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Geometrical aspects of quantum computing are reviewed elementarily
for nonexperts and/or graduate students who are interested in both ge-
ometry and quantum computation. We show how to treat Grassmann
manifolds which are very important examples of manifolds in mathe-
matics and physics. Some of their applications to quantum computation
and its efficiency problems are shown. An interesting current topic of
holonomic quantum computation is also covered. Also, some related ad-
vanced topics are discussed.

1. Introduction

This is a review article based on lectures given at several universities
in Japan and a talk at Numazu meeting. (A meeting held by Yoshinori
Machida at Numazu College of Technology to discuss recent results in
geometry, mathematical physics, string theory, quantum computation,
etc.) The aim is to show a somewhat unconventional, but fruitful, path
connecting geometry and quantum computation, and the audience is
graduate students and/or nonexperts who are interested in both of the
disciplines.

The progress of quantum computation has become very remarkable
after the excellent work of Shor [28] on prime factorization of integers
and the work of Grover [12] on quantum database searching. These dis-
coveries have had great impact on scientists. They drove not only theo-
reticians to find other quantum algorithms, but also experimentalists to
build practical quantum computers. For standard introduction, see for
example, [13, 17, 26, 29].
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The conventional methods of quantum computation are more or less
algebraic. On the other hand, we are interested in geometrical or topo-
logical methods. Geometry or topology are crucial to understanding
mathematical or physical objects from the global point of view.

For general introduction of geometry and topology, [18] is strongly
recommended. Although, the volume calculations of some important
manifolds, like Grassmann ones or more generally symmetric spaces,
are missing. They are important to the understanding of entanglements
or entangled measures. In Sections 2, 3, and 4, we show in some detail
the volume calculations of Grassmann manifolds. Here, we recall some
basic concepts.

A homogeneous space is defined by

M ∼=G/H, (1.1)

where G is a Lie group and H is its subgroup. We are particularly in-
terested in the case where G is a classical group (e.g., a unitary group
U(n) or an orthogonal group O(n)). The complex Grassmann manifold
Gk,n(C), which is our main concern in this paper, is written as

Gk,n(C) ∼= U(n)
U(k)×U(n− k) . (1.2)

The volume of Gk,n is expressed in terms of the well-known volume of
U(n)

Vol
(
Gk,n(C)

)
=

Vol
(
U(n)

)
Vol

(
U(k)

)×Vol
(
U(n− k)) . (1.3)

This is the usual method to obtain the volume of homogeneous spaces.
On the other hand, the volume is obtained by integrating the volume

form of Grassmann manifolds (: dv(Z,Z†)) that is expressed in terms of
local coordinates (: Z)

Vol
(
Gk,n(C)

)
=
∫
Gk,n(C)

dv
(
Z,Z†

)
. (1.4)

Is it really possible (practically) to carry out the integral on the right-
hand side? As far as we know, such a calculation has not been performed
except for k = 1 (the case of complex projective spaces). For k ≥ 2, direct
calculation seems to be very complicated. We would like to present this
calculation as a challenging problem to the reader.
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Now, we return to quantum computation (QC briefly).
Gauge theories are widely recognized as the basic ingredients of

quantum field theories which have enjoyed remarkable progress recent-
ly, that is, String Theory, M-Theory, F-Theory, and so forth. Therefore, it
is very natural to incorporate gauge theoretical ideas to QC; that is, the
construction of gauge theoretical quantum computation and/or of geomet-
ric quantum computation in our terminology. The merit of geometric (or
topological) method of QC may be the stability with respect to the influ-
ence from the environment.

In [22, 31], Zanardi and Rasetti proposed an attractive idea—holo-
nomic quantum computation—using the non-abelian Berry phase (quan-
tum holonomy in the mathematical terminology). We introduce this con-
cept in the final section. See also [16, 24] for another interesting geomet-
ric model.

Quantum computation comprises many subjects. To give a compre-
hensive overview is beyond the scope of this paper, so we focus our at-
tention on the construction and the efficiency of unitary operations, and
give geometric interpretation to them. Here, we make a brief review.

For n = 2t (t ∈ N) we set a unitary operation

Uf :
(
C

2)⊗t −→ (
C

2)⊗t; Uf

(|a)) = (−1)f(a)|a), (1.5)

where f is a signature function defined by

f : {0,1, . . . ,n− 1} −→ Z2 = {0,1}, a �−→ f(a), (1.6)

|a) ≡ ∣∣a1
〉⊗ ∣∣a2

〉⊗ · · ·∣∣at−1
〉⊗ ∣∣at

〉
, ak ∈ Z2,

a = a12t−1 +a22t−2 + · · ·+at−12+at, 0 ≤ a ≤ n− 1.
(1.7)

This operation plays a crucial role in the quantum database searching
algorithm of Grover [12], and an important role in quantum computing
in general. Our concern is to find out whether it is possible to construct
this operator in an efficient manner (steps polynomial in t), and has such
an algorithm been already given in quantum computation?

As far as we know, this point is rather unclear (see [1, 9, 11]). We will
discuss this point in some detail.

We would like to construct a road connecting geometry and quantum
computation, which is not an easy task. We will show one of such at-
tempts as explicitly as possible. Though the results given in this paper
are not new, we do hope our presentation offers new perspectives, not
only to students and/or nonexperts but also to experts.
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2. Grassmann manifolds

Let V be a k-dimensional subspace in C
n (0 ≤ k ≤ n). Then it is well

known in linear algebra that there is only one projection P : C
n→ C

n with
V = P(Cn). Here the projection means P 2 = P and P † = P in M(n;C).

The Grassmann manifold is defined, in this case, by all the k-dimen-
sional subspaces in C

n, and it is identified with all the projections in
M(n;C) with the trace k or the rank k (corresponding to V = P(Cn)).
We note that the eigenvalues of a projection are either 0 or 1 (by P 2 = P),
so the rank of P = trace of P . Therefore we arrive at

Gk,n(C) =
{
P ∈M(n;C) | P 2 = P, P † = P, trP = k

}
. (2.1)

In general, it is not easy to visualize all the k-dimensional subspaces in
C

n except for experts in geometry. But it is easy to deal with (2.1) as will
be shown in the following.

