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Abstract� We model the exchange of commodities that are contingent upon each other� when
traders place mostly limit orders� Examples include� �� a market of �nancial futures where future
spreads are also traded� �� a market of mutual funds and stocks� �� a market of options and stocks�
under the viewpoint that they are both combinations of Arrow�Debreu securities� We prove that
consistent prices are optimal� We develop a �xed�point algorithm to compute an optimal price and
allocation� The algorithm combines ideas from contraction mapping theory and from homotopy
theory� It is much faster than a traditional linear programming approach�

Keywords� Economic equilibrium computation� equilibrium programming� homotopy� auction�

�� Introduction

Due to the progress of automation� options and futures exchanges have recently
expanded the possibility to trade various combinations of primitive �nancial in�
struments� Among others� the Chicago Mercantile Exchange� the German and the
Swiss options and futures exchanges all o�er standardized future time spreads con�
tracts� where a potential buyer buys one leg �the future with early expiration� and
sells the other �the future with later expiration� at the same time and delivers or
receives money for this trade�

This is only one example of combination trading� More generally� a combination
can be described in terms of the coe�cients of primitive instruments it includes�
For example� the coe�cient of a future time spread as above or of a swap would
be 	
��
�� A mutual fund is a combination with only positive but maybe fractional
coe�cients� Options are themselves combinations� where the primitive instruments
are Arrow�Debreu securities�

We focus on double auction markets� where buyers and sellers place limit orders�
i�e�� orders for a predetermined quantity at a predetermined price� As in markets
without combinations� our model allows for a certain quantity of market orders�
Currently� options and futures exchanges are primarily auction markets� We do
not discuss the relative merits of dealer markets compared to continuous or batched
auctions� This question is still an open issue in the literature� Among others� 	��
reports that batched auctions are more robust mechanisms� and therefore may be
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preferable in very illiquid markets� A continuous auction mechanism involving
combinations� also called synthetics is described in 	
��

Combinations are especially useful in auction markets because of the liquidity risk
inherent to auctions� For instance� a trader holding a Swiss Franc future contract
expiring in June may suddenly want to swap it against the same contract expiring
in July� The reason why he would prefer to place a combination order than two
independent orders is that he much prefers his current position to

� either a null position due to a successful sale and the absence of counterparty
that would sell the July contract

� or a �doubled position� due to the absence of a counterparty that would buy
the June contract�

Combination trading can be seen as a practical compromise between the classical
tatonnement process and the so�called �equilibrium process�� introduced by Beja
and Hakansson in 	
�� where �all traders	��� submit 	��� a complete speci�cation
of tentative orders for all possible prices�� An equilibrium process gives traders
greater �exibility� However� according to the same authors� �the �implicit� cost of
placing orders makes these requirements prohibitively expensive�� Wohl 	

� criti�
cizes most existing markets where �an order in one security cannot be conditioned
on prices of other securities�� and describes a mechanism that implements a simpli�
�ed equilibrium process� where an order in one security is conditioned on the prices
of the same security and of an index�

A simple strategy allows traders to implement Wohl�s conditioned orders � in a
combination trading exchange� The main advantages of the �combination trading�
approach to implement the conditioned orders over the approach described in 	

�
are that traders can condition their orders on all other securities and that the
equilibrium is realized in discrete prices� We have also been able to verify 	�� that�
like in 	

�� our analysis applies to more general types of limit orders than described
in section ��

The main purpose of this paper is to examine how the traders� orders for combi�
nations can be matched optimally with each other and with other traders� orders for
primitive instruments� The role of the exchange institution is to provide a discrete
price vector and an allocation that maximizes the utilitarian social welfare func�
tional� We show that this problem reduces to solving the so�called market balance
problem� in which commodity prices are consistent� The proof of consistency relies
on standard duality techniques� it has been a subject in literature before �e�g� 	
���
for a simple market without combinations�

We suggest two di�erent algorithms to solve the market balance problem and
compare them against the only possible method to solve the combination trading
problem� namely linear programming� Although special instances of combination
trading can be formulated as a network �ow problem of a manageable size� the
general problem cannot�
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When there is a large number of orders� the aggregate demand and supply look
almost continuous� and it is easy to see that the market balance problem becomes
almost a �xed�point problem� Khilnani and Tse �	���	��� reported that a contraction
mapping algorithm can be used to solve a certain class of economic equilibrium
problems� We show that combination trading belongs to this class of problems� We
use the contraction mapping algorithm to obtain a nearly�optimal solution� where
the price is not rounded�

We show how to obtain the optimal solution with a discrete price by solving
a di�erent �xed�point problem� namely a Kakutani �xed�point problem� Eaves
�	���	��� reports an algorithm to solve Kakutani �xed�point problems which is based
on path�following �homotopy�� We implemented this algorithm�

Depending on the size of the problem� we recommend to solve market balance
problems by applying in a �rst step the contraction mapping algorithm to obtain
a nearly�optimal solution� and from there on by applying the path�following algo�
rithm� This combined algorithm is much faster than the traditional linear program�
ming approach� because the number of variables is much reduced� we aggregate all
traders� limit quantities into demand and supply functions�

Exchange institutions compete against each other to attract trading volume� since
some of them o�er the same contracts� A critical feature of an exchange is to open
the market very quickly at the beginning of the trading day� or after a trading halt�
It is therefore important for an exchange to use a fast algorithm like ours�

�� Model

Notation� the sets N�Z�Q�R are respectively the sets of nonnegative integers� in�
tegers� rational� and real numbers� The Rn vector e is the vector of ones� In the
special case when each i�th component of the value of a Rm � Rm function f
depends on the i�th component xi of a variable x� we use the notation f�x� for the
vector value� and fi�xi� for the component value� We write 	vi� for the integral part
of a real positive number vi� When vi is negative� 	vi� is the largest integer smaller
than or equal to vi� Finally� we write 	v� for a vector with integral components 	vi��

In our model� traders place limit orders on an exchange� with a limit price� and
a limit quantity� The exchange then sets a market price for each commodity� and
allocates realized quantities to buyers and sellers against cash� Partial matching
is allowed� meaning that buyers can receive any quantity up to the limit quantity�
provided that the market price is not higher than their bids� and similarly for the
sellers�

There are two kinds of commodities� primitive commodities� and combinations�
Combinations are de�ned in terms of the quantity of each primitive commodity a
combination buyer receives or delivers after his combination order is executed� We
have m primitive commodities and n�m combinations� Each commodity i � 
��n
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is therefore de�ned by a Qm vector ai� which represents the coe�cients of each
primitive commodity�

We collect the coe�cient vectors of the combinations in an Zm��n�m� matrix
AN � � am�� am�� �� an � � � and de�ne the matrix A � � I AN ��

All traders have a linear utility function� We assume without loss of generality
that each trader places only one order�

We can analyze traded quantities at three levels of trade aggregation� At the
lowest level� we keep track of each deal between the traders� At the middle level�
we aggregate each deal a trader took part in into his allocation� At the highest
level� we group all traders with the same limit prices� We �rst present the middle
level of trade aggregation� and then the highest� The lowest level will be needed
only to prove theorem 
�

���� Middle level of trade aggregation

On each commodity i� we have N b�i� buyers and Ns�i� sellers� Each buyer b �

��N b�i� of commodity i places a limit order with limit price ��i� b� � Z� and limit
quantity qb�i� b� � N � Similarly� each seller s � 
��Ns�i� of commodity i places
a limit order with limit price ��s� i� � Z� and limit quantity qs�i� s� � N � The
exchange institution then selects a price vector p � Zn and an allocation zb�i� b� � �
for each buyer and zs�i� s� � � for each seller� The value of the utility functions of
the buyers and the sellers after trading will be�

U b�i� b� � ���i� b�� pi�z
b�i� b� �
�

Us�i� s� � ���i� s�� pi�z
s�i� s� ���

The limit price constraints are� for all buyers and sellers�

zb�i� b��pi � ��i� b�� � � ���

zs�i� s��pi � ��i� s�� � � ���

The limit quantity constraints are� for all buyers and sellers�

� � zb�i� b� � qb�i� b� ���

� � �zs�i� s� � qs�i� s� ���

The market clearing equations express the fact that combination orders can be
matched against orders for primitive commodities�

A

�
�
PNb���

b�� zb�
� b� �
PNs���

s�� zs�
� s�
��PNb�n�

b�� zb�n� b� �
PNs�n�

s�� zs�n� s�

�
A � � ���
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���� Highest level of trade aggregation

To determine the optimal price� we will see that the exchange institution needs
only consider two Zn � Nn functions� the aggregate demand F b and the aggregate
supply F s� For each commodity i� and yi � Z� we have�

F b
i �yi� �

Nb�i�X
b��

qb�i� b�� ���i� b� � yi� �
�

F s
i �yi� �

Ns�i�X
s��

qs�i� s�� ���i� s� � yi� ���

� where � �A� is the indicator function� i�e�� it takes value � when A is false� and

 when A is true�

We de�ne 	y�i � y
�
i � as the smallest interval that contains all buy and sell limit

prices for commodity i� i�e�� where the aggregate demand and supply vary�

In a similar fashion� we also aggregate the allocation into two Zn � Nn func�
tions� the aggregate buy quantity f b� and the aggregate sell quantity fs� For each
commodity i� we have�

f bi �yi� �

Nb�i�X
b��

zb�i� b�� ���i� b� � yi� �
��

fsi �yi� � �
Ns�i�X
s��

zs�i� s�� ���i� s� � yi� �

�

In order to simplify the notation� we also de�ne the allocated quantity for all
traders that have the same limit price yi�

�f bi �yi� � f bi �yi�� f bi �yi � 
� �
��

�fsi �yi� � fsi �yi�� fsi �yi � 
� �
��

������ The combination trading problem

The objective of the exchange institution is to maximize the utilitarian social welfare
functional z� i�e�� the sum of the pro�ts of all traders� Obviously the results of this
paper would still apply if the exchange institution chose a di�erent social welfare
functional� The decision variables of the exchange institution are the allocation
f b�y�� fs�y�� and the �integer� price p� The combination trading problem is�
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max
p�fb�y��fs�y�

z �
X
y�Y

X
i

	�f bi �yi��yi � pi�

��fsi �yi��pi � yi�� �
��

f b�y� � � �y � Y �
��

fs�y� � � �y � Y �
��

f b�y� � F b�y� �y � Y �
��

fs�y� � F s�y� �y � Y �

�

�f bi �yi��pi � yi� � � �y � Y � i �
��

�fsi �yi��yi � pi� � � �y � Y � i ����

A�f b�p�� fs�p�� � � ��
�

where Y is a bounded set of all integer prices where the solution lies�

Relations �
�� to �

� are implied by the limit quantity constraints ��� and ����
We will verify later that actually the solution to this model respects the limit
quantity constraints� therefore it is not necessary to include these constraints in
the formulation of the combination trading problem�

Relations �
�� and ���� are the limit price constraints ��� and ��� � � and relation
��
� is the market clearing equation ���� at the aggregated level�

������ The market balance problem

One of the main results of the paper is to simplify the combination trading problem
into another problem� the market balance problem� The market balance problem
consists of determining pB � YB � f b� fs so that�

p � � pB pBAN � ����

YB � �i����nf fpB � Zmjy�i � aipB � y�i g
�j����nfpB � Zmjy�j � ajpB � y�j g g ����

F b�p� e� � f b � F b�p� ����

F s�p� e� � fs � F s�p� ����

A�f b � fs� � � ����

It can be seen that YB is bounded and connected�

THEOREM � Let pb� f b� fs solve the market balance problem� Then p� f b�y�� fs�y�
solves the combination trading problem� where�

p � �pB pBAN �

f b�p� � f b
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f b�y� � F b�y� yi � pi

f b�y� � � yi � pi

fs�p� � fs

fs�y� � F s�y� yi � pi

fs�y� � � yi � pi

PROOF see Appendix�

Relation ���� is a no�arbitrage relation� It states that the prices should be con�
sistent � � i�e�� that the prices of the combinations should be a combination of the
price of the primitive commodities pB � For instance� if the price of a future S�P���
expiration July is ���� and the price of a future S�P��� expiration June is ���� then
the optimal price of the spread should be ��� Relation ���� is a simple consequence
of price�consistency�

Inequalities ���� and ���� tell us that� for any commodity� all buyers �sellers�
with a limit price strictly greater than �smaller than� the optimal price set by the
exchange are allocated their entire limit quantity� The same property is a very
well�known fact in simple markets without combinations�

�� Algorithm

Notation� for simplicity� we now write p for the price of the primitive commodities
instead of pB �

We provide an algorithm to solve the market balance problem de�ned in the last
section� From now� we call the latter discrete �MB� problem� because the aggregate
demand supply is discrete� If there is a very large number of traders� and if we
relax the integrality constraint on the limit prices� the aggregate demand supply
functions look almost continuous� and the discrete market balance problem is almost
similar to the following continuous �MB� problem�

A�F b�pA�� F s�pA�� � � ����

An idea is therefore to approximate the discrete aggregate demand supply func�
tions by a continuous function� solve the continuous �MB� problem to obtain an
approximate real�valued solution pr� and then search the exact solution p in a neigh�
borhood of pr� We need therefore two algorithms� the continuous algorithm� and
the discrete algorithm�

���� Continuous algorithm

For notational convenience we de�ne the net demand function G�y� � F b�y� �
F s�y��
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Let G�y� be replaced by a piecewise linear function Gr�y�� such that Gr
i �yi� is

strictly decreasing on 	y�i � y
�
i �� We de�ne Gr

i �yi� recursively in the interval �y�i � y
�
i ��

starting from y�i � with Gr
i �y

�
i � � F b

i �y
�
i ��F s

i �y
�
i �� If F

b
i �	yi� � 
��F s

i �	yi� � 
� �
F b
i �	yi��� F s

i �	yi���

Gr
i �yi� � �
� yi � 	yi��G

r
i �	yi�� �

�yi � 	yi���F
b
i �	yi� � 
�� F s

i �	yi� � 
�� 	yi� � yi � 	yi� � 


Otherwise let 	z� be the maximal value of t � 	yi� � 
 so that F b
i �t� � F s

i �t� �
F b
i �	yi��� F s

i �	yi��� then�

Gr
i �x� � Gr

i �	yi���



�

x� 	yi�

	z�� 	yi�
	yi� � x � 	z�

Outside �y�i � y
�
i �� we de�ne G

r
i di�erently if i is a primitive commodity or a com�

bination� We introduce the superscripts B as a mnemonic for primitive commodities
��basis��� and N as a mnemonic for combinations ��nonbasis��� We rede�ne the
inverse of GBr

and GNr

as�

G�Br

i �qi� � y�i qi � F b
i �y

�
i �� F s

i �y
�
i �

G�Br

i �qi� � y�i qi � F b
i �y

�
i �� F s

i �y
�
i �

GNr

i �yi� � F b
i �y

�
i �� F s�y�i � yi � y�i

GNr

i �yi� � F b
i �y

�
i �� F s�y�i � yi � y�i

The continuous �MB� model is tantamount to �nding the �xed point of ��p��
de�ned as�

��p� � G�Br

��ANGNr

�pAN �� ��
�

By de�nition� a function ��p� is antitonic if� for any p�� p� we have ���p�� �
��p����p� � p�� � �� Khilnani and Tse 	�� report an algorithm that �nds the �xed
point of �� provided that � is antitonic and Lipschitz continuous� with Lipschitz
constant ��

THEOREM � If � � �
���� � the �xed point of � can be found by iterating pk�� �

	�pk�� where 	�p� � �
� ��p� ���p�� The initial value p� is arbitrary�

PROOF ��p� is antitonic because G�Br

and GNr

are decreasing� The rest of the
proof goes along the lines of 	���

Note that this theorem guarantees the unicity of the solution of the continuous
�MB� problem� which in turns shows that the domain of the prices that solve the
discrete �MB� problem is bounded and connected�
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���� Discrete algorithm

In this section we show that the �xed point of a set�valued function F �to be de�ned
later� is the solution of the discrete �MB� balance problem� We use the Eaves�Saigal
algorithm to compute the �xed point of F � Our discrete algorithm consists therefore
of carefully de�ning F and then applying the Eaves�Saigal algorithm�

������ The set�valued function F

Let C be the smallest parallelepiped that contains YB � We call its maximal and
minimal elements p� and p�� The value of our set�valued function F � C 	 C
is the set fp � Rmj�p� �� �� �� �� solves P��p�g� where P��p� is a linear program that
we de�ne hereafter� It can be easily seen that F is convex�valued� and closed �by
Berge�s maximum theorem��

Before de�ning the linear program P��p�� we formulate the market balance prob�
lem slightly di�erently� using piecewise�linear demand and supply functions instead
of discrete ones�

We need the following de�nitions�

F b�

i �yi� � F b
i �	yi�� 	yi� � yi � 	yi� �

�

�

F b�

i �yi� � F b
i �	yi���

��yi � 	yi�� �

�
��F b

i �	yi��� F b
i �	yi� � 
�� 	yi� �

�

�
� yi � 	yi� � 


F s�

i �yi� � F s
i �	yi�� 	yi� �




�
� yi � 	yi� � 


F s�

i �yi� � F s
i �	yi�� 
� �

��yi � 	yi� �



�
��F s

i �	yi��� F s
i �	yi�� 
�� 	yi� � yi � 	yi� �




�

Db
ii�yi� � ��yi � 	yi��

�F b�

i �	yi� � 
�� F b�

i �	yi��� 	yi� � yi � 	yi� �



�

Db
ii�yi� � F b�

i �	yi� � 
�� F b�

i �yi� 	yi� �



�
� yi � 	yi� � 


Ds
ii�yi� � F s�

i �	yi��� F s�

i �yi� 	yi� � yi � 	yi� �
�

�
Ds
ii�yi� � ��	yi� � 
� yi�

�F s�

i �	yi�� 
�� F s�

i �yi�� 	yi� �
�

�
� yi � 	yi� � 


The non�diagonal elements of Ds and Db are set to zero�
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LEMMA Let �fb� fs� p � Rm� be a solution of the followingmodi�ed market balance
problem�

f b � F b��AT p� �Db�AT p�
 b ����

fs � F s��AT p� �Ds�AT p�
s ����

� � 
b � e ��
�

� � 
s � e ����

Then �fb� fs� 	p�� is a solution of the discrete market balance problem�

We now de�ne the linear program P��p��

max
p��fb

�
�fs

�
�

�b
�
��s

�

f bBb��

�AT p�f b
�

� fsBs��

�AT p�fs
�

����

f b
�

�Bb�AT p�AT �p� � p� � F b��AT p� �Db�AT p�
 b ����

fs
� �Bs�AT p�AT �p� � p� � F s��AT p� �Ds�AT p�
s ����

A�f b
� � fs

�

� � � ����

� � 
 b
� � e ����

� � 
s
� � e ��
�

The Rn vectors f b and fs are any strictly positive vectors such that A�f b�fs� �
�� Obviously� f b � fs � e would respect these conditions� The Rn � Rn�n

�matrix� functions Bb and Bs have strictly positive and diagonal values� They can
be carefully chosen so as to obtain better algorithmic performance� The Eaves�
Saigal algorithm is much quicker if the initial simplex is small and contains the
solution� which imposes constraints on the choice of vk �the n � 
 vertices of the
initial simplex�� Bb and Bs�

The vertices vk of the initial simplex are chosen so that�

F b�

i �aivk�� f b

aivk � aipr
� � ����

F s�

i �aivk�� fs

aivk � aipr
� � ����

�where again pr is the solution of the continuous market balance problem� For all
vertices vk of the initial simplex we set

Bb
ii�A

T vk� �
F b�

i �aivk�� f b

aivk � aipr
��
�

Bs
ii�A

T vk� �
F s�

i �aivk�� fs

aivk � aipr
����

so that the solution of P��v
k� is �pr� f b� fs�� For all other arguments� Bb

ii and Bs
ii

should be linearly interpolated�
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THEOREM � All �xed points p of F�p� are solutions of the modi�ed market
balance problem�

PROOF The matrix of the system of all linear equations that are part of the
optimality conditions at a �xed point has full rank� by construction of F � Solving
this system we see that the multipliers �b and �s of inequalities ���� and ���� are
equal to�

�b � Bb��

f b ����

�s � Bs��

fs ����

Since f b� fs � �� then �b� �s � �� Therefore� at a solution �p� f
b
� f

s
� 
 b� 
 s� with

p �xed point� constraints ���� and ���� are tight� i�e��

f
b
� F b��AT p� �Db�AT p�
 b ����

f
s

� F s��AT p� �Ds�AT p�
 s ����

������ The Eaves�Saigal algorithm

We will not explain the Eaves�Saigal algorithm rigorously� The interested reader
can consult 	��	��� It is a path�following �also called homotopy� method to determine
the Kakutani �xed point of any closed and convex�valued set�valued function �also
called multifunction in the literature��

Eaves�Saigal is a �multidimensional bisection algorithm�� It starts from the full
feasible domain as the initial simplex� subdivides it into subsimplices� chooses a
subsimplex as the incumbent simplex �in such a way that the incumbent always
contains the solution�� and goes on subdividing until the incumbent simplex is small
enough�

In the non�degenenerate case� a simplex � contains the solution if its vertex set
is completely labeled� i�e�� for all vertices vk and any yk � F�vk��

X
k

�k�y
k � vk� � �

X
k

�k � 
 �k � �

It is a remarkable fact that� if the algorithm takes care of degeneracy appropriately
and starts from a completely labeled simplex of which no facet is completely labeled�
then there always is a completely labeled subsimplex regardless of the subdivision�

The discrete market balance problem is particularly well suited to the Eaves�
Saigal algorithm�
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� by construction of F � more precisely of B� the initial simplex can be chosen
much smaller than the smallest simplex containing C�

� the incumbent simplex does not need to be very small for the algorithm to
terminate� it only needs to �t within the m�dimensional grid of integral prices
to contain the solution of the market balance problem�

Therefore� the number of iterations between the initial and the terminal simplex
will be small�

���� Summary of the algorithm

Bringing together the contraction mapping algorithm to solve the continuous �MB�
model and the homotopy to solve the discrete �MB� model� we summarize hereafter
our algorithm�


 Contraction mapping


�
 k � �� select pr� � YB


�� � � fPi

f
P

k

P
j
jAijAkj jmaxy

dGN
r

j
�y�

dy
g�

mminy
dGB

r

i
�y�

dy

� g���


�� � �
q

������

����


�� � �
��
p

�
�

����


�� repeat

k � k � 


prk � �
� ��prk�� � �G�Br

��ANGNr

�prk��A
N ��

until jjprk � prk��jj � m
���


�� pr � prk� choose f
b� fs � � so that f b � fs � Gr�AT pr�

� Homotopy

��
 select an initial simplex with vertices vk such that
F b�

i �aivk�� f b

aivk � aipr
� � and

F s�

i �aivk�� fs

aivk � aipr
� �

��� apply Eaves�Saigal algorithm on F until the incumbent simplex �ts in a
unit simplex �

��� the solution 	p� is the highest price so that 	p� � y �y � ��
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���� Complexity

The only method that our �MB� model and algorithm can be compared to is the
plain linear �PL� program de�ned in the appendix� which solves the combination
trading problem at the lowest level of trade aggregation� Except in some very
special cases� combination trading cannot be transformed into a small network �ow
problem�

Both methods are nonpolynomial� because they both rely on the simplex algo�
rithm� However� the �MB� algorithm can be solved on average much quicker� To
see that� we use the common approximation that the average number of iterations
of the primal simplex method is proportional to the number of rows �see e�g� 	����
and each pivoting requires a number of operations equal to the number of elements
of the simplex matrix�

The parameters involved in the complexity of the algorithm are m� the number of
primitive commodities� n �� m� the total number of combinations� p� the average
number of orders per combination� q� the length of a cube that contains all limit
prices for all primitive commodities� and r� the ratio of the maximal slope of net
demand �of all net demand functions for combinations� over the minimal slope of
net demand �of all net demand functions for primitive commodities��

Solving combination trading as a plain linear �PL� program would mean solving a
linear program with n rows and npm columns �in the worst case where no coe�cient
Aij is equal to zero�� Therefore� the �PL� method requires an average number of
operations TPL equivalent to�

TPL � O�n�pm� ����

To evaluate our method� we suppose that the average of the coe�cients Aij is
equal to one� Therefore the radius � is mnr �m�n�m�r to be accurate�� Since � is
large� the parameter � is approximately equal to 
� �

��� � and log� is approximately

equal to � �
	��

In the worst case� the norm of the di�erence between our two �rst price iterates
in �
��� will be

p
mq��� Since

jjprk�� � prkjj � �jjprk � prk��jj ��
�

then

jjprk�� � prkjj � �k jjpr� � pr�jj ����
m


� �
� �k

p
mq�� ����

k �
�
� logm� log q

� log�
��
�

k � 
m�n�r� log q ����
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is the maximum number of iterations of loop �
���� Each loop requires �mn opera�
tions� so the contraction mapping has a total number of O�m�n�r� log q� operations�

For the discrete algorithm the volume of the initial simplex is at most equal to
mm� What is the optimal number x of subsimplices per simplex! The number
of subdivisions to go from a simplex of size S � mm to a subsimplex of size 
 is
logx S� The number of operations per subdivision being proportional to the number
of subsimplices� the optimal x minimizes x logx S� therefore x � m is a good choice�
and logmS � logmm

m � m is the number of subdivisions� For each subdivision�

� the linear program P��p� has to be solved once� our subdivisions are made in
such a way that each new vertex will be integral most of the time� so that
Db�AT p� � Ds�AT p� � �� and therefore the dimension of P��p� is reduced� this
step needs O�n�� operations

� we then have to solve between 
 and m systems of m equations with m un�
knowns� which can be achieved in at worst O�m�� operations�

Therefore the homotopy requires a total time of O�m
�mn�� operations and the
average number of operations TMB of the �MB� algorithm is�

TMB � O�m�n�r� log q �m
 �mn�� ����

Example

If m � 
�� n � 
��� p � 
��� r � 
��� and q � 
��� then TMB 
 
��� and
TLP 
 
����

���� Numerical results

In order to validate the claim that our �xed�point algorithm is superior to plain
linear programming �LP� we implemented both algorithms on the same computer
�PC Pentium� and the same language �Visual Basic��

Table 
 shows that the �xed point algorithm is indeed faster than plain �LP� when
implemented on a standard class of combination trading problems� � primitive
commodities� and 
 combination� We tried 
� di�erent problems� each one with a
di�erent number of distinct limit prices� As expected� computation time for plain
�LP� grows very fast with the number of distinct limit prices� It does not for our
�xed point algorithm�
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Table �� Speed comparison �xed point algorithm versus plain PL

Number of distinct Algorithm speed �s�
limit prices Plain LP Fixed Point

� ��� 
��

� ��� 
�


� 
�� ���


 
�
 
��
�
 ���� 
��
�� ���� 
��
�� �
�� 
��
�� ����� 
��
�� ����� 
��
�� ���
��� 
��

The experiments reported in table 
 corresponded to test cases where the �xed
point algorithm would start far away from the solution� i�e�� at the highest price
lower than the solution where the aggregate demand and supply curves for each
primitive commodity are �at� In table �� we repeat the last experiment of table 

�with �� distinct limit prices� and vary the initial point� a distance of 
��" in the
table means that the initial price is the highest price lower than the solution where
the curves are �at� As expected� the closer the initial point to the solution� the
faster the algorithm�

Table �� Speed of �xed point algorithm with di�erent initial prices

Distance initial price to solution Speed �s�

��" 
���
��" 
���

�" 
���
��" 
���
��" 
��

��" 
���
��" 
���
��" 
�
�
��" 
���

�" ��


� ��
�

�� Conclusion

The two main results of this paper are the proof that consistent prices are optimal�
and the existence of an algorithm to compute the optimal price and allocation
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quickly� In our model the variables have been aggregated� so that the dimension
of the problem is greatly reduced compared to the traditional linear programming
approach� For large problems our algorithm is very e�cient� because of its two
main features� price�consistency and trade aggregation�

We also believe that our model could add further insight to many issues of the
market microstructure literature� such as the existence of market manipulation
strategies�

Appendix� proof of theorem �

In this appendix we prove only that consistent prices are optimal� i�e� pN � pBAN �
The proof that the solution of �MB� respects the optimality conditions is available
upon request�

At the lowest level of trade aggregation� the combination trading problem becomes�

max
xN �xC��

�NxN � �CxC ����

Ns�i�X
s��

xN �i� b� s� �
X
w�W

wb
i

X
d�Db

i�b

xC�w� d� � qb�i� b� ��i� b� ����

Nb�i�X
b��

xN �i� b� s� �
X
w�W

ws
i

X
d�Ds

i�s

xC�w� d� � qs�i� s� ��i� s� ����

The left�handside of ���� is nothing else than the buy allocation zb�i� b�� decom�
posed into the �normal deals� allocated quantities xN made with the sellers of the
same commodity i� and the �combination deals� allocated quantities xC made with
buyers and sellers of di�erent commodities� Each deal brings the following pro�t
per quantity�

�N �i� b� s� � ��i� b�� ��i� s� ����

�C�w� d� �
nX
i��

wb
i��i� d

b
i �� ws

i ��i� d
s
i � ��
�

The set W is the set of all vectors w � � b ws � � N�n such that Awb � Aws �
wbws � �� and no vector wk is the multiple of another vector wl� In other words� w
represents the weight of each commodity in a particular type of combination deal�

Db
i�b is the set of all possible dealer groups d � � db ds � that take part in a

particular deal involving i�th commodity buyer b� For instance� dbj � � means that
the second buyer of commodity � is part of the dealer group d� Ds

i�s is de�ned
analogously� By convention� only one trader per commodity takes part in a deal�
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The dual of the combination trading problem is�

min
u�v��

qbu� qsv ����

u�i� b� � v�i� s� � �N �i� b� s� �i� b� s ����
nX
i��

wb
iu�i� d

b
i � � ws

i v�i� d
s
i � � �C�w� d� �w� d ��
�

By complementary slackness� we know that if the corresponding realized quantity
xN �i� b� s� and xC�w� d� are strictly positive� then the optimal u and v satisfy�

u�i� b� � v�j� s� � ��i� b�� ��i� s� ����
nX
i��

wb
iu�i� d

b
i � � ws

i v�i� d
s
i � �

nX
i��

wb
i��i� d

b
i �� ws

i ��i� d
s
i � ����

The strong duality theorem of linear programming implies that the optimal value
of the objective of the primal is equal to the optimal value of the objective of the
dual� With this in mind� we will identify� as in 	
��� u�i� b� as the optimal pro�t
per share of i�trader b� Therefore there exists a price p so that� for all �i� b� s� with

zb�i� b�and zs�i� s� strictly positive�

pi � ��i� b�� u�i� b� � ��i� s� � v�i� s� ����

Therefore

u�i� b� � ��i� b�� pi ����

v�i� s� � pi � ��i� s� ����

Inserting ���� and ���� into �����

nX
i��

wb
i ���i� b�� pi� � ws

i �pi � ��i� s�� �

nX
i��

��i� b�wb
i � ��i� s�ws

i ����

i�e��

nX
i��

�wb
i � ws

i �pi � � ��
�

We de�ne a new vector t by t � wb � ws� We decompose t� p into tB � pB for
the primitive instruments and tN � pN for the combinations� Relation ��
� becomes
pBtB � pN tN � � and has to be satis�ed for any integral t so that tB �AN tN � ��
Therefore pN has to be equal to pBAN � and optimal prices have to be consistent�
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Notes

�� Suppose a trader wants to buy stock A only if the price di�erence between index B and stock
A is more than ��� In a combination trading exchange� this would be achieved by placing �
orders�

� one combination order to buy A and sell B only if the price di�erence is less than ��

� one market order to buy B

The only problem is that markets may not clear if traders place too many market orders�
We believe however that the conditions for a combination trading exchange to clear are less
stringent than the conditions for the conditioned mechanism described in ���� to converge�

�� To ease the exposition we assume now� by rescaling� that all coe�cient vectors of the combi�
nations are integral�

�� Consequently� the optimal solution should respect �fb
i
�yi� � 	 for yi � pi and �fs

i
�yi� � 	 if

yi � pi�

�� Our de�nition of consistency is more general than the de�nition of consistency in ���� Trades
fb � fs in ��� are consistent when they respect the relation �fb � fs�v � 	 for some vector v�
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