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Abstract� The data for the tests considered here may be presented in twoway contingency ta
bles with all marginal totals �xed� We show that Pearson�s test statistic X�

P
�P for Pearson� may

be partitioned into useful and informative components� The �rst detects location di�erences be
tween the treatments� and the subsequent components detect dispersion and higher order moment
di�erences� For KruskalWallistype data when there are no ties� the location component is the
KruskalWallis test� The subsequent components are the extensions� Our approach enables us to
generalise to when there are ties� and to when there is a �xed number of categories and a large
number of observations� We also propose a generalisation of the wellknown median test� In this
situation the locationdetecting �rst component of X�

P
reduces to the usual median test statistic

when there are only two categories� Subsequent components detect higher moment departures
from the null hypothesis of equal treatment e�ects�

Keywords� Categorical data� Components� Nonparametric tests� Orthonormal polynomial�
Twoway data�

�� Introduction

The idea of decomposing a test into orthogonal contrasts� as in the analysis of
variance� has long been appreciated by statisticians as a way of making hypothesis
tests more informative� In the authors� smooth goodness of �t work �see Rayner
and Best� ������ a similar approach is pursued� Omnibus test statistics are par	
titioned into smooth components� We de�ne the components of a test statistic
to be asymptotically pairwise independent� with each asymptotically having the
chi	squared distribution� and such that their sum gives the original test statistic�
The components provide powerful directional tests and permit a convenient and
informative scrutiny of the data� This approach is applied to Spearman�s test in
Best and Rayner ����
� and Rayner and Best ����
a�� Rayner and Best ����
b�
gave an overview of this approach applied to several commonly used nonparametric
tests� including the Friedman and Durbin tests�

Data for a generalisation of the median test that we subsequently propose� and
for the Kruskal	Wallis test both with and without ties� may be presented in the
form of two	way tables with �xed marginal totals� We derive the covariance matrix
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of entries in such tables and then partition a multiple of X�
P into components that

detect location and higher moment di�erences between rows�
For Kruskal	Wallis	type data when there are no ties� the location component is

the Kruskal	Wallis test� Our approach enables us to generalise to when there are
ties� and to when there is a �xed number of categories and a large number of
observations� We also propose a generalisation of the well	known median test� The
location detecting �rst component of X�

P reduces to the usual median test statistic
when there are only two categories� Using more categories allows components other
than this location component to be calculated� These additional components� that
detect dispersion and higher moment e�ects� are not available when using the usual
median test�
The structure of this paper is as follows� In the next section the model for two	

way contingency tables with �xed marginal totals is given� and Pearson�s X�
P is

derived as a test statistic for the null hypothesis of like rows� In section three a
multiple of X�

P is partitioned into components� The material in section  and �
will be familiar to many readers� but is necessary background for the new work� In
section four it is shown that when there are no ties the �rst component is the usual
Kruskal	Wallis statistic� The non	location detecting components are our extensions�
Section �ve generalises the treatment to when there are ties� Section six introduces
a generalisation of the usual median X� test� which is thus identi�ed as a location
detecting test� the extensions permit dispersion and other e�ects to be detected�

�� A Model and Pearson�s X� Test

Suppose we have a two	way table of counts Nij � with i � �� � � � � r and j � �� � � � � c�
The row and column totals� respectively ni�� i � �� � � � � r and n�j � j � �� � � � � c
are known constants� Under the null hypothesis of simple random sampling� the
likelihood was given by Roy and Mitra ����
� as

�
rY

i��

ni�

���
�

cY
j��

n�j

��
� �

��
�n��

rY
i��

cY
j��

nij

��
� �

in which n�� �
P

i ni� �
P

j n�j is the grand total of the observations� The mod	
els for tables with just one set of marginal totals �xed� or only the grand total
�xed� are quite di�erent from our model in which all row and column totals are
�xed� See Lancaster ���
�� chapter XI section � pp� �	���� This likelihood can
be expressed as a product of extended or multivariate hypergeometric probability
functions�

rY
i��

��
�
�
	 cY
j��

n�j�����nijCnij



� �n�������ni�Cni�

��
� �

To �nd moments of the Nij � expectations may be taken with respect to the
distribution of the second row conditional on knowledge of the column sums of the
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�rst two rows� then conditional on the column sums of the �rst three rows� and so
on� It su�ces to know the moments of the extended hypergeometric distribution�
Details are given in the Appendix� We �nd