We note that G0,n(C) = {0n} and Gn,n(C) = {1n}. In particular, G1,n(C)
is called a complex projective space and is written as CPn−1. In (2.1), we
know a natural symmetry (isomorphism)

κ : Gk,n(C) −→Gn−k,n(C), κ(P) = 1n −P, (2.2)

so that we have Gk,n(C) ∼=Gn−k,n(C).
Now it is easy to see that P can be written as

P =AEkA
−1 for some A ∈U(n), (2.3)

where Ek is a special projection

Ek =
(

1k O
O 0n−k

)
. (2.4)

Therefore, we have

Gk,n(C) =
{
AEkA

−1 |A ∈U(n)
}
, (2.5)

which directly leads to

Gk,n(C) ∼= U(n)
U(k)×U(n− k) . (2.6)
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In particular,

G1,n(C) = CPn−1 ∼= U(n)
U(1)×U(n− 1)

∼= U(n)/U(n− 1)
U(1)

∼= S2n−1

S1
, (2.7)

see (3.2). Here Sk is the unit sphere in R
k+1 and U(1) = S1. We note that

Gk,n(C) is a complex manifold (moreover, a Kähler manifold) and its
complex dimension is k(n− k).

Next, we introduce local coordinates around P in (2.3). We denote by
M(n− k,k;C) the set of all (n− k)× k-matrices over C and define a map

P : M(n− k,k;C) −→Gk,n(C) (2.8)

as follows:

P(Z) =A

(
1k −Z†
Z 1n−k

)(
1k O
O 0n−k

)(
1k −Z†
Z 1n−k

)−1

A−1. (2.9)

Of course P(0) = P in (2.3).
Here, a natural question arises. How many local coordinates do we

have on Gk,n(C)? The number of them is just nCk.
We believe that this is the best choice of local coordinates on the Grass-

mann manifold, and this one is called the Oike coordinates in Japan. As
far as the author knows, Oike is the first to write down (2.9) (see [19]).

From this we can show the curvature form P(Z)dP(Z)∧dP(Z):

dP(Z) =A

(
1k −Z†
Z 1n−k

)(
0k Λk

−1dZ†

Mn−k−1dZ 0n−k

)

×
(

1k −Z†
Z 1n−k

)−1

A−1,

(2.10)

P(Z)dP(Z)∧dP(Z) =A

(
1k −Z†
Z 1n−k

)(
Λk
−1dZ† ∧Mn−k−1dZ O

O 0n−k

)

×
(

1k −Z†
Z 1n−k

)−1

A−1,

(2.11)

where

Λk = 1k +Z†Z ∈M(k;C), Mn−k = 1n−k +ZZ† ∈M(n− k;C). (2.12)
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In the following we omit the symbol ∧ and write, for example, PdPdP
instead of P(Z)dP(Z) ∧ dP(Z) for simplicity. A (global) symplectic 2-
form on Gk,n(C) is given by

ω = trPdPdP (2.13)

and its local form

ω = tr
(
Λ−1

k dZ†M−1
n−k dZ

)
= tr

((
1k +Z†Z

)−1
dZ†

(
1n−k +ZZ†

)−1
dZ

)
.

(2.14)

We want to rewrite (2.14). Before doing this, we make some mathe-
matical preliminaries. For A ∈M(m,C) and B ∈M(n,C), a tensor prod-
uct A⊗B of A and B is defined as

A⊗B =
(
aijB

)
for A =

(
aij

)
, B =

(
bpq

)
. (2.15)

For example, for

A =
(
a11 a12

a21 a22

)
, B =

(
b11 b12

b21 b22

)
, (2.16)

we have

A⊗B =
(
a11B a12B
a21B a22B

)
=


a11b11 a11b12 a12b11 a12b12

a11b21 a11b22 a12b21 a12b22

a21b11 a21b12 a22b11 a22b12

a21b21 a21b22 a22b21 a22b22

 . (2.17)

Therefore component-wise, we have (A ⊗B)ip,jq = AijBpq. Then it is not
difficult to see

tr(A⊗B) = tr(A) tr(B), det(A⊗B) = {det(A)
}n{det(B)

}m
. (2.18)

We construct a column vector Ẑ in C
k(n−k) from Z in M(n− k,k;C) in

a usual manner

Ẑ =
(
z11, . . . ,z1k, . . . ,zn−k,1, . . . ,zn−k,k

)T
, (2.19)
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where T means a transpose. Now we rewrite (2.14) as follows:

ω = tr
(
Λ−1

k dZ†M−1
n−kdZ

)
= tr

(
dZ†M−1

n−kdZΛ−1
k

)
=
∑(

dZ†
)
ij

(
M−1

n−k
)
jp(dZ)pq

(
Λ−1

k

)
qi

=
∑

dz̄ji
(
M−1

n−k
)
jp dzpq

(
Λ−1

k

)
qi

=
∑

dz̄ji
(
M−1

n−k
)
jp

(
Λ−1

k

)
qidzpq

=
∑

dz̄ji
(
M−1

n−k
)
jp

(
Λ−1

k

)T
iq
dzpq

=
∑(

dẐ†
)
ji

{
M−1

n−k ⊗
(
Λ−1

k

)T}
ji,pq

dẐpq

=
(
dẐ

)†{
M−1

n−k ⊗
(
Λ−1

k

)T}
dẐ.

(2.20)

The symplectic volume on Gk,n(C), which coincides with the usual vol-
ume, is given by

dv =
1{

k(n− k)}!

(
ω

2
√−1

)k(n−k)
. (2.21)

Here, 1/(2
√−1) is a normalization factor. From (2.20) it is easy to see

ωk(n−k) =
{
k(n− k)}!det

{
M−1

n−k ⊗
(
Λ−1

k

)T}∏
i,j

dz̄ijdzij . (2.22)

Therefore, (2.21) becomes

dv = det
{
M−1

n−k ⊗
(
Λ−1

k

)T}∏
i,j

dz̄ijdzij

2
√−1

. (2.23)

On the other hand, by (2.18) we have

det
{
M−1

n−k ⊗
(
Λ−1

k

)T} =
(

detM−1
n−k

)k(det
(
Λ−1

k

))n−k
=
(

detMn−k
)−k(detΛk

)−(n−k)
.

(2.24)

Here we note detΛk = detMn−k. For

X =
(

1k −Z†
Z 1n−k

)
, (2.25)
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we have

detX = det

(
1k −Z†
Z 1n−k

)
= det

(
1k +Z†Z −Z†

O 1n−k

)

= det
(
1k +Z†Z

)
= detΛk.

(2.26)

On the other hand,

detX = det

(
1k −Z†
Z 1n−k

)
= det

(
1k −Z†
O 1n−k +ZZ†

)

= det
(
1n−k +ZZ†

)
= detMn−k,

(2.27)

so that

detΛk = detMn−k. (2.28)

From (2.24), det{M−1
n−k ⊗ (Λ−1

k )T} = (detΛk)−n, so we arrive at

dv
(
Z,Z†

)
=
(

detΛk

)−n∏
i,j

dz̄ijdzij

2
√−1

=
{

det
(
1k +Z†Z

)}−n∏
i,j

dz̄ijdzij

2
√−1

.

