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The small amplitude-to-thread ratio helical configuration of a vortex fila-
ment in the ideal fluid behaves exactly as de Broglie wave. The complex-
valued algebra of quantum mechanics finds a simple mechanical inter-
pretation in terms of differential geometry of the space curve. The wave
function takes the meaning of the velocity, with which the helix rotates
about the screw axis. The helices differ in type of the screw—right- or
left-handed. Two kinds of the helical waves deflect in the inhomoge-
neous fluid vorticity field in the same way as spin particles in the Stern-
Gerlach experiment.

1. Introduction

In this paper, an earlier suggested [2] mechanical analog for quantum
particles is further developed. A helical wave on a vortex filament in
the ideal fluid is considered. It is shown to obey the linear Schrödinger
equation. Other properties of a vortex filament also reproduce the spe-
cific features of a quantum object.

This work is a constituent of the whole project aimed at constructing
a regular mechanical analogy of physical fields and particles. The ap-
proach is based on the concept of a substratum for physics. The substra-
tum is a universal medium serving to model the waves and action-at-
a-distance in vacuum. This medium is viewed mesoscopically as a tur-
bulent ideal fluid. Perturbations of the turbulence model physical fields.
In this way, equations that reproduce exactly the Maxwell’s electromag-
netic equations were derived [7]. The voids in the fluid give rise to di-
latational inclusions, which serve as a model [3, 4] of charged particles.
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Microscopically the turbulent substratum is seen as a vortex sponge. The
latter is postulated as an ideal fluid pierced in all directions by straight
vortex tubes [6]. The hollow vortex tubes will be treated further as vor-
tex filaments. We will consider a one-dimensional model of the vortex
sponge with some recourse to higher dimensions. The microscopic con-
struction presented here agrees well with respective mesoscopic models.

2. Vortex filament

The motion of an isolated vortex filament is governed by a dependence
of the velocity u of the vortex filament’s liquid element on the local form
of the curve. To express such a law analytically, we need to describe the
vortex filament as a space curve in the usual Frenet-Serret frame.

First, a point on a spatial curve is defined by the position vector r,
which is a function r(l) of the length l measured from a fiducial point
along the curve. For a moving curve, there is a further dependence r(l, t)
on the time t. Excluding information about the curve’s space position,
the local form of the curve is fully specified by its curvature κ(l, t) and
torsion τ(l, t). The latter are defined through the two unit vectors, a tan-
gent

e(l, t) =
∂r
∂l

(2.1)

and principal normal

n(l, t) (2.2)

(see Figure 2.1), by the Frenet-Serret formulae

κn =
∂e
∂l
, (2.3)

τn = −∂(e×n)
∂l

, (2.4)

|e| = 1, |n| = 1. (2.5)

The motion of the vortex filament without stretching is described in
these terms by the Arms’ equation

u(l, t) =
∂r
∂t

= νκe×n, (2.6)

where ν stands for the coefficient of local self-induction and e is assumed
to be parallel to the filament’s vorticity vector (Figure 2.1; for a rigorous
derivation see [1]). Using (2.1) and (2.3), (2.6) can be rewritten in the
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Figure 2.1. The drift u of a bent vortex filament in relation to its
curvature κn and vorticity e.

straightforward form

∂r
∂t

= ν
∂r
∂l

× ∂
2r
∂l2

. (2.7)

3. Small disturbances

Let the filament be directed along the x-axis. We seek a solution to (2.7) in
the form r(x,t) as small disturbances of the rectilinear configuration.
This implies that

∣∣∣∣∂y∂x
∣∣∣∣,
∣∣∣∣∂z∂x
∣∣∣∣,
∣∣∣∣∂2y

∂x2

∣∣∣∣,
∣∣∣∣∂2z

∂x2

∣∣∣∣� 1. (3.1)

On this account, the corresponding quadratic terms is neglected through-
out. So, we have for the arc’s element

dl =

[
1+
(
∂y

∂x

)2

+
(
∂z

∂x

)2
]1/2

dx ≈ dx, (3.2)

and (2.7) can be rewritten as

∂r
∂t

= ν
∂r
∂x

× ∂2r
∂x2

. (3.3)

We have

r(x,t) = xi1 +y(x,t)i2 + z(x,t)i3,

∂r
∂x

= i1 +
∂y

∂x
i2 +

∂z

∂x
i3,

∂2r
∂x2

=
∂2y

∂x2
i2 +

∂2z

∂x2
i3.