E�Nij � � ni�n�j�n��� i � �� � � � � r and j � �� � � � � c�

Write N i � �Ni�� � � � � Nic�
T � i � �� � � � � r and NT � �NT

� � � � � �N
T
r �� so that N is

the vector of all the cell counts� The joint covariance matrix of N i and N j is� for
i �� j�

cov�N i�N j� � �ni�nj�
n���

�
diag


n�rn��

�n�� � ��

�
�

n�rn�s
n�� � �

��
�

Write fj � n�j�n��� j � �� � � � � c� and

R � diag


n�rn��

�n�� � ��

�
�

n�rn�s
n�� � �

�
�

The covariance matrix of N is cov�N � � fdiag�fj� � �fifj�g � R� where � is
the direct or Kronecker product� See Lancaster ���
�� for details about direct or
Kronecker sums and products� Now de�ne the standardised cell counts

Zij � �Nij �E�Nij ���
q
E�Nij �� i � �� � � � � r and j � �� � � � � c�

Z � �Z��� � � � � Z�c� � � � � Zr�� � � � � Zrc�
T �

Ia the a by a identity matrix and �a the a by � vector with every element �� Then

cov�Z� � fIr � �
q
�fifj ��g �R�

The matrix fIr��
p
�fifj ��g has r�� latent roots � and one latent root zero� The

latent roots of R are di�cult to �nd in general� but their asymptotic limits follow
from Lancaster ���
�� Chapter V���� Lancaster showed that the quadratic form
with vector the standardised cell counts and matrix essentially R� is the familiar
Pearson goodness of �t statistic� with asymptotic distribution ��c��� Hence the
latent roots of R are asymptotically one c � � times and zero once� So under the
null hypothesis of simple random sampling� Z has zero mean and covariance matrix
cov�Z�� which asymptotically has �r����c��� latent roots one� and the remaining
r � c� � latent roots zero�
In the well known and often used �classical� model� r and c are �xed and the total

count n�� ��� The test statistic X�
P is given by

X�
P �

rX
i��

cX
j��


Nij � ni�n�j

n��

��

�


ni�n�j
n��

�
� ZT

Z�

We now con�rm that our model leads to this test statistic� SupposeH is orthogonal
and diagonalises cov�Z�� Asymptotically we then have
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H
T cov�Z�H � I�r����c��� �O�r�c����

where � means direct or Kronecker sum� De�ne Y � H
T
Z� Now Z

T
Z �

Y
T
Y � in which Y � by the multivariate Central Limit Theorem� is asymptotically

Nrc��� �I�r����c������r�c����� under the null hypothesis of simple random sampling�

It follows that under the null hypothesis� X�
P � ZT

Z � Y T
Y asymptotically has

the ���r����c��� distribution�

�� Partitioning Pearson�s Statistic

We now show that X�
P may be partitioned into components� the sth of which

detects sth moment departures from the null hypothesis of similarly distributed
rows �treatments��

The elements Yi of Y are such that X�
P �

rcX
i��

Y �
i � There is some choice in de�ning

the Yi� as H is not yet fully speci�ed� In doing so� our aim is to �nd Yi that can
be easily and usefully interpreted� To achieve one such partition� �rst suppose
that fgs�j�g is the set of polynomials orthonormal on fn�j�n��g� See the Appendix
for the de�nitions of the �rst two polynomials and the derivation of subsequent
polynomials� This approach results� when there are no ties� in the �rst component
being the Kruskal	Wallis test� Write gs for the c by � vector with elements gs�j��
De�ne G by

G � �G � � � Gc��
p
c

in which Gs is the rc by r matrix

Gs �

�
���	
gs � � � �
� gs
���

���
� � �

���
� � � � � gs



���� � s � �� � � � � c� �� and

Gc �

�
���	
�c � � � �
� �c
���

���
� � �

���
� � � � � �c



���� � is also rc by r�

De�ne Y �
q

n��
n

G
T
Z� The elements of Y may be considered in blocks of

r� the sth block corresponding to the polynomial of order s� These blocks are
asymptotically mutually independent� Write Y T � �V T