(2.29)

From the above mentioned facts, the volume of Grassmann manifold
Gk,n(C) is given as

Vol
(
Gk,n(C)

)
=
∫
M(n−k,k;C)

∏
i,j

(
dz̄ijdzij/2

√−1
){

det
(
1k +Z†Z

)}n . (2.30)

Problem 2.1. How can we calculate this integral?

3. Volume of unitary groups

Here we will show a heuristic method of evaluation of the volume of
unitary group U(n). Let S2k−1 be the (2k − 1)-dimensional unit sphere
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(k ≥ 1) over R and the volume be Vol(S2k−1). For example, Vol(S1) = 2π
and Vol(S3) = 2π2. In general, we have

Vol
(
S2k−1) = 2πk

(k − 1)!
. (3.1)

Since we know the fact

U(k)
U(k − 1)

∼= S2k−1, (3.2)

we have

U(n) .=
U(n)

U(n− 1)
× U(n− 1)
U(n− 2)

× · · · × U(2)
U(1)

×U(1)

.= S2n−1 ×S2n−3 × · · · ×S3 ×S1,

(3.3)

where .= means almost equal!
Of course, the equality does not hold in (3.3) except for the cases of n =

1,2. But, for the purpose of volume-counting or cohomology-counting,
there is no problem to use (3.3) (“questionable equation” may be rather
useful, see, e.g., [25]).

Combining (3.3) and (3.1), we obtain

Vol
(
U(n)

)
=

n∏
j=1

Vol
(
S2j−1) = n∏

j=1

2πj

(j − 1)!
=

2nπn(n+1)/2

0!1! · · ·(n− 1)!
. (3.4)

We evaluate the volume of Grassmann manifold Gk,n(C)

Gk,n(C) ∼= U(n)
U(k)×U(n− k)

=⇒ Vol
(
Gk,n(C)

)
=

Vol
(
U(n)

)
Vol

(
U(k)

)×Vol
(
U(n− k)) .

(3.5)

From (3.4) we obtain

Vol
(
Gk,n(C)

)
=

0!1! · · ·(k − 1)! 0!1! · · ·(n− k − 1)!
0!1! · · ·(n− 1)!

πk(n−k)

=
0!1! · · ·(k − 1)!

(n− k)! · · ·(n− 2)!(n− 1)!
πk(n−k).

(3.6)
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4. A question

Combining (2.30) with (3.6), we have the main result

∫
M(n−k,k;C)

∏
i,j

(
dz̄ijdzij/2

√−1
){

det
(
1k +Z†Z

)}n =
0!1! · · ·(k − 1)!

(n− k)! · · ·(n− 2)!(n− 1)!
πk(n−k).

(4.1)

It has to be emphasized that the right-hand side has been obtained by an
indirect path. Is it really easy (or practical) to carry out the integration to
obtain the right-hand side? As far as we know, the integral has not been
calculated except for the case k = 1.

We review the case k = 1∫
Cn−1

1(
1+

∑n−1
j=1

∣∣zj∣∣2)n n−1∏
j=1

dz̄jdzj

2
√−1

=
πn−1

(n− 1)!
. (4.2)

The proof of (4.2) is as follows. First we make a change of variables:

zj =
√
rje
√−1θj for 1 ≤ j ≤ n− 1. (4.3)

Then we have, easily,

dz̄jdzj

2
√−1

=
1
2
drjdθj . (4.4)

Under this change of variables, (4.2) becomes

∫2π

0

∫∞
0

1(
1+

∑n−1
j=1 rj

)n n−1∏
j=1

dθj

2

n−1∏
j=1

drj

= πn−1
∫∞

0

1(
1+

∑n−1
j=1 rj

)n n−1∏
j=1

drj .

(4.5)

Here, once more, we make a change of variables from (r1, . . . , rn−1) to
(ξ1, . . . , ξn−1):

r1 = ξ1
(
1− ξ2

)
,

r2 = ξ1ξ2
(
1− ξ3

)
,

...

rn−2 = ξ1ξ2 · · ·ξn−2
(
1− ξn−1

)
,

rn−1 = ξ1ξ2 · · ·ξn−2ξn−1.

(4.6)



Kazuyuki Fujii 381

Conversely, we have

ξ1 = r1 + r2 + · · ·+ rn−2 + rn−1,

ξ2 =
r2 + · · ·+ rn−2 + rn−1

r1 + r2 + · · ·+ rn−2 + rn−1
,

...

ξn−2 =
rn−2 + rn−1

rn−3 + rn−2 + rn−1
,

ξn−1 =
rn−1

rn−2 + rn−1
, 0 ≤ ξ1 <∞, 0 ≤ ξ2, . . . , ξn−1 ≤ 1,

n−1∏
j=1

drj = ξ1
n−2ξ2

n−3 · · ·ξn−2

n−1∏
j=1

dξj .

(4.7)

Under this change of variables, (4.2) becomes

πn−1
∫∞

0

ξ1
n−2(

1+ ξ1
)n dξ1

∫1

0
ξ2

n−3dξ2 · · ·
∫1

0
ξn−2dξn−2

= πn−1
∫1

0
ξ1

n−2dξ1

∫1

0
ξ2

n−3dξ2 · · ·
∫1

0
ξn−2dξn−2

= πn−1 1
n− 1

1
n− 2

· · · 1
2
=

πn−1

(n− 1)!
.

(4.8)

The direct proof of (4.1) for k = 1 is relatively easy as shown above. But
for k ≥ 2, we do not know such a proof (a direct proof may be very com-
plicated). Therefore, we present the following problem.

Problem 4.1. Give a direct proof to

∫
M(n−k,k;C)

∏
i,j

(
dz̄ijdzij/2

√−1
){

det
(
1k +Z†Z

)}n =
0!1! · · ·(k − 1)!

(n− k)! · · ·(n− 2)!(n− 1)!
πk(n−k).

(4.9)

As for another approach to the above problem, we refer to [10]. In this
paper, coherent states based on Grassmann manifolds have been con-
structed.

5. Quantum computing

We move to the main subject of quantum computing. The typical exam-
ples of quantum algorithms up to now are as follows:
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(i) factoring algorithm of integers by Shor [28],
(ii) quantum database searching algorithm by Grover [12].

