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A gauge independent method of obtaining the reduced space constrained
dynamics is discussed in a purely Hamiltonian formalism. Three exam-
ples are studied.

1. Introduction

One of the important aspects of the Hamiltonian formulation of gauge
theories is to obtain the reduced (physical) space comprising the total
canonical variables. This is usually done by fixing a gauge that removes
the unphysical degrees of freedom [3, 10].

Fixing a gauge is not always an easy task, especially when first-class
constraints arise, which are generators of gauge transformations, this
will lead to the gauge freedom. In other words, the equations of motion
are still degenerate and depend on the functional arbitrariness. We have
to impose external gauge fixing constraint for each first-class constraint.

To avoid the ambiguities and arbitrariness inherent in the gauge fix-
ing produced, it becomes desirable to abstract the reduced space in a
gauge independent manner. Recently, the Hamilton-Jacobi approach [8,
9, 12, 13, 15] has been developed to investigate singular systems. In this
method, the equations of motion are obtained as total differential equa-
tions in many variables. If the system is integrable then we can obtain
directly the canonical reduced phase-space coordinates. The advantages
using the Hamilton-Jacobi is that we have no difference between first-
and second-class constraints and we do not need gauge fixing term be-
cause the gauge variables are separated in the process of constructing an
integrable system of total differential equations.
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On the other hand, there are approaches other than gauge fixing. For
instance, the method of Faddeev and Jackiw [4] and Jackiw [11] is to
attempt to reduce the system to its physical degrees of freedom by a
process of directly substituting the constraints into the canonical La-
grangian. Besides, Banerjee [1, 2] has developed a purely Lagrangian
approach of systematically reducing the degrees of freedom in a gauge
independent manner. The physical Hamiltonian is then obtained directly
from this reduced Lagrangian.

In this paper, the Hamilton-Jacobi treatment for three singular sys-
tems will be discussed to obtain the reduced phase space dynamics in a
gauge independent manner.

2. Lagrangian and Hamiltonian approaches

In this section, we briefly review the Lagrangian and the Hamiltonian
formulations for studying the constrained systems.

2.1. Lagrangian approach

Recently, Banerjee [1, 2] has developed a purely Lagrangian approach to
obtain the reduced degree of freedom in a gauge independent manner.
Now, we give a brief review of his method.

From the theory of unsolvable differential equations with respect to
the highest derivatives, it is possible to express the Lagrangian equa-
tions of second-order systems with variables v by an equivalent set of
independent equations [1, 2],

p̈ = Θ
(
p, ṗ,q,β, β̇, β̈

)
, (2.1)

q̇ = Φ
(
p, ṗ,q,β, β̇

)
, (2.2)

r = Ψ(p,q,β), (2.3)

where v = (p,q,r,β), Θ, Φ, Ψ are some functions of the indicated argu-
ments and an overdot denotes a time derivative. In a nonsingular the-
ory, q, r, β are absent so that there are unconstrained dynamics with p̈ =
Θ(p, ṗ). For singular theories, (2.2) and (2.3) represent the constraints.
The idea is now to pass from the constrained v = (p,q,r,β) to the uncon-
strained v = p by removing q, r, β. The variable r is trivially eliminated
in favour of p, q, β using (2.3). In the physically interesting gauge sys-
tems, the constraints are implemented by a Lagrange multiplier whose
time derivative, therefore, does not appear in the Lagrangian. This mul-
tiplier is identified with q, which can thus be removed in favour of p, β
using (2.2). The Lagrangian in the reduced sector is now a function of
(v, v̇; v = p,β). By evaluating the Lagrange equations in this sector, it is
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possible to identify β with the variable that does not occur in these equa-
tions. With this identification the variable β, which reflects the degener-
acy in the system, automatically drops out from the Lagrangian and its
final unconstrained form is obtained. The physical Hamiltonian is now
found by performing the standard Legendre transformation without us-
ing any gauge fixing conditions.

2.2. The Hamilton-Jacobi approach

The starting point of the Hamilton-Jacobi method [8, 9, 12, 13, 15] is to
consider the Lagrangian L = L(qi, q̇i, t), i = 1, . . . ,n, with the Hessian ma-
trix

Aij =
∂2L

∂q̇i∂q̇j
, i, j = 1, . . . ,n, (2.4)

of rank (n − r), r < n. Then r momenta are dependent. The generalized
momenta pi corresponding to the generalized coordinates qi are defined
as

pa =
∂L

∂q̇a
, a = 1,2, . . . ,n− r, (2.5)

pµ =
∂L

∂ẋµ
, µ = n− r + 1, . . . ,n, (2.6)

where qi are divided into two sets, qa and xµ. Since the rank of the
Hessian matrix is (n− r), we solve (2.5) for q̇a as

q̇a = q̇a
(
qi, ẋµ,pa; t

)
. (2.7)

