order of an integer-valued random variable is to derive the moment

T The work was done in part while the first author was at the University of Sydney, Australia.
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generating function and then differentiate as many times as the order of the moment
required. In this paper we take an advantage of factorial moments which are easily
derived for integer-valued random variables. These moments can be combined with
the help of Stirling numbers of the second kind for deriving raw moments and hence
central moments of integer-valued random variables. The advantage of the method
presented here for calculating raw moments or central moments of a distribution is
that it avoids using derivatives of higher order.

2. The Description of the Method

Tables showing Stirling numbers up to n = 8 is well-known (see e.g. Beyer
(1981, p.450)). These tables can be prepared by simple algebraic manipulations.
Suppose that we want to calculate Stirling numbers in (1.1) for n = 3 so that

® = S(3, 1)z + 5(3,2)z) + 5(3,3)z (3 (2.1)

= S,z + S(3,2)x(x — 1) + S(3,3)x(x — 1)(z — 2).

Equating the coefficients of x,2? and 2® we have the following triangular
system of equations:

S(3,1) — S5(3,2)+25(3,3) =0

S5(3,2) — 35(3,3)=0

S5(3,3) = 1.

Solving the equations we have S(3,1) = 1,5(3,2) = 3 and S(3,3) = 1. If the
above method of calculating Stirling numbers is repeated for n = 2,3 etc., then
it is easy to prepare a table showing Stirling numbers for different n and r. The
following well-known recurrence relation (see e.g. Beyer, 1981, p. 450) is similar to

the relation among binomial coefficients in Pascal triangle except a multiple to the
second term

Sn,r)y=Sm—-Lr—-1)+rSn-1,r),r=1,2,...,n (2.2)

with S(n,1) = S(n,n) =1 and S(n,r) =0, r > n. For a simple algebraic proof see
Berman and Fryer (1972, pp. 217-218).

In this section we describe that the well-known formula for a Stirling number
of the second kind given by

S(n.r) = %g—w’ (7)e-ir

- % g(_n”’ ( : ) in (2.3)
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(Roberts, 1984, pp.182-183) where 0 < r < n, and n is any non-negative integer
can be derived from (2.2) by induction. The last line in the identity (2.3) follows
by changing the index of summation i to j where j = r —i.

By the repeated use of (2.2), it is easy to check that the Stirling numbers of
the second kind S(n,r),r = 2,3,4 can be written as

n—2
Sm,2) = > 2°S(n—-1-4,1)=2"""~1, n>2
=0
n—3 )
Sn,3) = > 3 S(n-1-1i,2), n>3
i=0

= i1(on—2—1 _1 n n
- ;:),(2 _1)_6[3 —3(2") + 3]

S(n,4) = §4i5(n—1—i,3), n>4
= i 1 n—1—1i n—1—1i
= §4 [6{3 —-3(2 ) + 3}
]' n n n
= o 4" —4(3") +6(2") - 4]
_ % Z(—l)i<?>(4—i)"

where < : ) is the combination of r things taking i at a time.

We assume that the identity (2.2) is true and try to prove the identity in
(2.3). The identity (2.3) holds for S(n,0) = 0 and S(n,1) = 1. It may be proved
by induction that for all real numbers r

n

Z(—l)i (?) (r—i)™ =n!

i=0

(Ruiz, 1996) and consequently S(n,n) = 1. Applying induction hypothesis for n— 1
and so 1 < r < n, we have

Sth—1,r—1) = (r_ll)! Ti(_l)r_l_i (r;1> -
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and
1 . r—i r n—
rS(n—l,r):rﬁ Z(—l) <l>z !
=0
1 r—1 r Tnfl
_ 1\t n—1
I () o
so that

S(n,r) = S(n—1, r=1)4+r S(n—1,r)

o S 5 (F) T e

The summand in the second term in the above expression is exactly the same
as the first term if ¢ = r and consequently the two terms add to the expression in
(2.3). The proof is thus complete.