(See [17, 26, 29] for general introduction, [14, 15] are also recommended.)
In quantum computing we, in general, expect an exponential speedup

compared to classical ones, so we must construct necessarily unitary ma-
trices in U(n) in an efficient manner when n is a huge number like 2100.

Problem 5.1. How can we construct unitary matrices in an efficient man-
ner?

We return to (2.1). We denote the set of n×n projection operators by

Gn(C) =
{
P ∈M(n;C) | P 2 = P, P † = P

}
. (5.1)

The elements of Gn(C) are classified by the trace, so Gn(C) can be de-
composed into a disjoint union

Gn(C) =
n⋃

k=0

Gk,n(C). (5.2)

For a k-dimensional subspace V in C
n (0 ≤ k ≤ n), let {v1,v2, . . . ,vk} be an

orthonormal basis (namely, 〈vi,vj〉 = δij) and set

V =
(
v1,v2, . . . ,vk

) ∈M(n,k;C). (5.3)

We have identified a k-dimensional subspace V with a matrix V in (5.3)
for simplicity (there maybe no confusion). Then we have an equivalence

{
v1,v2, · · · ,vk

}
: orthonormal ⇐⇒ V †V = 1k. (5.4)

Then it is easy to see that all orthonormal basis in V are given by

{
Va | a ∈U(k)

}
. (5.5)

The projection corresponding to V is written by

P = VV † ∈Gk,n(C). (5.6)
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We remark that (Va)(Va)† = Vaa†V † = VV † = P , namely, P is of course
independent of a ∈U(k). This P is also expressed as

P =
k∑
j=1

vjvj
†. (5.7)

If we use Dirac bracket notation vj = |j〉, then P =
∑k

j=1 |j〉〈j|. This nota-
tion may be popular in physics rather than (5.7).

How can we construct an element of unitary group from an element
of Grassmann manifolds? We have a canonical method, namely,

Gn(C) −→U(n) : P �−→U = 1n − 2P. (5.8)

This U is called a uniton in the field of harmonic maps. Moreover, we can
consider a product of some unitons, namely, for any S ⊂ {0,1, . . . ,n− 1,n}

U =
∏
j∈S

(
1n − 2Pj

)
for Pj ∈Gj,n(C). (5.9)

In particular,

U =
n−1∏
j=1

(
1n − 2Pj

)
for Pj ∈Gj,n(C) (5.10)

is very important in the field of harmonic maps, see, for example, [4, 30].
Many important unitary matrices are made this way. (Those used in

[2] for database searching algorithms are of this form with appropriate
Pj .)

These unitary matrices also play an important role in quantum
computing as shown in the following.

We consider a qubit (quantum bit) space of quantum particles. The
1-qubit space is identified with C

2 with basis {|0〉, |1〉};

C
2 = VectC

{|0〉, |1〉}, |0〉 =
(

1
0

)
, |1〉 =

(
0
1

)
. (5.11)

The qubit space of t-particles is the tensor product (not direct sum!) of C
2

C
2 ⊗C

2 ⊗ · · · ⊗C
2 ≡ (C2)⊗t, (5.12)

with basis{∣∣n1,n2, . . . ,nt

〉
=
∣∣n1

〉⊗ ∣∣n2
〉⊗ · · · ⊗ ∣∣nt

〉 | nj ∈ Z2 = {0,1}
}
. (5.13)
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For example,

|0〉 ⊗ |0〉 =


1
0
0
0

 , |0〉 ⊗ |1〉 =


0
1
0
0

 ,

|1〉 ⊗ |0〉 =


0
0
1
0

 , |1〉 ⊗ |1〉 =


0
0
0
1

 .

(5.14)

Now we take the Walsh-Hadamard transformation W defined by

W : |0〉 −→ 1√
2

(|0〉+ |1〉), W : |1〉 −→ 1√
2

(|0〉 − |1〉), (5.15)

in matrix notation,

W =
1√
2

(
1 1
1 −1

)
∈O(2) ⊂U(2). (5.16)

This transformation (or matrix) is unitary and it plays a very important
role in quantum computing. Moreover, it is easy to realize in quantum
optics. We list some important properties of W

W2 = 12, W† =W =W−1, σ1 =Wσ3W
−1, (5.17)

where {σ1,σ2,σ3} are the Pauli matrices

σ1 =
(

1
1

)
, σ2 =

(
−√−1√−1

)
, σ3 =

(
1
−1

)
. (5.18)

See Appendix B for a generalization of Pauli matrices. Next we consider
t-tensor product of W (t ∈ N)

W⊗t =W ⊗W ⊗ · · · ⊗W (t-times). (5.19)
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This matrix of course operates on the space (5.12). For example,

W ⊗W =
1
2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 ,

W ⊗W ⊗W =
1√
8



1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1


.

(5.20)

Hereafter, we set n = 2t. Then (5.19) means W⊗t ∈U(n). The very im-
portant fact is that (5.19) can be constructed only by t(= log2(n))-steps
in quantum computing. We show the matrix-component of (5.19) that is
given by

〈
i1, i2, . . . , it

∣∣W⊗t∣∣j1, j2, . . . , jt〉 = 1√
n
(−1)

∑t
k=1 ikjk , (5.21)

or, if we set

|i) = ∣∣i1〉⊗ ∣∣i2〉⊗ · · · ⊗ ∣∣it〉, i = i12t−1 + i22t−2 + · · ·+ it, 0 ≤ i ≤ n− 1, (5.22)

we have

(
i
∣∣W⊗t∣∣j) = 1√

n
(−1)i·j , (5.23)

where i · j means the sum of bit-wise products
∑t

k=1 ikjk.
The proof goes as follows. From (5.16) we know

W |i〉 = 1√
2

(|0〉+ (−1)i|1〉) = 1√
2

1∑
k=0

(−1)ik|k〉, (5.24)
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which implies that

W⊗t|j) =W
∣∣j1〉⊗W∣∣j2〉⊗ · · · ⊗W∣∣jt〉

=
1√
2t

1∑
k1=0

1∑
k2=0

· · ·
1∑

kt=0

(−1)k1j1+k2j2+···+ktjt∣∣k1
〉⊗ ∣∣k2

〉⊗ · · ·∣∣kt〉
=

1√
n

n−1∑
k=0

(−1)k·j |k).