(3.4)
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Figure 4.1. The right-hand screw helix (bottom) and the left-hand
screw helix (top) in relation to the x-axis. The xz projection of (4.1)
or (13.1) is shown.

This gives, for (3.3),

∂r
∂t

= νi1 ×
(
∂2y

∂x2
i2 +

∂2z

∂x2
i3

)
. (3.5)

Insofar as

i1 ×
(
yi2 + zi3

)
= −zi2 +yi3, (3.6)

the right-hand side of (3.5) does not contain the i1 component. This en-
ables us to drop the respective term in the left-hand side

∂y

∂t
i2 +

∂z

∂t
i3 = νi1 ×

(
∂2y

∂x2
i2 +

∂2z

∂x2
i3

)
. (3.7)

The latter form is convenient for further applications. So, it can be taken
as the basic equation for small disturbances of the vortex filament in the
ideal fluid.

The simplest shape for the initial configuration of the filament is given
by a curve with constant curvature κ and torsion τ . In Sections 4 and 5,
it is treated in two representations, which are equivalent to each other.
First, we discuss it in vector form as implied by (3.7).

4. Vector mechanics

We consider a right-hand screw helix positioned along the x-axis

y = acos
(
x

b

)
, z = asin

(
x

b

)
, (4.1)

where a > 0 is the amplitude and b > 0 the thread (or pitch) of the helix
(Figure 4.1). This curve can be suggested as a small perturbation of the
straight line if we take

a� b. (4.2)
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This gives for (2.1), (2.3), and (2.4), neglecting the small quantity a2/b2,

r = xi1 +acos
(
x

b

)
i2 +asin

(
x

b

)
i3,

dl = |dr| =
(

1+
a2

b2

)1/2

dx ≈ dx,

e = i1 +
a

b

[
− sin

(
x

b

)
i2 + cos

(
x

b

)
i3

]
,

(4.3)

κn = − a
b2

[
cos
(
x

b

)
i2 + sin

(
x

b

)
i3

]
, (4.4)

e×n =
a

b
i1 + sin

(
x

b

)
i2 − cos

(
x

b

)
i3, (4.5)

τn = −∂(e×n)
∂l

= −1
b

[
cos
(
x

b

)
i2 + sin

(
x

b

)
i3

]
. (4.6)

Therefrom, the curvature of the asymptotic helix is

κ =
a

b2
(4.7)

and the torsion is

τ =
1
b
. (4.8)

In these terms, relation (4.2) looks as

κ� τ. (4.9)

It is implicit here that the direction of the filament’s vorticity coincides
with the vector e. Hence, the motion of the filament can be calculated
using (2.6). Substituting (4.5) with (4.7), (4.8) into (2.6), and neglecting
the small velocity component along the x-axis, we get

u = aντ2[sin(τx)i2 − cos(τx)i3
]
. (4.10)

So, the helix rotates counterclockwise around the x-axis (looking in the
direction of the x-axis) with the constant angular velocity

ω = ντ2. (4.11)
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Taking into account the angular displacement, the initial relation (4.1)
should be improved

y = acos
(
τx − ντ2t

)
, z = asin

(
τx − ντ2t

)
. (4.12)

This provides the solution to the basic equation (3.7).

5. Schrödinger equation

From the above we see that when aτ � 1, the motion of the vortex fil-
ament reduces itself to a plane vector mechanics. By virtue of this, re-
lations (4.12) can be represented as a complex function ϕ(x,t) of real
variables

ϕ(x,t) = a
[

cos
(
τx − ντ2t

)
+ isin

(
τx − ντ2t

)]
= aexp

[
i
(
τx − ντ2t

)]
.