Substituting (2.7) into (2.6), we get

pµ = −Hµ

(
qi, ẋµ,pa; t

)
. (2.8)

The canonical Hamiltonian H0 reads

H0 = paq̇a + pµẋµ|pν=−Hν −L(t,qi, ẋν, q̇a), µ,ν = n− r + 1, . . . ,n. (2.9)

The set of Hamilton-Jacobi partial differential equations (HJPDE) is ex-
pressed as

H ′
α

(
xβ,qa,

∂S

∂qa
,
∂S

∂xα

)
= 0, α,β = 0,n− r + 1, . . . ,n, (2.10)
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where

H ′
0 = p0 +H0, H ′

µ = pα +Hµ, (2.11)

we define pβ = ∂S[qa;xα]/∂xβ, and pa = ∂S[qa;xα]/∂qa with x0 = t and S
being the action. The equations of motion are obtained as total differen-
tial equations in many variables as follows [8, 9]:

dqa =
∂H ′

α

∂pa
dxα, dpa = −∂H

′
α

∂qa
dxα, dpβ = −∂H

′
α

∂xβ
dxα, (2.12)

dz =
(
−Hα + pa

∂H ′
α

∂pa

)
dxα, (2.13)

where z = S(xα;qa). These equations are integrable if and only if [12, 13]

dH ′
0 = 0, dH ′

µ = 0, µ = n− r + 1, . . . ,n. (2.14)

If conditions (2.14) are not satisfied identically, we consider them as new
constraints and again consider their variations. Thus, repeating this pro-
cedure, we may obtain a set of constraints such that all the variations
vanish. Simultaneous solutions of canonical equations with all these con-
straints produce the set of canonical phase space coordinates (qa,pa) as
functions of xα; the canonical action integral is obtained in terms of the
canonical coordinates. The Hamiltonian H ′

α can be interpreted as the in-
finitesimal generators of canonical transformations given by parameters
xα, respectively.

3. Examples

To illustrate the above ideas given in Section 2, we will solve three singu-
lar systems by the Lagrangian method [1, 2], and then by the Hamilton-
Jacobi method [8, 9, 12, 13, 15].

3.1. The Christ-Lee model

As a first example, consider the motion of a particle in two-dimensional
space whose dynamics are governed by the Lagrangian [7, 14]

L(xi, ẋi,q) =
1
2
ẋ2
i − εijxiẋiq+

1
2
q2x2

i −V
(
ρ2), (3.1)

where xi = x1, x2 are the rectilinear coordinates of the dimensional vector
�ρ so that x2

i = x2
1 +x2

2 = ρ2 and q is another coordinate. The antisymmetric
tensor εij is defined such that ε12 = 1.
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Now we investigate this model using the Lagrangian approach. The
Lagrangian equations of motion are given by [2]

ẍi + 2εijqẋj + εij q̇xj − q2xi +
∂V

∂xi
= 0, qρ2 − εijxiẋj = 0. (3.2)

To obtain the reduced Lagrangian, the coordinate q is now eliminated
from (3.1) using (3.2) to yield

Lr(xi, ẋi) =
(xiẋi)2

2x2
j

−V
(
ρ2). (3.3)

Introducing the polar decomposition

x1 = ρcosφ, x2 = ρsinφ, (3.4)

we obtain the unconstrained Lagrangian

L(ρ, ρ̇) =
1
2
ρ̇2 −V

(
ρ2), (3.5)

in terms of the physical variable ρ.
The reduced Hamiltonian is calculated as

H
(
ρ,πρ

)
= πρρ̇−L(ρ, ρ̇) =

1
2
π2
ρ +V

(
ρ2), (3.6)

where πρ = ρ̇ is the momenta conjugated to ρ.
We next consider the Hamilton-Jacobi [8, 9, 12, 13, 15] treatment of the

Christ-Lee model. The generalized momenta read as

πi = ẋi + qεijxj , πq = 0. (3.7)

Since the rank of the Hessian is two, we have only one primary con-
straint as

H ′
q = πq = 0. (3.8)

The canonical Hamiltonian reads

H0 =
1
2
π2
i + qεijπixj +V

(
ρ2). (3.9)

Following the Hamilton-Jacobi method, we obtain the set of HJPDE as

H ′
0 = p0 +

1
2
π2
i + qεijπixj +V

(
ρ2) = 0, H ′

q = πq = 0. (3.10)
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Imposing

dH ′
q = 0, (3.11)

leads to the constraint

H ′
1 = εijπixj = 0. (3.12)

The total variation of H ′
1 is identically zero and no further constraints

arise. Hence, we obtain the canonical Hamiltonian as

Hc =H0|H ′
1=0 =

1
2
π2
i +V

(
ρ2). (3.13)

Now making use of the following canonical transformations [1, 2, 7,
14]:

x1 = ρcosφ, x2 = ρsinφ,

π1 = πρ cosφ − πφ

ρ
sinφ, π2 = πρ sinφ +

πφ

ρ
cosφ,

(3.14)

and taking into account constraint (3.12), we obtain the canonical re-
duced Hamiltonian,

Hr
c =H0|H ′

1=0 =
1
2
π2
ρ +V

(
ρ2). (3.15)

The equivalence between (3.15) and (3.6) shows the gauge indepen-
dent way of obtaining the reduced Hamiltonian in terms of the physical
phase space (ρ,πρ).