� � � � � �V
T
c �� in which

V � � �Y�� � � � � Yr�
T � � � � �V c�� � �Y�c���r��� � � � � Y�c���r�

T �
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and V c � � �all the V s are r by �� so that


n� �

n

�
X�

P �


n� �

n

�
Z

T
Z � Y T

Y � V T
� V � � � � �� V T

c��V c���

This partitions
�
n��
n

�
X�

P into components V T
s V s � s � �� � � � � c � �� The V s are

asymptotically mutually independent and asymptotically Nr��� I�r���� ��� so that

the V T
s V s are asymptotically mutually independent ��r��� Explicitly we have� for

s � �� � � � � c� ��

V s �

p
�n� ��

n
G

T
s Z �

p
�n� ��

n

�
� cX

j��

gs�j�Zij

�
A �

Because V s involves� through gs� a polynomial of order s� the elements of V s are
polynomials of order s in the elements of N � Under the null hypothesis E�Z� � ��
but when this is not true E�V s� involves moments up to order s of Z� So for
s � �� � � � � r� �� V T

s V s detects sth moment departures from the null hypothesis of
similarly distributed rows �treatments��

Instructors Example� See Conover ������ p� ���� Three instructors assign
grades in �ve categories according to the following table�

Grade
A B C D E Total

Instructor � � �� �� 
  ��
Instructor  �� 
 � � 
 ��
Instructor � 
 � � 
 � �

Total � � �� �� � ���

Conover ������ found the Kruskal	Wallis statistic adjusted for ties to be ������
which is to be compared with the ��� ���� point of ������ We �nd the location de	
tecting component V T

� V � to have P	value ����� con�rming� as Conover reported�
that �none of the instructors can be said to grade higher or lower than the oth	
ers on the basis of the evidence presented�� However the dispersion detecting
component V T

� V � has P	value ����� indicating a signi�cant variability di�erence�
From the data it appears that the �rst instructor is less variable than the other
two� In fact� ��
�� � �������� � ������ � ���������� with the elements of
v� � ������� �����������T being values of approximately standard normally
distributed contributions from instructors ��  and � respectively� The �rst instruc	
tor is less variable than the third who is less variable than the second� This can
be formalised by a LSD analysis� The residual X�

P � V T
� V � � V T

� V � has P	value
����� indicating no further e�ects in the data�
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Partition of X�
P for instructor�s data

Statistics Degrees of Freedom Value P	value

V
T
� V �  ���� ����

V
T
� V �  ��
�� ����

X�
P � V T

� V � � V T
� V � � ��� ����

X�
P � ������ ����

�� The Kruskal�Wallis Test with No Ties

We now consider models that lead to the Kruskal	Wallis test when there are no ties�
The latent roots of cov�Z� will be found explicitly rather than asymptotically as in
section � We show that X�

P is not an appropriate test statistic� but nevertheless�
its components are� The �rst component is the Kruskal	Wallis test statistic� and
the subsequent components provide informative extensions�
Suppose we have distinct observations xij � being the jth of ni observations on

the ith of t treatments� All n � n� � ��� � nt observations are combined� ordered�
ranked� and the sums Ri of the ranks obtained by the ith treatment calculated�
The Kruskal	Wallis statistic is

H � f���n�n� ���g�iR
�
i �ni � ��n� ���

See for example� Conover ������ section ���� The data may be presented as an t by
n contingency table of counts fNijg� with Nij � � if rank j is allotted to treatment
i� and Nij � � if rank j is allotted to some other treatment� The row and column
totals are all �xed� the row totals are the treatment sample sizes� so that ni� � ni
for i � �� � � � � t� while the column totals are all one� n�j � � for i � �� � � � � n� Such
a table has X�

P � �t� ��n no matter what the fNijg� Since X�
P is constant� it has

P	value �� Clearly X�
P is not a suitable test statistic�

The model of section  holds� except that now

R �
n

n� �
In � �

n� �
�n�

T
n �

This matrix has one latent root one and n � � latent roots n��n � ��� It follows
that cov�Z� has �t� ���n� �� latent roots n��n� ��� and the remaining t� n� �
latent roots zero� So if H is orthogonal and diagonalises cov�Z� then