(5.1)

In this connection, the vector form (3.6), i1×(yi2+zi3) = −zi2 +yi3, which
(3.7) is based on, corresponds to the relation for complex values

i(y + iz) = −z+ iy. (5.2)

This puts (3.7) into the form of the Schrödinger equation

∂ϕ

∂t
= iν

∂2ϕ

∂x2
, (5.3)

where

ϕ = y(x,t) + iz(x,t). (5.4)

Equation (5.3), or (3.7), has a simple geometrical meaning. In a he-
lix, the principal normal n lies in a plane, which is perpendicular to the
x-axis, and it is directed to the x-axis (see (4.4)). When aτ � 1, the tan-
gent e is almost parallel to the x-axis. So, in order to get from it the self-
induction velocity (2.6), we must merely rotate n at the angle π/2 coun-
terclockwise around the x-axis if looking against this axis. In terms of
complex values, the curvature

κn =
∂2ϕ

∂x2
. (5.5)
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The operation iκn corresponds to the above-mentioned rotation of n. The
self-induction velocity is

u =
∂ϕ

∂t
. (5.6)

Here ϕ, n, and u are complex values and x, t, κ are real values.

6. The wave packet

So, the above-discussed asymptotic solution can be represented in the
form of the hypercomplex value r:

r(x,t) = i1x +ϕ(x,t), (6.1)

where x, t are real values. According to the above, the complex-valued
function ϕ(x,t) can be expanded into the sum of harmonics

ϕ(x,t) =
∫
c(τ)exp

[
i
(
τx − ντ2t

)]
dτ. (6.2)

As usual, taking this integral in the range [τ0 −∆τ,τ0 +∆τ], we get the
wave packet

a
sin
[(
x − 2ντ0

)
∆τ
]

(
x − 2ντ0

)
∆τ

exp
[
i
(
τ0x − ντ0

2t
)]

(6.3)

(see Figure 6.1). The hump of the wave packet moves translationally
with the velocity

υ = 2ντ0. (6.4)

The remarkable feature of this phenomenon is that the motion of the
hump is due to the rotation of an individual helix with the angular ve-
locity ντ2 but not because of its longitudinal motion. This is the effect
of a screw! A bolt is screwed into a nut due to rotation. In general, the
velocity υ of screwing in depends on the thread b as ωb. From (4.11),
(4.8), we have for the vortex helix ω ∼ 1/b2. Therefore, υ ∼ 1/b, that is in
accord with (6.4).

As we will see in the next section the wave packet gives us an approx-
imation for the asymptotic solution to the nonlinear equation (2.7) con-
structed from the solutions to the corresponding linear equation (3.7).
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Figure 6.1. A wave packet (6.3).

7. Soliton

Equation (2.7) possesses the following exact solution r(l, t) (see [5]):

r = xi1 +yi2 + zi3, x = l −a tanhη,

y + iz = asechηexp(iθ),
(7.1)

where

a =
2κ̂

κ̂2 + τ2
, (7.2)

η = κ̂(l− 2ντt), (7.3)

θ = τl+ ν
(
κ̂2 − τ2)t, τ = const, κ̂ = const . (7.4)

As before, ν is the self-induction coefficient of the vortex filament.
In order to form the curvilinear configuration on the straight line, we

need an extra segment of the filament, which will be further referred
to as the redundant segment. Its length is easily found integrating the
differential of (7.1) all over the x-axis∫

dx =
∫
dl−a

∫
d tanhη (7.5)

whence

[l −x]+∞−∞ = 2a. (7.6)

Substituting r(l, t) into (2.3) we find that the curvature of the line is de-
scribed by the bell-shaped function

κ(l, t) = 2κ̂sechη. (7.7)



Valery P. Dmitriyev 249

κ̂

−10

0

10

τ

0 10 20

Figure 7.1. The torsion τ in relation to curvature parameter κ̂ plot-
ted by (7.2) with a = const. Solid line: a = 0.1; dashed line: a = 0.01.

Its parameter l/κ̂ from (7.3) can be used as a measure of the distur-
bance’s delocalization. So, the more the line is curved, the more the in-
clusion of the redundant segment (7.6) is localized.