The corresponding action integral has the following form:

z =
∫
dt

[
πρρ̇− 1

2
π2
ρ −V

(
ρ2)]. (3.16)

3.2. The extended Christ-Lee model

As a second example, we investigate the extended Christ-Lee model
[5], which is an extension of model (3.1), where we introduce a third
Cartesian coordinate z, such that the new Lagrangian reads [2, 5]

L
(
xi, ẋi, ż,q

)
=

1
2
ẋ2
i − gεijxiẋiq+

1
2
g2q2x2

i +
1
2
(ż− q)2 −V

(
x2

1 +x2
2

)
,

(3.17)
where g > 0 is a coupling parameter.
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As in the previous example, we obtain the reduced Hamiltonian
for the model (3.17) using first the Lagrangian approach and then the
Hamilton-Jacobi approach.

The Lagrangian equations of motion read as

ẍi + 2εijgqẋj + εij q̇gxj − q2g2xi +
∂V

∂xi
= 0, z̈− q̇ = 0, (3.18)

g2qx2
i − gεijxiẋj − ż+ q = 0. (3.19)

Equation (3.19) can be solved to obtain

q =
ż+ g

(
εijxiẋj

)
1+ g2

(
x2

1 +x2
1

) . (3.20)

Eliminating q from the Lagrangian (3.17) using (3.20) and the polar de-
composition (3.4), we obtain the reduced Lagrangian [2]

L =
1
2

[
ρ̇2 +

(
1+ g2ρ2)−1(

φ̇ − gż
)2
]
−V
(
ρ2). (3.21)

In order to obtain the reduced Hamiltonian, we introduce the new
variable

Φ = φ − gz, (3.22)

in this case the reduced Lagrangian is obtained in terms of the uncon-
strained variables as

L =
1
2

[
ρ̇2 +

(
1+ g2ρ2)−1(Φ̇)2

]
−V
(
ρ2). (3.23)

Now the canonically conjugated momenta are given by

πρ = ρ̇, πΦ =
ρ2

1+ g2ρ2
Φ̇. (3.24)

The reduced Hamiltonian is obtained in terms of the canonical variables
(ρ,πρ) and (Φ,πΦ) as

H =
1
2
π2
ρ +

1
2

(
g2 +

1
ρ2

)
π2
Φ +V

(
ρ2). (3.25)

We now follow the Hamilton-Jacobi method [8, 9, 12, 13, 15] to investi-
gate the extended Christ-Lee model. The set of Hamilton-Jacobi partial
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differential equations is given by

H ′
0 = p0 +H0 = 0, H ′

q = πq = 0, (3.26)

where H0 is given by

H0 =
1
2
(
π2
i +π2

z

)
+ q
(
πz + gεijxiπj

)
+V
(
ρ2). (3.27)

Imposing the integrability condition,

dH ′
q = 0, (3.28)

we obtain the constraint

H ′
1 = πz + gεijxiπj = 0. (3.29)

The total variation of H ′
1 is identically zero and no further constraints

arise. Making use of (3.29), the canonical reduced Hamiltonian is given
by

Hr
c =H0|H ′

1=0 =
1
2

[
π2

1

(
1+ g2x2

2

)
+π2

2

(
1+ g2x2

1

)− 2g2x1x2π1π2

]
+V
(
ρ2).
(3.30)

We should notice the equivalence of this Hamiltonian, modulo canonical
transformations, with expression (3.25). These transformations are given
by [1, 2, 14]

x1 = ρcosΦ, x2 = ρsinΦ,

π1 = πρ cosΦ− πΦ

ρ
sinΦ, π2 = πρ sinΦ+

πΦ

ρ
cosΦ.

(3.31)

Again, the equivalence between (3.30) and (3.25) shows the gauge in-
dependent way of obtaining the reduced Hamiltonian in terms of the
canonical phase space (ρ,πρ) and (Φ,πΦ).