The above proof has pedagogic values especially to readers who want to
avoid combinatorial proof.

3. Applications

Stirling numbers connect the factorial moments to raw moments and vice
versa. Taking expectations in the both sides of (1.1) with n and r replaced by
r and i respectively, we have the general relationship between raw moments and
factorial moments as

e =Y 8(r,i) p, (3.1)
=1

where p, = E(X") is the r-th (r = 1,2,...,n) raw moment and uI(T) = E(X()
is the r-th (r = 1,2,...,n) factorial moment. Harris (1966, p. 110) first used this
formula clearly in the context of statistics though it has not been popular.

Stuart and Ord (1994, p.84) presented the formula (3.1) for r < 4, and
also mentioned that Frisch gave general formulae showing factorial moments about
one point in terms of ordinary moments about another, and vice versa. However,
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formulae given by Frisch involve Bernoulli polynomials and are not easy to use.
The central moments are connected to the raw moments by the following relation:

”

=30 ()t (32)
i=0

The factorial moments of integer valued distributions e.g. binomial and negative

binomial distributions can be easily derived. Then these moments can be combined

by (3.1) and (3.2) to derive raw and central moments without having to resort to any

differentiation. Some examples are presented below to illustrate the application.

Example 1. Let us calculate the fourth raw moment of the binomial distribution
B(n,p) by the use of (3.1). Here we have

]

My = 5(47 1):“(1) + 5(4) 2)“(2) + 5(47 3):“(3) + 5(4) 4)“(4)'

It follows from (2.3) that S(4,1) =1,5(4,2) =7,5(4,3) = 6 and
S(4,4) = 1. The i-th factorial moment of the binomial distribution is easily shown
to be ,u’(i) = n(i)pi, i1 =1,2,...,n. Therefore the fourth raw moment of the binomial
distribution is given by

[y = np + Tne)p* + 6nz)p* + nyp’.

Example 2. Consider deriving the moments of the geometric distribution. Let X
be the number of trials prior to the first success with probability density function
(p.d.f)

PX=z)=q"p, 0<p<l, g+p=1, z=0,1,....

It can be easily verified that ul(i) =il(g/p)’,i = 1,2,.... By the use of the
formula (3.1) we have

mo= pay =4q/p;

]

o = S(2, 1)) + S22 = (a/p) +2(a/p)*,
us = (a/p) +6(q/p)* +6(q/p)?,
wy = (a/p) +14(q/p)* + 36(q/p)* + 24(a/p)*.

Now by the use of the moment relationship in (3.2) followed by some algebraic
manipulations, we find that the second, third and fourth order central moments of
the geometric distribution are

pe = gqp 2,
3

ps = (g+q*)p>°,
pe = (q+7¢* +¢)p™.
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Example 3. Let us derive moments of the negative binomial distribution. Let X
be the number of trials prior to s-th (s > 1) success with p.d.f.

s+xr—1
T

P(sz)z(

)quS,Q+P:1,0<p<l,x:0, 1,...
It can be easily verified that ,u’(i) =(s+i—1) (q/p)i,i=1,2,....

By the use of the formula (3.1) we have

f = pay = sq/p,
y = sq(l+sq)p2,

]

ps = s(q/p) +3(s+1)2) (a/p)* + (s +2)3) (a/p)?,

py = s(a/p) +7(s + 1)) (a/p)* +6(s+2)(3) (a/p)* + (s +3)(a)(a/p)*.

Then by the use of (3.2) we find that the second, third and fourth order
central moments of the negative binomial distribution are

2

M2 = sqp” 7,
ps = s(q/p) +3s(q/p)* + 2s(q/p)°
= s(q+¢*)p?,
ps = s(q/p) + s(7+3s)(q/p)” + 65(2+ 5)(¢/p)* + 3s(2 + ) (¢/p)*

= slg+ (35 +4)¢* +¢*)p~*
(cf. Evans, M. et al., 1993 p. 110).
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