Substituting r(l, t) into (2.4), we find that the parameter τ has the
meaning of the curve’s torsion.

According to (7.3), the soliton moves steadily along the vortex fila-
ment with the velocity

υ = 2ντ. (7.8)

The curve rotates around the x-axis with the angular velocity

ω =
∂(y + iz)/∂t(
y2 + z2

)1/2
. (7.9)

We may rewrite (7.2) in a more convenient form

(
κ̂− 1

a

)2

+ τ2 =
1
a2
. (7.10)

Now, assuming that a is constant, it is easily seen (Figure 7.1) how the
longitudinal extension of the disturbance, measured by 1/κ̂, affects the
curve’s torsion and the corollaries.

When the disturbance is most localized, that is, the curvature is max-
imal κ̂ = 2/a, then τ = 0 (Figure 7.1). That is, the curve is plane. It has
the form of a loop. In accord with (7.8) the plane loop is translationally
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Figure 7.2. The loop-shaped soliton on a vortex filament at τ/κ̂ =
0.23 (bottom) and τ/κ̂ = 1.1 (top).

at rest. It rotates steadily around the x-axis with the angular velocity
ω = νκ̂2.

As the disturbance’s spread increases from a/2 to a, that is, as the
curvature decreases to κ̂ = 1/a, the torsion τ grows to its maximal value
1/a (Figure 7.1). It corresponds to maximal value of the soliton’s trans-
lational velocity (7.8)

υ ≤ 2ν
a
. (7.11)

In this range of the delocalization

τ

κ̂
< 1. (7.12)

The filament is convolved into a loop (Figure 7.2, bottom) and the direc-
tion of its rotation coincides with that of the vorticity of the unperturbed
filament.

Further, as the disturbance delocalizes from a to ∞, the torsion drops
from 1/a to zero (Figure 7.1). In this range,

τ

κ̂
> 1. (7.13)

The loop is unfolded (Figure 7.2, top), and thus, the rotation becomes
opposite to the vorticity.

When κ̂→ 0, we have τ → 0. In this event,

κ̂� τ (7.14)
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and, in accord with (4.9), the curve tends to an asymptotic helix. This is
the humped helix approximated by the wave packet (6.3). The asymp-
totic helix rotates steadily around the x-axis with angular velocity (4.11)
ω = ντ2.

Differentiating (2.7) with respect to l and using formula (2.1), we get
a positionally invariant form of the motion law

∂e
∂t

= νe× ∂
2e
∂l2

. (7.15)

It was shown rigorously [5] that, with (2.3), (2.4), this equation can be
transformed to the nonlinear Schrödinger equation

− i
ν

∂Φ
∂t

=
∂2Φ
∂l2

+
1
2
|Φ|2Φ (7.16)

under the substitution

Φ = κexp
[
i

(∫ l
0
τ dl−ωt

)]
, (7.17)

where ω = const is the energy integral of motion.
When

κ� τ, (7.18)

the second term in the right-hand side of (7.16) can be neglected and the
equation linearized to (5.3). In this event

Φ −→ ϕ = κexp
⌊
i
(
τx − ντ2t

)⌋
, (7.19)

where κ→ aτ2. So, the wave function takes the meaning of the helix
rotation velocity (4.10).

8. Integrals of motion

With (7.17), (7.16) can be presented in the quasihydrodynamic form

∂ρ

∂t
+
∂(ρυ)
∂l

= 0, (8.1)

∂(ρυ)
∂t

+
∂

∂l

[
ρυ2 − ν2ρ

∂2 lnρ
∂l2

− 1
2
ν2ρ2

]
= 0, (8.2)
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where

ρ = κ2 = |Φ|2, (8.3)

υ = 2ντ. (8.4)

Through (2.6), the part ε of the kinetic energy of the fluid due to dis-
tortion of the vortex filament is given by

ε =
1
2
ς

∫
u2dl =

1
2
ςν2
∫
κ2dl =

1
2
ςν2
∫
ρdl, (8.5)

where ς stands for linear density of the fluid along the filament and (8.3)
was used. The energy ε has the meaning of the self-energy of the dis-
turbance and can be interpreted as the mass mε of this disturbance. By
virtue of the continuity equation (8.1), this quantity is conserved as fol-
lows:

∂

∂t

∫
ρdl = 0. (8.6)

Thus, the density of the distribution of the distortion energy along the
vortex filament corresponds to the linear density of the space distribu-
tion of the soliton’s mass mε

mε
ςu2/2
ε

=mε
ςν2ρ/2

ε
. (8.7)

In these terms, the flow of the distortion energy along the filament

1
2
ςν2ρυ (8.8)

acquires the meaning of the soliton’s local momentum. From the dy-
namic equation (8.2), we see that the total momentum of the soliton is
conserved as follows:

∂

∂t

∫
ρυdl = 0. (8.9)

Next, using (8.7), the soliton’s translational energy can be considered

Et =
1
2

∫
mε

ςν2ρ/2
ε

υ2dl. (8.10)



Valery P. Dmitriyev 253

The contribution of the diffusion flow

ρw = −ν∂ρ
∂l

(8.11)

should be also taken into account. In the nonlinear case, we must include
in the integral the term from (8.2) of the binding energy

−1
2
ν2ρ2. (8.12)

Then, the total energy is conserved as

∂

∂t

∫
1
2
ρ
(
υ2 +w2 − ν2ρ

)
dl = 0. (8.13)

We may also add the density of the external force to the dynamic equa-
tion (8.2). For the potential force, it looks as

∂(ρυ)
∂t

+
∂

∂l

[
ρυ2 − ν2ρ

∂2 lnρ
∂l2

− 1
2
ν2ρ2

]
+ ρ

∂U

∂l
= 0. (8.14)

When the potential U(l) does not depend on the time, the following
quantity is conserved:

∫
ρ

[
1
2
(
υ2 +w2 − ν2ρ

)
+U
]
dl. (8.15)

Thence, the nonlinear Schrödinger equation with the potential energy U
should be written as

− i
ν

∂Φ
∂t

=
∂2Φ
∂l2

+
1
2
|Φ|2Φ− 1

ν2
UΦ. (8.16)

Substituting (7.7) to the second integral in (8.5), we get the soliton’s
self-energy

ε = 4ςν2κ̂. (8.17)

The soliton’s translational energy Et is easily found if we will substitute
(8.4) with τ = const into (8.10)

Et =mε
2ν2τ2

ε

1
2
ςν2
∫
ρdl. (8.18)
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Then, using in this expression (8.5), we get

Et = 2mεν
2τ2. (8.19)

In asymptotics, when κ̂/τ → 0, relation (7.2) reduces itself to

2κ̂ = aτ2. (8.20)

Then, we have for (8.17)

ε = 2ςν2aτ2. (8.21)

We see that expression (8.21) for the fluid energy coincides with that
(8.19) for the soliton’s kinetic energy if we take for the mass of the as-
ymptotic soliton

mε = ςa. (8.22)

This enables us to identify the energy integral of motion of the asymp-
totic soliton with the real energy of the fluid motion, and the mass of the
soliton—with the real mass (8.22) of the fluid.

9. Particle

In this section, we demonstrate with a simplified model that there exists
a singular unique size of the loop-shaped soliton on a vortex filament.
The redundant segment (7.6) of the filament, needed in order to form
the curvilinear configuration on the originally straight line, brings with
itself the energy of the fluid motion

2aξ, (9.1)

where ξ is the energy density on a unit length of the filament. The energy
of distortion associated with the loop is given by (8.17). For the plane
configuration of the loop, it equals

ε =
8ςν2

a
, (9.2)

where (7.2) with τ = 0 was used. Summing (9.1) and (9.2), we find the
total energy of the fluid associated with the loop as a function of the
redundant length 2a

2aξ +
8ςν2

a
. (9.3)
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This function has a minimum at

a = 2ν
(
ς

ξ

)1/2

(9.4)

which determines the singular size of the loop. The same is valid with
respect to the vortex ring obtained from the loop by reconnection of the
filament at the point of intersection.