H
T cov�Z�H �

n

�n� ��

�
I�t����n��� � ��t�n���

�
�

De�ne
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Y �

s
n� �

n

�
H

T
Z�

Then

Y
T
Y �


n� �

n

�
Z

T
Z �


n� �

n

�
X�

P �

With r replaced by t and c replaced by n� this is the same as in section three�

As in section � we are interested in the distribution theory as n��� However
there Z was an rc by � vector of �xed length� here Z is a tn by � vector� For	
tunately� it is not the asymptotic distribution of Z that is required� First recall
that X�

P has a �xed value� �t� ��n� for all tables� and so is not available as a test
statistic� Second� as in section three� the multivariate Central Limit Theorem shows
that each V s is asymptotically Nt��� I�t������� Moreover consideration of all pairs
V s� V t shows that they are asymptotically jointly multivariate normal� and since
their covariance matrix is zero� they are asymptotically pairwise independent� The
V

T
s V s still partition

�
n��
n

�
X�

P � It is the pairwise independence and convenient
��t�� distribution of each V s that makes data analysis so informative and conve	
nient� What is lost by the unavailability of X�

P � is demonstrated in the Employees
Example below� there is no residual available to assess if there are higher moment
di�erences between the treatments�

We now show that provided there are no ties� V T
� V � is the Kruskal	Wallis statis	

tic� so that the subsequent V T
s V s provide extensions to the Kruskal	Wallis test�

First note that the fgs�j�g is the set of polynomials orthonormal on the discrete
uniform distribution� so that g��j� � aj � b� j � �� � � � � n� in which

a �
p
���n� � �� and b � �

p
��n� ����n� �� � �f�n� ���ga�

The rank sum for treatment i� Ri� is

nX
j��

jNij � i � �� � � � � t� Now since n�j � � for

j � �� � � � � n�

X
j

g��j�
q
E�Nij � �

p
nin

X
j

g��j�g��j����n� � �

and X
j

Zijg��j� �
p
�n�ni�

P
j Nij�aj � b� �

p
�n�ni�faRi � bnig

� a
p
�n�ni�

�
Ri � n� �


ni

�
�
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Now

V
T
� V � � Y �

� � � � �� Y �
t �

n� �

n�

tX
i��

�
� nX

j��

g��j�Zij

�
A

�

�
n� �

n�
a�n

tX
i��

�
Rip
ni
� n� �



p
ni

��

�
�

n�n� ��

tX
i��

R�
i

ni�
� ��n� ��

after some manipulation� This is the Kruskal	Wallis statistic� well known to be
sensitive to location departures from the null hypothesis� Since V s assesses sth
moment departures between treatments� we have partitioned the statistic �n��

n
�X�

P

into asymptotically pairwise independent components� V T
s V s� s � �� � � � � n��� each

with the ��t�� distribution� and such that the sth detects sth moment departures
from the hypothesis of similarly distributed rows �treatments�� Since the �rst of
these is the Kruskal	Wallis statistic� the subsequent components provide extensions
to the Kruskal	Wallis test�
Employees Example� Conover ������ p� ��� exercise � gave an exercise in which
� new employees are randomly assigned to four di�erent job training programmes�
At the end of their training the employees are ranked� with a low ranking re�ecting
a low job ability�

Programme Ranks

� � �� 
� �� ��
 �� �� �� ��� �
� �� ��� �
� ��� �
� �� ��� ��� ��� ��

The value of the Kruskal	Wallis statistic is ���� with ��� P	value ����� but Monte
Carlo permutation test P	value ������ The latter is more likely to be accurate as
the sample size is small� Further components are not signi�cant� An LSD analysis
can be used to show that programmes � and  and programmes � and � are equally
e�ective� with � and � being superior�

�� The Kruskal�Wallis Test with Ties

If there are ties� the data may be presented as an t by n� contingency table of
counts fNijg� with the row totals are �xed at the treatment sample sizes� so again
ni� � ni� i � �� � � � � t� while the column totals are no longer all one� The covariance
matrix of Z is

cov�Z� � fIt � �
q
�fifj ��g �R and R � diag


n�un��

�n�� � ��

�
�

n�un�v
n�� � �

�
�
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As in section � the latent roots of R are zero once and asymptotically one n���
times� It follows that cov�Z� has �t � ���n� � �� latent roots asymptotically one�
and the remaining t � n� � � latent roots zero� With suitable modi�cations the
partitioning of section three holds� For s � �� � � � � n� � ��

V s � G
T
s Z�

p
n� �

n�X
j��

gs�j�Zij�
p
n��

Note that fgs�j�g is the set of polynomials orthonormal on fn�j�n��g� not on the
discrete uniform as in the previous section when there were no ties� This is the
partition derived in section � for X�

P � So the �rst component of X�
P in the In	

structors example is the Kruskal	Wallis statistic corrected for ties� The subsequent
components are extensions to the Kruskal	Wallis test adjusted for ties� Note that
for this example the model assumed in section �� with �xed numbers of rows and
columns� is more plausible than the model of this section� since n� � � is hardly
large�

�� Generalised Median Tests

Conover ������ section ���� described the median test� in which random samples are
taken from each of c populations� Each random sample is classi�ed as above and
below the grand median �the median of the combined random samples�� forming
an r by  contingency table with �xed marginal totals� The usual chi	squared test�
based on X�

P � is then applied to this contingency table�
If instead of the grand median� a �grand quantile� is used� the resulting test is

described as a quantile test� see Conover ������ p� ����� These tests can be gen	
eralised by choosing c instead of two categories for the combined random samples�
and so forming an r by c contingency table of counts Nij of the number of obser	
vations for the ith sample in the jth category� This table has all row and column
totals �xed and can be tested for row consistency using the results of the sections 
and �� The �rst three say� components of X�

P are of particular interest� indicating
location� dispersion and skewness di�erences between treatments�
It is routine to show that the location component V T

� V � of X�
P reduces to the

median test statistic when observations are classi�ed into just two categories� This
is shown in the Appendix� The result identi�es the median test as a location detect	
ing test� To detect up to sth moment di�erences between the populations requires
categorisation into s � � categories and the use of the V �� � � � �V s components� If
there are as many categories as observations and each category has one observation�
the test based on the location component is the Kruskal	Wallis test� which is known
to be more powerful than the median test� Using more than two categories will
result in less loss of information due to categorisation compared to the median test�
and will permit assessment of higher moment di�erences between the treatments�
Corn Example� Conover ������ p� ��� gave the example of four di�erent methods
of growing corn� He classi�ed the data as greater than �� and up to �� and applied
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the median test� In this form this does not conform to the �xed margins model�
If the objective were to divide the data into groups of the lowest �� and highest
�
 observations� it would conform to the �xed margins model� We now classify the
data into four approximately equal groups�
Using the median test� Conover reported a P	value �slightly less than ������� the

method median yields are clearly di�erent� We calculate X�
P � ����� on � degrees

of freedom� In addition V T
� V � � ����� V T

� V � � ����� and V T
� V � � ����� all

on � degrees of freedom� The location and dispersion components and X�
P are all

signi�cant� with P	values all zero to three decimal places� The residual or skewness
component has ��� P	value ����� The �ner classi�cation� compare to that employed
by the median test� has uncovered a variability di�erence between the methods�
methods � and � are signi�cantly less variable than � and �

First Second Third Fourth Total
Quartile Quartile Quartile Quartile

Method � � � �  �
Method  � 
 � � ��
Method � � � � 
 �
Method � � � � � �

Total � � � � ��

Appendix

The Orthogonal Polynomials

The �rst two polynomials� de�ned on x�� � � � � xc and orthonormal with regard to
the weights p�� � � � � pc� are g��xj� and g��xj�� given explicitly by�

g��xj� � �xj � ���
p
��

and
g��xj� � af�xj � ��� � ���xj � ����� � ��g� j � �� � � � � c�

in which

� �

cX
j��

xjpj � �r �

cX
j��

�xj � ��rpj and a �
�
�� � ������ � ���

����	
�

The subsequent polynomials g��xj�� � � � � gc���xj� may be derived by using the useful
recurrence relations in Emerson ���
��� In the text we have taken� as in many
applications� xj � j� j � �� � � � � c�
Derivation of the Covariance Matrix of the Cell Counts