(5.25)

Therefore, we obtain

(
i
∣∣W⊗t∣∣j) = 1√

n

n−1∑
k=0

(−1)k·j
(
i
∣∣k) = 1√

n

n−1∑
k=0

(−1)k·jδik =
1√
n
(−1)i·j . (5.26)

Moreover, (5.19) has an interesting property which we can guess from
(5.20):

n−1∑
j=0

(
i
∣∣W⊗t∣∣j) ={√n, if i = 0,

0, otherwise
(5.27)

or

n−1∑
i=0

(
i
∣∣W⊗t∣∣j) ={√n, if j = 0,

0, otherwise.
(5.28)

We clarify the meaning of (5.23) from the point of view of group the-
ory.

We note that Z2 is an abelian group with operation ⊕

0⊕ 0 = 0, 0⊕ 1 = 1, 1⊕ 0 = 1, 1⊕ 1 = 0. (5.29)

Then Z2
t is a natural product group of Z2. We denote its element by

i =
(
i1, i1, . . . , it

)←→ i = i12t−1 + i22t−2 + · · ·+ it. (5.30)

For i ∈ Z2
t, we define

χi : Z2
t −→ C

∗ = C− {0}, χi(j) =
√
n
(
i
∣∣W⊗t∣∣j) = (−1)i·j . (5.31)
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Then we can show that

χi
(
j⊕k

)
= χi(j)χi(k). (5.32)

That is, χi is a character of the abelian group Z2
t.

The proof is as follows. From (5.29) we know

x⊕y = x+y − 2xy for x,y ∈ Z2. (5.33)

Therefore, we obtain

χi(j⊕k) = (−1)
∑t

l=1 il(jl⊕kl) = (−1)
∑t

l=1 il(jl+kl−2jlkl) = (−1)
∑t

l=1 il(jl+kl)

= (−1)
∑t

l=1 iljl(−1)
∑t

l=1 ilkl = (−1)i·j(−1)i·k = χi(j)χi(k).
(5.34)

These characters play an important role in discrete Fourier transform,
see [14] or [15].

Now we consider a controlled-NOT operation (gate) which we will
denote by C-NOT in the following. It is defined by

C-NOT : |0,0〉 −→ |0,0〉, |0,1〉 −→ |0,1〉,
|1,0〉 −→ |1,1〉, |1,1〉 −→ |1,0〉, (5.35)

or more compactly,

C-NOT : |a,b〉 −→ |a,a⊕ b〉, a,b ∈ Z2. (5.36)

Graphically, it is expressed as

|a〉 |a〉

|b〉 Xa | b〉 = |a ⊕ b〉X

Figure 5.1

and the matrix representation is

C-NOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (5.37)
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Here a⊕ b = a+ b (mod 2) and we note the relation

Xa|b〉 ≡ σa
1 |b〉 = |a⊕ b〉 for a,b ∈ Z2. (5.38)

In this case, the first bit is called a control bit and the second a target bit.
Of course, we can consider the reverse case. Namely, the first bit is

a target one and the second a control one, which is also called the con-
trolled NOT operation

C-NOT : |a,b〉 −→ |a⊕ b,b〉, a,b ∈ Z2, (5.39)

and the matrix representation is

C-NOT =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 . (5.40)

In the 1-qubit case, we may assume that we can construct all unitary op-
erations in U(2) (we call the operation universal). In the 2-qubit case,
how can we construct all unitary operations in U(4)? If we can construct
the C-NOT (5.37), (5.40) in our system, then we can show that the opera-
tion is universal, see [1, 3]. This is a crucial point in quantum computing.
Our comment here is that the C-NOT (5.37) can be written as a uniton
(5.8)

C-NOT = 14 − 2P, (5.41)

where

P =
1
2


0 0 0 0
0 0 0 0
0 0 1 −1
0 0 −1 1

 , (5.42)

and this P can be diagonalized by making use of Walsh-Hadamard trans-
formation (5.16) like

P =
(
12 ⊗W

)
Ẽ1
(
12 ⊗W

)−1

=
(
12 ⊗W

)(
σ1 ⊗σ1

)
E1
(
σ1 ⊗σ1

)−1(12 ⊗W
)−1

,
(5.43)
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where

Ẽ1 =


0

0
0

1

 , E1 =


1

0
0

0

 . (5.44)

More generally, for the t-qubit case, we can construct (t− 1)-repeated
controlled-NOT operator and show it is a uniton.

The (t− 1)-repeated controlled-NOT operation is defined by

C(t−1)-NOT :
∣∣a1,a2, . . . ,at−1,at

〉 −→ ∣∣a1,a2, . . . ,at−1,a1a2 · · ·at−1 ⊕at

〉
,

ak ∈ Z2 (k = 1,2, . . . , t),
(5.45)

or in matrix form

C(t−1)-NOT =


1

. . .
1

0 1
1 0

 : 2t × 2t-matrix. (5.46)

As for the explicit construction of (t− 1)-repeated controlled-NOT op-
erator see [1, 9]. See also Appendix C. But unfortunately the construction
is not efficient.

In [1] a rough estimation of the number of steps to construct the op-
erator (5.45) is given and it is confirmed that an efficient construction is
possible. But no explicit construction is given.

By the way, since

12
⊗(t−1) ⊗W


W

. . .
W

W

 , (5.47)
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we have

(
12
⊗(t−1) ⊗W)

C(t−1)-NOT
(
12
⊗(t−1) ⊗W)

=


1

. . .
1

1
−1

 = 1n − 2|n− 1)(n− 1|.
(5.48)

Therefore, the construction of C(t−1)-NOT and 1n − 2|n − 1)(n − 1| have
almost the same number of steps. Is it possible to construct this operator
efficiently?

As far as we know, an explicit and efficient construction of this opera-
tion has not yet been given.

Problem 5.2. Give an explicit and efficient algorithm to this operation.