For visuality, we reproduce the whole argumentation for the vortex
ring. The fluid energy associated with the length is evaluated by

2πRξ, (9.5)

where R is the radius of the ring. Its curvature is given by

κ =
1
R
. (9.6)

So, the energy of distortion associated with the ring is found from the
integral in (8.5) as

ε =
1
2
ςν2
(

1
R

)2

2πR. (9.7)

Then, the total energy is given by

2πξR+
πςν2

R
. (9.8)

Comparing it with (9.3), we see that a has the meaning of the loop’s
diameter.

The filament is taken in the current model as the idealization of the
vortex tube. In the perfect fluid, the vortex tube is hollow inside. So,
the curvilinear configuration of the tube—the helix, the loop, or the vor-
tex ring—just corresponds to the inclusion of a redundant void in the
discrete structure of the vortex sponge. This agrees well with the meso-
scopic mechanical model of a particle [3, 4]. Although, the mass ς2a of
the redundant segment (7.6) of the vortex tube appears to be twice the
mass of the disturbance that is computed using formula (8.22) for as-
ymptotic helix.

It is clear that the construction described ensures the discreteness of a
nonlinear configuration in the structure of the vortex sponge, provided
that the strength of the vortex tube is fixed.

A plane loop on a vortex filament cannot be split into smaller plane
loops without the input of some fluid energy. Indeed, let it be divided
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into two parts α and 1−α, where 1 > α > 0. As seen from (9.1), (7.6), the
energy of the background is additive, and thus, does not change in split-
ting. Whereas the energy of disturbance computed with (9.2) increases
as follows:

1
α
+

1
1−α > 1. (9.9)

However, the plane loop can be split into nonplanar solitons, that is,
into waves. This process needs some increase in the secondary integral
of energy (8.10). Thus, we have from (7.2) that the plane loop with the
curvature κ (7.7) can be split into m waves with the curvature κ/m and
for m� 1 with the torsion τ ≈ κ̂. According to (7.8), a nonplanar soliton
moves translationally with the velocity 2ντ . Requiring the conservation
(8.9) of the momentum, we find that the splinters move in opposite di-
rections.

In asymptotics, when κ/τ → 0, we have (8.21) instead of (9.2). Now,
the distortion energy is additive with respect to division of the redun-
dant segment (7.6). So, the helix can be split as a classical mass body.

10. Elementary helix

As we see in (7.11), the velocity of the given soliton is restricted from
above by

υmax =
2ν
a

(10.1)

(see Figure 7.1). In its turn, υmax is restricted by some fundamental con-
stant c, which must be the speed of the perturbation wave in the turbu-
lent medium:

υmax ≤ c. (10.2)

This implies that

a ≥ 2ν
c
. (10.3)

Thus, we come to the concept of the elementary inclusion, having the
minimal size of the redundant segment

a0 =
2ν
c
. (10.4)
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It probably exists only as an asymptotic helix. In this model c corre-
sponds [7] to the speed of light in vacuum.

On the other side, condition (7.14) of the asymptotic case can be writ-
ten as

2κ̂
τ

≤ β� 1, (10.5)

where β is an upper bound for the asymptoticity. Combining it with
(8.20), (7.8) gives

υ ≤ 2ν
a
β. (10.6)

This shows that the domain of velocities for which the linear Schrödinger
equation is valid broadens with the decrease in the length of the redun-
dant segment (Figure 7.1, the left side).

So, in order to increase the maximal velocity of the disturbance, we
must divide the inclusion of the redundant segment 2a into parts.

11. Thermalization

Supposedly, under the action of the stochastic medium, the soliton on a
vortex filament splits into the elementary helices mentioned above.