In section  the method used to �nd the moments of the Nij is described� To �nd
E�N���� we take E�N��jN�j �N�j � j � �� � � � � c�� then the conditional expectation
of this expression with the sum of the �rst three columns being known� and so on�
The successive expectations are
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n���N�� �N�����n�� � n����
fn����n�� � n���gf�n�� � n����N�� �N�� �N�����n�� � n�� � n���g�

���
fn����n�� � n���gf�n�� � n�����n�� � n�� � n���g � � �
f�n�� � � � �� n�c�������n�� � � � �� nc��gfn��g � n��n���n���

By symmetry E�Nij � � ni�n�j�n��� i � � � � � � r and j � �� � � � � c� By di�erence the
expectations for the �rst row may be obtained� giving the familiar

E�Nij � � ni�n�j�n��� i � �� � � � � r and j � �� � � � � c�

In the same way

E�N���N�� � ��� � n���n�� � ��n���n�� � ���fn���n�� � ��g�
from which we obtain var�N���� and

var�Nij� � ni�
n�j
n��


�� n�j

n��

�
n�� � ni�
n�� � �

�
� i � �� � � � � r and j � �� � � � � c�

Similarly

cov�Nij � Nik� � �ni�n�j
n��

n�k
n��


n�� � ni�
n�� � �

�
� i � �� � � � � r and j �� k � �� � � � � c�

By symmetry

cov�Nrj � Nsj� � �n�j nr�
n��

ns�
n��


n�� � n�j
n�� � �

�
� i � �� � � � � r and j �� k � �� � � � � c�

and by the expectation argument again

cov�Nir � Njs� �
ni�n�r
n��

nj�n�s
n��


�

n�� � �

�
� i �� j � �� � � � � r� and r �� s � �� � � � � c�

Write N i � �Ni�� � � � � Nic�
T � i � �� � � � � r and NT � �NT

� � � � � �N
T
r �� The joint

covariance matrix of N i and N j is� for i �� j�

cov�N i�N j� � �ni�
n��

nj�
n��

�
diag


n�rn��

�n�� � ��

�
�

n�rn�s
n�� � �

��
�

Now since the fNijg are such that the row and column totals are known constants�
cov�N i�N��� � ��Nr� � � for i � �� � � � � r� So if we write fj � n�j�n��� j � �� � � � � c�
and
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R � diag


n�rn��

�n�� � ��

�
�

n�rn�s
n�� � �

�
�

then the covariance matrix of N i is

cov�Ni� � �
X
i��j

cov�N i�N j� �
X
i��j

fifjR � fi��� fi�R�

which agrees with direct calculation� So if � is the Kronecker product� the covari	
ance matrix of N is

cov�N � � fdiag�fj�� �fifj�g �R�

Recall that we have de�ned Zij � �Nij � E�Nij ���
p
E�Nij �� i � �� � � � � r and j �

�� � � � � c� and Z � �Z��� � � � � Z�c� � � � � Ztl� � � � � Ztc�
T � It follows that

cov�Z� � fIr � �
q
�fifj ��g �R�

The location component V T
� V � of X

�
P reduces to the median test statistic

If there are b observations below a predetermined point in the combined sample�
and a above it� then Conover ������ p� ��� gave the X� Median test statistic as

T �
n���
ab

rX
i��


Ni� � ni�b

n��

��

�ni��

It is routine to show that g�j � �j � ����� j � �� � � � � c� in which � and � are are
the mean and standard deviation of the distribution de�ned by P �X � �� � b�n��
and P �X � � � a�n��� It follows that � � � � a�n�� and �� � ab�n���� Now

�
p
ni�V�i �

�X
j��

Nijg�j � Ni���a�n��� � �ni� �Ni����� a�n���

� �ni� � ani��n����Ni� � ni�b�n�� �Ni��

It follows that� as required� V T
� V � � T �
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