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Abstract� The concept of the multirelation coe�cient is dened to describe the closeness of
a set of variables to a linear relation� This concept extends the linear correlation between two
variables to two or more variables� Parameters of a beta distribution are determined that are
utilized to approximate signicance levels of the multirelation coe�cient for any given number
of observations and variables� A generalized Student t distribution is dened� This distribution�
which is termed the multirelated t distribution� reduces to the Student t distribution for two
variables� It is useful in the determination of the signicance level of the multirelation coe�cient�
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�� Introduction

The concept of the multirelation coe�cient is described in Drezner ������� It gives
a measure of closeness of a set of variables to a linear relationship� In order to be
able to compare the signi�cance level of two multirelation coe�cients with di�erent
dimensionality	 the signi�cance level of the multirelation coe�cient is needed� We
evaluate the distribution of the multirelation coe�cient and its fractiles for a �nite
number of observations� There might be ways to evaluate the limit of the distribu

tion as the number of observations increases to in�nity� Such a result might have
some practical interest but is not investigated here�

First	 the concept of multirelation coe�cient is introduced and then some of its
properties are outlined �for a detailed discussion see Drezner �������� Let ��R� be
the least eigenvalue of the correlation matrix R between a given set of k variables�
The multirelation coe�cient r�Y�� � � � � Yk� is de�ned as� r�Y�� � � � � Yk� � �� ��R��
The multirelation coe�cient is a measure of the linear relation among all the Yi for
i � �� � � � � k�

The following properties are proven in Drezner ������ and help explain the role
and the properties of the multirelation coe�cient�

Property �  � r�Y�� � � � � Yk� � ��

Property � r�Y�� � � � � Yk��� � r�Y�� � � � � Yk��

y Part of this research was done while the second author was on sabbatical leave at the Hong
Kong University of Science and Technology� Kowloon� Hong Kong�
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Property � r�Y�� � � � � Yk� �  i� rij �  for every � � i � j � k�

Property � r�Y�� � � � � Yk� � � i� some vector is a linear combination of the other
vectors� �Or� in other words� the vectors are linearly dependent��

�� On the Distribution of the Multirelation Coe�cient

In order to be able to compare multirelation coe�cients with di�erent number of
variables and observations the fractiles of the multirelation coe�cient are helpful�
In this section we approximately calculate these fractiles for a given number of
observations and variables�
First	 some properties of the eigenvalues of the correlation matrix are found� Let	

for a given correlation matrix R � frijg	
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Assume that the elements of k vectors Yi for i � �� � � � � k of length n each have a
given random distribution� By ��� the eigenvalues are a sample from a multivariate
distribution �� The correlation matrix of the sample has o� diagonal elements equal
to � �

k�� � This correlation matrix is singular� By ��� the means of the multivariate

distribution � are all equal �� It is known	 �Kendall	 ����	 that E�r�ij� �
�

n�� for

any distribution of independent Y �i s� Therefore	 E�r
�� � �

n�� � By ��� the variances
of � are all equal to k��

n�� �
In trying to determine the type of the multivariate distribution �	 when the Y �i s

are drawn from i�i�d� normal distributions	 we �rst checked whether � can be
approximated by a multivariate normal distribution �see the Appendix for compu

tational details�� We observed that the multivariate normal distribution is not a
good approximation for the distribution of the eigenvalues and thus cannot be used
to accurately derive the distribution of the multirelation coe�cient� In order to
�nd a better approximation for � we plotted the simulation results� In Figure �
we present the distribution of the least eigenvalue that was obtained by calculating
the eigenvalues of a correlation matrix of � by � generated by randomly generated
vectors of � elements each� The �gure shows the frequency of eigenvalues in
segments of size �� �i�e�	 between  and ��	 �� and �� and so on� based on
�	 correlation matrices� This distribution is not a normal distribution	 nor is
it symmetric� A discussion of the distribution of the eigenvalues of the correlation
matrix can be found in Kendall and Stuart �������� However it does not address
our particular issue of the distribution of the smallest eigenvalue� Moreover	 since
the mean of all eigenvalues is � ���	 the least eigenvalue cannot exceed �� The
distribution of the least eigenvalue is between  and �� We therefore attempted to
estimate the probability density function of the least eigenvalue in order to be able
to calculate the signi�cance level of the multirelation coe�cient�
The case k � � can be explicitly solved� For k � � the multirelation coe�cient

is the absolute value of the correlation coe�cient� The correlation coe�cient is
related to the Student t distribution by the relationship�

tn�� �
r
p
n� �p
�� r�

���

The Student t distribution is related to the beta distribution by the following for

mula �Abramowitz and Stegun	 ������

t� � Ix

�
�

�
�
�

�

�
for x �

�

� � t�
���

Since � � n� �	 equation ��� yields�

�

� � t�
� �� r� ���

Comparing ��� to ��� we get that �� r� is distributed by a beta distribution with
parameters a � n��

� and b � �
� � Since I��x�a� b� � Ix�b� a�	 for k � �� r� is
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Figure 	� The distribution of the smallest eigenvalue

distributed according to a beta distribution with parameters a � �
� and b � n��

� �
In conclusion	 for the case k � � the square of the multirelation coe�cient is
distributed according to a beta distribution�

Examination of many graphs of the distribution of the least eigenvalue led us
to conclude that a beta distribution may be used to estimate the multirelation
coe�cient distribution or its square� In Figure � the frequency of the least eigen

value is compared with the beta distribution with the mean and the variance of
the simulated values� The �t justi�es the exploration of the beta distribution as
an approximation to the distribution of the least eigenvalue� However	 since r� is
actually a beta distribution for k � �	 and the square of the multiple correlation
coe�cient is also a beta distribution with a � k��

� and b � n�k
� �Stuart and Ord	

����� Kendall and Stuart	 �����	 we investigated a possible �t of a beta distribution
to the distribution of r� rather than r�
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Figure �� Distribution of the smallest eigenvalue and its beta approximation

�� Determining the Parameters of the Beta Distribution

In order to be able to apply the beta distribution for the calculation of the probabil

ities involving the multirelation coe�cient	 estimates for the parameters a and b of
the distribution are required for given k and n �rather than be estimated by simu

lation�� We calculated these parameters for k � �� �� � � � � � and n � �� �� � � � � �
using only pairs k� n for which n � �k� The simulation was performed as follows�
For a given k and n	 a matrix of size k by n is generated using standard generation
techniques �Law and Kelton ������	 Marse and Roberts �������� The elements of
this matrix are drawn from a standard normal distribution� The correlation matrix
is calculated and the multirelation coe�cient found�

For each case we simulated � sets of �	 matrices each for a total of one million
matrices for each result in Table �� In the table we report the mean and standard
error �standard deviation of the � sets divided by

p
�� for a and b calculated for

each pair of k and n� A curve �tting using multiple regression was performed on
these means� Since regression analysis assumes uniform variance for all points	 we
regressed on a����

k�� for a	 and b
n�� � �� for b using only the points for k � �� These
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Table 	� Means and standard errors of the beta parameters

a b a b

k n Mean Std� Mean Std� k n Mean Std� Mean Std�
Err� Err� Err� Err�
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�
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�normalized� values yield uniform standard errors for the range in Table �� The
following estimates for a and b for given n and k were obtained for r��
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�� Calculating Approximate Fractiles

Calculating the signi�cance level of a certain value of the multirelation coe�cient
can be done by the following algorithm�

�� A multirelation coe�cient of r was obtained for given values of k and n�

�� Estimate the values of a and b using equation ����

�� Estimate the signi�cance as �
Ir��a� b� where Ix�a� b� is the incomplete beta
distribution �Abramowitz and Stegun	 ������

Calculating the critical value of r for a given signi�cance 	 can be done as a
binary search on the segment �	�� using the algorithm�
We tested this procedure on various values of n	 k and 	 and compared the critical

value of r obtained by the algorithm with a simulation of �	 matrices� The
comparison is reported in Table �� The simulated fractiles are given in parentheses
next to the calculated fractiles�
We know that for k � � the quantity r

p
n��p
��r�

is a Student t distribution� We

have found that the same quantity is well behaved for the multirelation coe�cient
fractiles� It can be used to estimate fractiles for values of n which are not reported
in Tables � and �� We de�ne these values as the Multirelated t Fractiles� In Table
� we give the calculated values for these Multirelated t fractiles�

�� An Example

In Drezner ������ an example taken from Kendall ����� was used to demonstrate
the concept of the multirelation coe�cient� Fifteen traits of applicants were tested
for relationships� The traits were�
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Table �� Fractiles of the multirelation coe�cient and simulation results
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��� Form of Letter of application ��� Lucidity ���� Ambition
��� Appearance ��� Honesty ���� Grasp
��� Academic Ability ��� Salesmanship ���� Potential
��� Likability ��� Experience ���� Keenness to join
��� Self
con�dence ��� Drive ���� Suitability
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Table �� Fractiles of the Multirelated t distribution
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The data consisted of �� applicants and the correlation matrix between these
traits is given �Drezner	 ����� Kendall	 ����� Note that two entries should be
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corrected in Drezner ������� r���� � ���	 r����� � ���� A procedure similar to
backward step
wise regression was presented in Drezner ������� Variables which
are not associated with the rest were dropped one by one according to a certain
rule� The issue of which of the subsets is best remained unresolved� In order to
determine which of the subsets is the most signi�cant	 we need to calculate the
signi�cance level of the multirelation coe�cient for each subset� The present paper
provides us with the tools necessary to make such determination� In Table � we give
the original subsets presented in Drezner ������ with their calculated multirelation
coe�cients as well as the signi�cance level of each multirelation coe�cient calcu

lated by the method presented in this paper� Other methods for subset selection
may be considered as well	 possibly yielding better results�

By examining Table � it is clear that the best subset is the subset of � variables
�Likability	 Self
con�dence	 Lucidity	 Honesty	 Ambition	 Grasp� because it yields
the best signi�cance level�

Since this particular problem with k � �� has only ��� � �� � ��� ��� possible
subsets �excluding subsets of less than two members�	 it is feasible to calculate
the multirelation coe�cient for each subset and select the best one� In Table �
we report the best multirelation coe�cient for subsets of �	�	� � � 	�� elements	 a list
of the members of that subset	 and the corresponding signi�cance� Note that the
signi�cance levels are quite small� However	 these values should be quite accurate
because both the beta distribution and the theoretical multirelation distribution are
anchored to zero at both ends of the segment �	��� Such small values of signi�cance
cannot be veri�ed by simulation� Some of the groups have an improved signi�cance
level� However	 the best group obtained by this analysis is still the same group of
� variables� We conclude that the step
wise backward procedure is e�ective�

�� Appendix

In Johnson and Kotz ������ there are some simpli�ed formulas when all the cor

relation coe�cients are equal to each other �and in our case they are all equal
to � �

k�� �� The case when all the ��s are positive is relatively simple� De�ne
��h� k� �� � Pr�xi � h	 for i � �� � � � � k� when the correlation coe�cient between
Xi and Xj is equal to � for all i �� j� k � � represents the univariate Normal
distribution� ��h� � ��h� �� �� for any �� For � �  �Johnson and Kotz ������

��h� k� �� �

�Z
��

Z�u�

�
�

�
h� u

p
�p

�� �

��k

du ����

where Z�X� is the standard normal density function� The integral ���� can be calcu

lated using Gaussian quadrature formulas based on Hermite polynomials �Abramowitz
and Stegun	 ������

For a negative � a recursion formula by k is given�
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Table �� Signicance levels for
the example problem
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Table 
� Best signicance levels for the example problem
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��h� k� �� �
kX

i��

����i��

�
k

i

�
��	h� i� �����h� k � i� �� ����

where 	 �
q

���
���	k��
�����	k��
�� 	 �

� � ��
��	k��
� �

When � � � �
k�� then 	 is unde�ned and therefore we need to �nd it as a limit�

�� approaches � and 	 approaches in�nity	 therefore	 for a negative h ��	h� k� ���
approaches �� In conclusion	 when � � � �

k�� 	 ��	h� k� �
�� � �� We get�

��h� k�� �

k � �
� �

kX
i��

����i��

�
k

i

�
��h� k � i�� �

k � �
� ����

This result is true only for the last stage of the recursion formula� For lower
values of k the recursion formula ���� can be calculated without unde�ned values�
For a positive h	 ��	h� k� ��� � 	 and equation ���� is no longer true� The

probability ��h� k�� �
k�� � � � This is in line with the observation that the smallest

� cannot be greater than � because a positive h means that all eigenvalues are
greater than � which is impossible�
Calculating the required multinormal probabilities using this approach is very

e�cient even for large values of k�

Notes

�� We are thankful to D� Aigner of University of California�Irvine for turning our attention to
this discussion
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