We consider a set

{
Fk | 1 ≤ k ≤ n

}
, (5.49)

where

Fk = 1n − 2Ek =
(−1k

1n−k

)
. (5.50)

If F1 can be constructed, then the other F’s can be easily obtained. First,
we show this with a simple example (t = 2)

F1 =


−1

1
1

1

 = 14 − 2|0)(0|. (5.51)
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Now we set

U1 = 12 ⊗σ1 =


1

1
1

1

 ,

U2 = σ1 ⊗ 12 =


1

1
1

1

 ,

U3 = σ1 ⊗σ1 =


1

1
1

1

 ,

(5.52)

then we have

U1F1U1 =


1
−1

1
1

 = 14 − 2|1)(1|,

U2F1U2 =


1

1
−1

1

 = 14 − 2|2)(2|,

U3F1U3 =


1

1
1
−1

 = 14 − 2|3)(3|,

(5.53)

so that it is easy to check that

F1
(
U1F1U1

)
= F2, F2

(
U2F1U2

)
= F3, F3

(
U3F1U3

)
= −14. (5.54)

We prove the general case. For i = i12t−1 + i22t−2 + · · ·+ it (0 ≤ i ≤ n− 1), we
set

Ui = σi1
1 ⊗σi2

1 ⊗ · · · ⊗σit
1 ,

(
U†i =Ui =U−1

i

)
. (5.55)
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Since

Ui|0) = σi1
1 ⊗σi2

1 ⊗ · · · ⊗σit
1

(|0〉 ⊗ |0〉 ⊗ · · · ⊗ |0〉)
= σi1

1 |0〉 ⊗σi2
1 |0〉 ⊗ · · · ⊗σit

1 |0〉
=
∣∣i1〉⊗ ∣∣i2〉⊗ · · · ⊗ ∣∣it〉 ≡ |i),

(5.56)

we have

1n − 2|i)(i| =Ui

(
1n − 2|0)(0|)Ui =UiF1Ui. (5.57)

Therefore, it is easy to see that

Fk

(
UkF1Uk

)
= Fk+1, (1 ≤ k ≤ n− 1). (5.58)

We note that this procedure is not efficient.
Now, we make a comment on Grover’s database searching algorithm.

In his algorithm, the following two unitary operations play an essential
role

1n − 2|i)(i|, 1n − 2|s)(s|, (5.59)

in which the state |s) (s stands for sum) is defined by

|s) ≡ 1√
n

n−1∑
i=0

|i) =W⊗t|0). (5.60)

We find via (5.25) that

1n − 2|s)(s| =W⊗t(1n − 2|0)(0|)W⊗t =W⊗tF1W
⊗t. (5.61)

Namely, the two operations (5.59) are both unitons and can be diagonal-
ized by the efficient unitary operations Ui and W⊗t.

Finally, we mention the relation between (t − 1)-repeated controlled-
NOT operation and F1. Since

(
12
⊗(t−1) ⊗W)

C(t−1)-NOT
(
12
⊗(t−1) ⊗W)

= 1n − 2|n− 1)(n− 1| =Un−1F1Un−1
(5.62)

by (5.48), we have

F1 =Un−1
(
12
⊗(t−1) ⊗W)

C(t−1)-NOT
(
12
⊗(t−1) ⊗W)

Un−1. (5.63)
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Substituting Un−1 = σ1 ⊗ σ1 ⊗ · · · ⊗ σ1 ⊗ σ1 into the equation above, we ar-
rive at the desired relation

F1 =
(
σ1
⊗(t−1) ⊗σ1W

)
C(t−1)-NOT

(
σ1
⊗(t−1) ⊗Wσ1

)
. (5.64)

6. Holonomic quantum computation

In this section, we briefly introduce a simplified version of holonomic
quantum computation. The full story would require detailed knowledge
of quantum mechanics, quantum optics, and global analysis, which are
not discussed in this paper.

This model was proposed by Zanardi and Rasetti [22, 31], and it has
been developed by Fujii [5, 6, 7, 8] and Pachos [20, 21].

This model uses the non-abelian Berry phase (quantum holonomy
in the mathematical terminology [18]) in the process of quantum com-
puting. In this model, a Hamiltonian (including some parameters) must
have certain degeneracy because an adiabatic connection (the non-
abelian Berry connection) is introduced in terms of the degeneracy, see
[27]. In other words, a quantum computational bundle is introduced on
some parameter space due to this degeneracy, and the canonical connec-
tion of this bundle is just the one mentioned above.

On this bundle, holonomic quantum computation is performed by
making use of the holonomy operations. We note that our method is
completely geometrical.

Here, we introduce quantum computational bundles, [5, 7, 8]. For this
purpose, we need universal, principal, and vector bundles over infinite-
dimensional Grassmann manifolds. We also need an infinite-dimen-
sional vector space called a Hilbert (or Fock) space.

LetH be a separable Hilbert space over C. For m ∈ N, we set

Stm(H) ≡ {V =
(
v1, . . . ,vm

) ∈H× · · · ×H | V †V = 1m
}
, (6.1)

where 1m is a unit matrix in M(m,C). This is called a (universal) Stiefel
manifold. Note that the unitary group U(m) acts on Stm(H) from the
right

Stm(H)×U(m) −→ Stm(H) : (V,a) �−→ Va. (6.2)

Next, we define a (universal) Grassmann manifold

Grm(H) ≡ {X ∈M(H) |X2 =X, X† =X, trX =m
}
, (6.3)
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where M(H) denotes a space of all bounded linear operators onH. Then
we have a projection

π : Stm(H) −→Grm(H), π(V ) ≡ VV † =
m∑
j=1

vjv
†
j , (6.4)

compatible with the action (6.2) (π(Va) = Va(Va)† = Vaa†V † = VV † =
π(V )).

Now, the set {
U(m),Stm(H),π,Grm(H)

}
(6.5)

is called a (universal) principal U(m) bundle, see [7, 18]. We set

Em(H) ≡ {(X,v) ∈Grm(H)×H |Xv = v
}
. (6.6)

Then we have also a projection

π : Em(H) −→Grm(H), π
(
(X,v)

) ≡X. (6.7)

The set {
C

m,Em(H),π,Grm(H)
}

(6.8)

is called a (universal) mth vector bundle. This vector bundle is associ-
ated with the principal U(m) bundle (6.5).

Next, let M be a finite or infinite dimensional differentiable manifold
and the map P : M→ Grm(H) be given (called a projector). Using this
P , we can define the pullback bundles over M from (6.5) and (6.8){

U(m), S̃t,πS̃t,M
} ≡ P ∗{U(m),Stm(H),π,Grm(H)

}
, (6.9){

C
m,Ẽ,πẼ,M

} ≡ P ∗{C
m,Em(H),π,Grm(H)

}
, (6.10)

see [18]. Of course, the second bundle (6.10) is a vector bundle associ-
ated with the first one (6.9):

U(m) U(m)

S̃t Stm(H)

M
P Grm(H)

C
m

C
m

Ẽ Em(H)

M
P Grm(H)

(6.11)
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LetM be a parameter space (a complex manifold in general) and we
denote by λ its element. Let λ0 be a fixed reference point ofM. Let Hλ be
a family of Hamiltonians parameterized byM acting on the Fock space
H. We set H0 = Hλ0 for simplicity and assume that this has an m-fold
degenerate vacuum

H0vj = 0, j = 1, . . . ,m. (6.12)

These vj ’s form an m-dimensional vector space. We may assume that
〈vi|vj〉 = δij . Then (v1, . . . ,vm) ∈ Stm(H) and

F0 ≡
{

m∑
j=1

xjvj | xj ∈ C

}
∼= C

m. (6.13)

Namely, F0 is a vector space associated with the orthonormal (o.n.) basis
(v1, . . . ,vm).