Now, the action integral is calculated by making use of (2.13), (3.30),
and (3.31) as follows:

z =
∫
dt

[
πρρ̇+πΦΦ̇− 1

2
π2
ρ −

1
2

(
g2 +

1
ρ2

)
π2
Φ −V

(
ρ2)]. (3.32)
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3.3. Electromagnetic theory

As a third example, we consider the free electromagnetic theory as a
constrained system. The Lagrangian density is given by

L = −1
4
FµνFµν, µν = 0,1,2,3. (3.33)

We discuss the Lagrangian treatment of this model. The equations of
motion are

∂µF
µν = 0. (3.34)

For ν = 0, we have the constraint

∂2A0 + ∂0
(
∂iA

i) = 0. (3.35)

The multiplier A0 can be eliminated in favour of the other variables
by solving constraint (3.35). Using this, we express (3.33) in terms of
the reduced variables. The Lagrange equations in these variables are
[1, 2, 6]

∂jFji + ∂2
0

[(
δij −

∂i∂j

∂2

)
Aj

]
= 0. (3.36)

Now choosing the orthogonal polarization:

Ai =AT
i +AL

i , (3.37)

the reduced Lagrangian is obtained as

L =
1
2
ȦT2

i − 1
4
FT
ij

(
AT). (3.38)

Denoting the independent components of AT
i by aI (I = 1,2);

AT
i =
(
δiI − δi3

∂I
∂3

)
aI, (3.39)

the Lagrangian (3.33) is expressed in terms of independent variables aI .
Taking the Legendre transformation of this Lagrangian, we obtain the
reduced Hamiltonian,

Hr
0 =
∫
d3x

(
1
2

[(
δiI − ∂i∂I

∂2

)
πI

]2

+
1
4
F2
ij(a)

)
. (3.40)
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Now, we would like to investigate the electromagnetic theory of
Maxwell using the Hamilton-Jacobi method. The momenta conjugated
to the field Aµ are

πµ =
∂L
∂Ȧµ

= Fµ0. (3.41)

Therefore,

π0 = 0 (3.42)

is the primary constraint. The canonical Hamiltonian H0 is expressed as

H0 =
∫
d3x

(
1
4
FijFij +

1
2
π2 +πi∂iA0

)
. (3.43)

Starting from this Hamiltonian and making use of (2.11), the set of
Hamilton-Jacobi partial differential equations reads as

H ′
0 = π4 +H0 = 0, π4 =

∂S

∂t
,

H ′ = π0 = 0, π0 =
∂S

∂A0
.

(3.44)

Imposing dπ0 = 0, we obtain the constraint

∂iπ
i = 0. (3.45)

The total variation of constraint (3.45) is identically zero and no further
constraints arise.

Making use of the following transformations [1, 6]:

AT
i =
(
δiI − δi3

∂I
∂3

)
aI, πT

i =
(
δiI − ∂i∂I

∂2

)
πI, (3.46)

and using constraint (3.45), the Hamiltonian H0 gets further reduced to

Hr
0 =
∫
d3x

(
1
2
πT2

+
1
4
FT2

ij

)
, (3.47)
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where πT
i are the canonical momenta conjugated to AT

i and they satisfy
the following Poisson bracket relation:

{
AT

i (x),π
T
i (y)

}
= δijδ

3(�x − �y). (3.48)

The canonical action integral is calculated as

z =
∫ {

d3x

(
πIȧI − 1

2

[(
δiI − ∂i∂I

∂2

)
πI

]2

− 1
4
F2
ij(a)

)}
dt. (3.49)

4. Conclusion

In this work, we have investigated three constrained systems using the
Hamilton-Jacobi approach [8, 9, 12, 13, 15]. In this approach, the equa-
tions of motion are obtained as total differential equations in many vari-
ables. If the system is integrable, then we can obtain the canonical re-
duced Hamiltonian in terms of the canonical physical variables without
using any gauge fixing condition.

In the Christ-Lee model (3.1), using suitable canonical transforma-
tions (3.14) and taking into account the integrability conditions, we ob-
tain the reduced Hamiltonian in terms of canonical physical variables
(ρ,πρ) without using any gauge fixing conditions. The second example
is an extension of the Christ-Lee model. Again, using the canonical trans-
formations and taking into account the integrability conditions we deter-
mine the physical Hamiltonian in a gauge independent manner.

The third example is the electromagnetic theory of Maxwell, which
is an instructive example of singular continuous systems. This theory is
invariant under gauge transformations of the second kind, that is,

Aµ −→Aµ + ∂µF, (4.1)

where F is an arbitrary function. Therefore, the nonobservable quantity
Aµ is not unique. The Hamilton-Jacobi method is used to reduce the de-
grees of freedom and to obtain the physical Hamiltonian for this system
without using any gauge fixing condition.

For the three examples, the results obtained using the Hamilton-
Jacobi method are in complete agreement with those obtained by the
Lagrangian method [1, 2].
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