We see the thermalized soliton as a system of m identical segments
a0 = a/m each of which obeys the linear Schrödinger equation (5.3).
For this system, a single many-body equation can be formally composed

∂Ψ
∂t

= iν
m∑
n=1

∂2Ψ
∂x2

n

, (11.1)

where the function Ψ is given by the product of the forms (7.19)

Ψ =
m∏
n=1

κn exp
[
i
(
τnxn − ντ2

nt
)]
. (11.2)

Passing in (11.1) to the center point variable

x =
1
m

m∑
n=1

xn, (11.3)

we may get, via the well-known procedure, the equation

∂ψ

∂t
= i

ν

m

∂2ψ

∂x2
. (11.4)
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This rather formal result can be visualized if we consider the phase of
the wave function (11.2), which is taken for m helices with equal values
τn = τ of the torsion

m∑
n=1

(
τnxn − ντ2

nt
) −→ τ

m∑
n=1

xn −mντ2t = (mτ)x − ν

m
(mτ)2t = kx − ν

m
k2t,

(11.5)

where

k =mτ (11.6)

and x is given by (11.3).
Provided that the length 2a0 of an elementary segment is constant,

the number m of elementary constituents involved in the soliton can be
taken as a measure of the soliton’s mass, the real mass being

mε = ςa =mςa0, (11.7)

where (8.22) was used. Then, the quantity k defined above in (11.6) can
be taken as a measure of the soliton’s momentum

p = ςaυ = ςa02νmτ = 2νςa0k, (11.8)

where (8.4) was used. The frequency term in the phase (11.5) of the wave
function acquires the meaning of the soliton’s kinetic energy (8.19)

E =
p2

2mςa0
= 2νςa0

νk2

m
. (11.9)

In quantum mechanics, the constant analogous to ν is usually desig-
nated as

νςa0 =
ħ

2
. (11.10)

12. Collapse

A fluctuation of the fluid pressure may cause the spatial distribution of
splinters to re-collect into the original soliton. We describe this process
phenomenologically adding to (11.1) the pairwise attraction between the
elementary helices

∂Ψ
∂t

= iν

(
m∑
n=1

∂2Ψ
∂x2

n

− 1
ν2
UΨ

)
, (12.1)
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where the mass density of the potential is given by

U = −4ν2κ̂

m

m∑
s<q

δ
(
xs −xq

)
. (12.2)

In (12.1), the potential was introduced in the same way as it was done
in (8.16). In (12.2), the coefficient before the δ-function was chosen in
accord with (8.17) assuming that the self-energy of the fragment is 1/m
of the self-energy (8.17) of the original soliton.

Equation (12.1) with (12.2) can be solved exactly. However, it is illu-
minating to give the scheme based on Hartree approximation

Ψ =
m∏
n=1

ϕn
(
xn, t
)
, (12.3)

where ϕn is the wave function of a splinter

∂ϕn
∂t

= iν
∂2ϕn

∂x2
n

. (12.4)

Compare (12.3) with (11.2). By (8.5), (8.3), the self-energy of the splinter
is computed via

1
2
ςν2
∫ ∣∣ϕn∣∣2dxn. (12.5)

This energy was taken in (12.2) to be 1/m of the self-energy (8.17) of the
original soliton

4ςν2κ̂

m
. (12.6)

That implies the following normalization of ϕn:

∫ ∣∣ϕn∣∣2dxn = 8κ̂
m
, n = 1,2, . . . ,m. (12.7)

Substituting (12.3) into (12.1) with (12.2) and multiplying it by

m∏
n=2

ϕ∗
n

(
xn, t
)
dxn (12.8)
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and then integrating over all xn, where n �= 1, we get

− i
ν

∂ϕ

∂t
=
∂2ϕ

∂x2
+

1
2
(m− 1)|ϕ|2ϕ+

m(m− 1)(m− 2)
32κ̂

ϕ

∫
|ϕ|4dx. (12.9)

Taking

φ = (m− 1)1/2ϕexp
(− iω0t

)
, (12.10)

where

ω0 = ν
m(m− 1)(m− 2)

32κ̂

∫
|ϕ|4dx, (12.11)

we come to

− i
ν

∂φ

∂t
=
∂2φ

∂x2
+

1
2
|φ|2φ. (12.12)

This equation coincides with (7.16) when l→ x, that is, when κ� τ . Note
that for m� 1 (12.10) with (12.7) gives the following normalization of
the wave function φ:

1
2

∫
|φ|2dx = 4κ̂. (12.13)

Compare (12.13) with (8.17) obtained from (8.5), (8.3) with (7.7)

ε =
1
2
ςν2
∫
|Φ|2dl = 4ςν2κ̂. (12.14)

So, the quantum definition of the particle’s mass, given in Section 11,
agrees with its mechanical definition given in Section 8.