Next we assume, for simplicity, that a family of unitary operators pa-
rameterized byM

W :M−→U(H), W
(
λ0
)
= identity, (6.14)

connects Hλ and H0 isospectrally

Hλ ≡W(λ)H0W(λ)−1. (6.15)

In this case, there is no level crossing of eigenvalues. Using W(λ), we
can define a projector

P :M−→Grm(H), P(λ) ≡W(λ)

(
m∑
j=1

vjv
†
j

)
W(λ)−1, (6.16)

and the pullback bundles overM{
U(m), S̃t,πS̃t,M

}
,

{
C

m,Ẽ,πẼ,M
}
. (6.17)

For the latter, we set

|vac〉 = (v1, . . . ,vm

)
. (6.18)

In this case, a canonical connection form A of the principal bundle
{U(m), S̃t,πS̃t,M} is given by

A = 〈vac|W(λ)−1dW(λ)|vac〉, (6.19)
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E(λ0)

Ax

x

λ0

...

M

Figure 6.1

where d is a differential form onM

d =
∑
k

(
dλk

∂

∂λk
+dλ̄k

∂

∂λ̄k

)
(6.20)

together with its curvature form (see [18, 27])

F ≡ dA +A∧A. (6.21)

Let γ be a loop inM at λ0, γ : [0,1]→M, γ(0) = γ(1) = λ0. For this γ , a
holonomy operator ΓA is defined as

ΓA(γ) = Pexp
{∮

γ

A
}
∈U(m), (6.22)

where P means path-ordering, see, for example, [21]. This acts on the
fiber F0 at λ0 of the vector bundle {Cm,Ẽ,πẼ,M} as follows: x→ ΓA(γ)x.
The holonomy group Hol(A) is in general a subgroup of U(m). In the
case of Hol(A) =U(m), A is called irreducible. The irreducibility of A
is very important because it means the universality of quantum compu-
tation. To check whether A is irreducible or not, we need its curvature
form (6.21), see [18].

In the holonomic quantum computation, we take

encoding of information =⇒ x ∈ F0,
processing of information =⇒ ΓA(γ) : x −→ ΓA(γ)x ≡Ax. (6.23)

See Figure 6.1.
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Our model is relatively complicated compared to the other geometric
models and much more so than the usual spin models.

Appendices

A. A family of flag manifolds

We make a comment on an interesting relation between flag manifolds
and the kernel of the exponential map defined on matrices. Here, a (gen-
eralized) flag manifold (which is a useful manifold as shown in the fol-
lowing) is a natural generalization of the Grassmann one.

First of all, we make a brief review. For

exp : R −→ S1 ⊂ C, exp(t) ≡ e2π
√−1 t, (A.1)

the kernel of this map is ker(exp) = Z ⊂ R.
By H(n,C) we define the set of all hermitian matrices

H(n,C) =
{
X ∈M(n,C) |X† =X

}
. (A.2)

Of course, H(1,C) = R. Note that each element of H(n,C) can be diago-
nalized by some unitary matrix.

The exponential map is now defined as

E : H(n,C) −→U(n), E(X) = e2π
√−1X. (A.3)

Here our target is ker(E).

Problem A.1. What is the structure of ker(E)?

Our claim is that ker(E) is a family of flag manifolds. For that, we
write ker(E) as

Kn(C) =
{
X ∈H(n,C) | e2π

√−1X = 1n
}
. (A.4)

First, we prove

Gn(C) ⊂Kn(C). (A.5)
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Since P 2 = P from the definition, Pk = P for k ≥ 1, so that

e2π
√−1P = 1n +

∞∑
k=1

(
2π
√−1

)k
k!

Pk

= 1n +
∞∑
k=1

(
2π
√−1

)k
k!

P = 1n +
(
e2π

√−1 − 1
)
P = 1n.

(A.6)

We will prove that Gn(C) becomes a kind of basis for Kn(C).
For X ∈ Kn(C), we write the set of all eigenvalues of X as spec(X).

Then spec(X) = {0,1} for X ∈Gn(C).
It is clear that spec(X) ⊂ Z. For X ∈Kn(C), we have

spec(X) =
{
n1
(
d1
)
, . . . ,nk

(
dk

)
, . . . ,nj

(
dj

)}
where nk ∈ Z,

j∑
k=1

dk = n,
(A.7)

in which (dk) is the multiplicity of the eigenvalue nk. Since X is diago-
nalized by some U ∈U(n),

X =UX0U
−1 =

j∑
k=1

nkPdk , (A.8)

where

X0 =


n11d1

n21d2

. . .
nj1dj

 ,

Pdk =U



0d1

. . .
1dk

. . .
0dj

U−1.

(A.9)

Here we list some properties of the set of projections {Pdk}:
(1) Pdk ∈Gdk,n(C),
(2) PdkPdl = δklPdl ,
(3) Pd1 +Pd2 + · · ·+Pdj = 1n.
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Here, we prepare a terminology. For X ∈Kn(C), we call the set of eigen-
values together with multiplicities{(

n1,d1
)
,
(
n2,d2

)
, . . . ,

(
nj,dj

)}
(A.10)

the spectral type of X.
Then it is easy to see that X and Y ∈ Kn(C) are of the same spec-

tral type (X ∼ Y ) if and only if Y =UXU−1 for some U ∈U(n). For X ∈
Kn(C), we define

C(X) =
{
Y ∈Kn(C) | Y ∼X}. (A.11)

We have clearly C(X) = C(X0). Then it is easy to see that Kn(C) can be
classified by the spectral type

Kn(C) =
⋃
X

C(X) =
⋃
X0

C
(
X0
)
, (A.12)

and the unitary group U(n) acts on C(X) as follows:

U(n)×C(X) −→ C(X) : (U,X) �−→UXU−1. (A.13)

Since this action is free and transitive, the isotropy group at X0 is

U
(
d1
)×U(

d2
)× · · · ×U(

dj

)
, (A.14)

so that we have

C(X) ∼= U(n)
U
(
d1
)×U(

d2
)× · · · ×U(

dj

) . (A.15)

The right-hand side is called a generalized flag manifold. In particular,
when d1 = d2 = · · · = dn = 1 (there is no overlapping in the eigenvalues of
X), we have

C(X) ∼= U(n)
U(1)×U(1)× · · · ×U(1)

. (A.16)

This is called a flag manifold.
Namely, by (A.12) we know that Kn(C) is a family of generalized flag

manifolds.
For the Grassmann manifolds we have very good local coordinates

like (2.9), while we do not know good local coordinates for generalized
flag manifolds.
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Problem A.2. Find a good local coordinate system.