Similar results can be obtained in a simpler model if we take in (12.2)
s = 1, q = 2, . . . ,m.

The choice of the place or splinter, where the soliton will be re-
collected, is the competence of a more general model of the measure-
ment, in which the above scheme should be included. We may expect
that it is probabilistic and the probability density is proportional to lo-
cal decrease in the fluid pressure. By hydrodynamics [3], the decrement
of the pressure equals to the increase in the energy density, that is, it is
proportional to |ψ|2 from (11.4) or a similar equation.
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13. Spin

There are two kinds of helix which differ in the sign of the torsion τ . The
right-hand screw helix (Figure 4.1, bottom) is described by (4.1)

y = acos(τx), z = asin(τx) (13.1)

with τ > 0. The left-hand screw (Figure 4.1, top) is described by (13.1)
with τ < 0. According to (4.10), the helix rotates around the x-axis with
the velocity

u = aντ2[sin(τx)i2 − cos(τx)i3
]
. (13.2)

As we see from this, both kinds rotate in the same direction—counter to
the direction of the filament’s vorticity, which was chosen in (13.2) so as
to coincide with the direction of the x-axis.

According to (7.8), or (6.4), the helix moves translationally with the
velocity

v = 2ντ. (13.3)

That is, the right-hand screw helix travels in the direction which the fila-
ment’s vorticity points to. The left-hand screw helix goes in the opposite
direction.

In three dimensions, we deal with the ideal fluid pierced in all direc-
tions by the vortex filaments [6]. Macroscopically (to be more precise,
mesoscopically), this system looks like a turbulent ideal fluid. Perturba-
tions of the turbulence was shown [7] to reproduce a system of the form
of the electromagnetic fields. In particular, the average fluid velocity 〈u〉
corresponds to the magnetic vector-potential. The rotation of the soli-
ton is seen macroscopically as a singularity—the center of torsion in the
quasielastic medium. It corresponds to a magnetic dipole µ. The energy
of its interaction with the external vorticity field is given by

−µ · curl〈u〉. (13.4)

The fluid vorticity curl〈u〉 just corresponds to the magnetic field.
Let two kinds of the helices move in the turbulent substratum from

the left to the right. The first helix (Figure 13.1, bottom) is a right-hand
screw; hence, it moves along a filament whose vorticity is also directed
to the right. The other helix (Figure 13.1, top) is the left-hand screw. So,
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µ

v

µ

v curl〈u〉

Figure 13.1. A right-hand screw helix (bottom) and left-hand screw
helix (top) traveling from the left to the right in the vortex sponge
through an inhomogeneous field of fluid vorticity curl〈u〉. Arrows
on the filaments indicate the direction of their vorticity, v shows the
direction of the translational motion and µ the rotational moment of
the helices.

it moves to the right along a filament whose vorticity is directed oppo-
site to the direction of the motion. The question is how an observer may
distinguish between these two cases.

A discrimination can be done imposing on them an external field of
fluid vorticity curl〈u〉. So, we have the conditions of the Stern-Gerlach
experiment. The vertical arrow at Figure 13.1 just shows the fluid vor-
ticity directed and growing from the bottom to the top. This inhomoge-
neous vorticity field will deflect the traveling helices so as to diminish
their energy in accord with formula (13.4). In order to change somewhat
the direction of its motion, a helix must jump over to the adjacent fila-
ment with similar but slightly different direction of vorticity. Thus, the
helices will act in the same way (see Figure 13.1) as spin particles in the
real Stern-Gerlach experiment.

14. Conclusion

The above-constructed mechanical model reproduces the main features
of a microparticle including its discreteness. However, there is a point
that should be still elucidated. This is the discrete structure of the vortex
sponge, that is, the fixed strength of the intrinsic vortex tube, or filament.
For the time being, it is taken as a postulate.
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