For some applications of generalized flag manifolds, the paper [23] is
recommended.

B. A generalization of Pauli matrices

Here, we introduce a generalization of Pauli matrices (5.18) that has been
used in several situations in both quantum field theory and quantum
computation.

First of all, we summarize the properties of Pauli matrices. By (5.18),
σ2 =

√−1σ1σ3, so that the essential elements of Pauli matrices are {σ1,σ3}
and they satisfy

σ2
1 = σ2

3 = 12; σ†1 = σ1, σ†3 = σ3; σ3σ1 = −σ1σ3. (B.1)

Let {Σ1,Σ3} be the following matrices in M(n,C):

Σ1 =



0 1
1 0

1 0

1
. . .
. . .

1 0


,

Σ3 =


1

σ
σ2

. . .
σn−1

 ,

(B.2)

where σ is a primitive root of unity σn = 1 (σ = e2π
√−1/n). We note that

σ̄ = σn−1, 1+σ + · · ·+σn−1 = 0. (B.3)

The two matrices {Σ1,Σ3} are generalizations of Pauli matrices {σ1,σ3},
but they are not hermitian. Here we list some of their important proper-
ties:

Σn
1 = Σn

3 = 1n; Σ†1 = Σn−1
1 , Σ†3 = Σn−1

3 ; Σ3Σ1 = σΣ1Σ3. (B.4)
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If we define a Vandermonde matrix W based on σ as

W =
1√
n



1 1 1 · · · 1
1 σn−1 σ2(n−1) · · · σ(n−1)2

1 σn−2 σ2(n−2) · · · σ(n−1)(n−2)

...
...

...
...

1 σ2 σ4 · · · σ2(n−1)

1 σ σ2 · · · σn−1


,

W† =
1√
n



1 1 1 · · · 1
1 σ σ2 · · · σn−1

1 σ2 σ4 · · · σ2(n−1)

...
...

...
...

1 σn−2 σ2(n−2) · · · σ(n−1)(n−2)

1 σn−1 σ2(n−1) · · · σ(n−1)2


,

(B.5)

then it is not difficult to see that

Σ1 =WΣ3W
† =WΣ3W

−1. (B.6)

For example, for n = 3

WΣ3W
† =

1
3

1 1 1
1 σ2 σ
1 σ σ2

1
σ

σ2

1 1 1
1 σ σ2

1 σ2 σ


=

1
3

1 σ σ2

1 1 1
1 σ2 σ

1 1 1
1 σ σ2

1 σ2 σ


=

1
3

0 0 3
3 0 0
0 3 0

 = Σ1,

(B.7)

where we have used that σ3 = 1, σ̄ = σ2, and 1+σ +σ2 = 0.
That is, Σ1 can be diagonalized by making use of W .
Since W corresponds to the Walsh-Hadamard matrix (5.16), so it may

be possible to call W the generalized Walsh-Hadamard matrix.

C. General controlled unitary operations

Here, we introduce a usual construction of general controlled unitary
operations to help in the understanding of general controlled-NOT one.
In the following arguments, if we take U = X = σ1, then they reduce to
the arguments of a construction of general controlled-NOT operator.
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First of all, we recall (5.33). For x,y,z ∈ Z2, we have identities

x+y −x ⊕y = 2xy, (C.1)

x +y + z−x ⊕y −x ⊕ z−y ⊕ z+x ⊕y ⊕ z = 4xyz, (C.2)

where x ⊕y = x +y(mod2). For the most general identities of the above
mentioned type see [1, 9].

The controlled-controlled unitary operations are constructed by using
both several controlled unitary operations and controlled-NOT opera-
tions: let U be an arbitrarily unitary matrix in U(2), and V a unitary one
in U(2) satisfying V 2 =U. Then by (C.1), we have

V x+y−x⊕y = V 2xy =
(
V 2)xy =Uxy,

V x+y−x⊕y = V xV yV −x⊕y = V xV y(V −1)x⊕y = V xV y(V †)x⊕y, (C.3)

so a controlled-controlled U operation is graphically represented as
Figure C.1.

|x〉

|y〉

|z〉

|x〉

|y〉

Uxy | z〉

X X

V V V †

Figure C.1

This figure should be read from left to right as follows:

|x〉 ⊗ |y〉 ⊗ |z〉 −→ |x〉 ⊗ |y〉 ⊗Uxy|z〉. (C.4)

The controlled-controlled-controlled unitary operations are constructed
as follows: let U be an arbitrarily unitary matrix in U(2), and let V be a
unitary one in U(2) satisfying V 4 =U. Then by (C.1)

V x+y+z−(x⊕y+x⊕z+y⊕z)+x⊕y⊕z = V 4xyx =Uxyz,

V x+y+z−(x⊕y+x⊕z+y⊕z)+x⊕y⊕z = V xV yV z(V †)x⊕y(V †)x⊕z(V †)y⊕zV x⊕y⊕z,
(C.5)
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|x〉

|y〉

|z〉

|w〉

|x〉

|y〉

|z〉

Uxyz|w〉

X X X X

XXXXXX

V V V V † V † V † V

Figure C.2

so a controlled-controlled-controlled U operation is graphically repre-
sented as Figure C.2.
This figure means that

|x〉 ⊗ |y〉 ⊗ |z〉 ⊗ |w〉 −→ |x〉 ⊗ |y〉 ⊗ |z〉 ⊗Uxyz|w〉. (C.6)

For the case U =X = σ1, we have from (5.45)∣∣a1,a2, . . . ,an−1,an

〉 −→ ∣∣a1,a2, . . . ,an−1,a1a2 · · ·an−1 ⊕an

〉
≡ ∣∣a1

〉⊗ ∣∣a2
〉⊗ · · ·∣∣an−1

〉⊗ ∣∣a1a2 · · ·an−1 ⊕an

〉
=
∣∣a1

〉⊗ ∣∣a2
〉⊗ · · ·∣∣an−1

〉⊗Xa1a2···an−1
∣∣an

〉
.

(C.7)

As can be seen from the figures, the well-known construction of gen-
eral controlled unitary operations needs exponential steps. Namely, it is
not efficient. For more details see [1, 9].
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