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We investigate the problem of free convection heat transfer near an iso-
thermal stretching sheet. This has been done under the simultaneous
action of buoyancy, radiation, and transverse magnetic field. The gov-
erning equations are solved by the shooting method. The velocity and
temperature functions are represented graphically for various values of
the flow parameters: radiation parameter F, free convection parameter
Gr, magnetic parameter M, Prandtl number Pr, and the parameter of rel-
ative difference between the temperature of the sheet, and the tempera-
ture far away from the sheet r. The effects of the radiation and magnetic
field parameters on the shear stress and heat flux are discussed.

1. Introduction

The study of the boundary layer behaviour on continuous surfaces is im-
portant because the analysis of such flows finds applications in different
areas such as the aerodynamic extrusion of a plastic sheet, the cooling of
a metallic plate in a cooling bath, the boundary layer along material han-
dling conveyers, and the boundary layer along a liquid film in conden-
sation processes. As examples on stretched sheets, many metallurgical
processes involve the cooling of continuous strips or filaments by draw-
ing them through a quiescent fluid and that in the process of drawing,
when these strips are stretched.

Sakiadis [7], first presented boundary layer flow over a continuous
solid surface moving with constant speed. Erickson et al. [4] extended
Sakiadis’ problem to include blowing or suction at the moving surface
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and investigated its effects on the heat and mass transfer in the boundary
layer. Danberg and Fansber [2] investigated the nonsimilar solution for
the flow in the boundary layer past a wall that is stretched with a velocity
proportional to the distance along the wall. P. S. Gupta and A. S. Gupta
[5] studied the heat and mass transfer corresponding to the similarity so-
lution for the boundary layer over an isothermal stretching sheet subject
to blowing or suction. Chen and Char [1] investigated the effects of vari-
able surface temperature and variable surface heat flux on the heat trans-
fer characteristics of a linearly stretching sheet subject to blowing or suc-
tion. Vajravelu and Hadyinicolaou [9] studied the convective heat trans-
fer in an electrically conducting fluid near an isothermal stretching sheet
and they studied the effect of internal heat generation or absorption.
Recently, Elbashbeshy [3] investigated heat transfer over a stretching
surface with variable and uniform surface heat flux subject to injection
and suction.

All the above investigations are restricted to MHD flow and heat
transfer problems. However, of late, the radiation effect on MHD flow
and heat transfer problems have become more important industrially.
At high operating temperature, radiation effect can be quite significant.
Many processes in engineering areas occur at high temperatures and a
knowledge of radiation heat transfer becomes very important for the de-
sign of the pertinent equipment. Nuclear power plants, gas turbines and
the various propulsion devices for aircraft, missiles, satellites, and space
vehicles are examples of such engineering areas. Takhar et al. [8] stud-
ied the radiation effects on MHD free convection flow for a non gray-gas
past a semi-infinite vertical plate.

In this paper, we propose investigating the radiation effect on steady
free convection flow near isothermal stretching sheet in the presence of
a magnetic field. The resulting coupled nonlinear ordinary differential
equations are solved by shooting methods. A solution for the velocity
and temperature functions are obtained. The shear stress and heat flux
have been computed.

2. Analysis

Here we consider the flow of an electrically conducting fluid, adjacent
to a vertical sheet coinciding with the plane y = 0, where the flow is con-
fined to y > 0. Two equal and opposite forces are introduced along the
x-axis (see Figure 2.1), so that the sheet is stretched keeping the origin
fixed. A uniform magnetic field of strength B0 is imposed along the y-
axis. The fluid is considered to be a gray, absorbing emitting radiation
but non-scattering medium and the Rosseland approximation [6] is used
to describe the radiative heat flux in the energy equation. The radiative
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Figure 2.1. Sketch of the physical model.

heat flux in the x-direction is considered negligible in comparison to the
y-direction.

Under the usual boundary layer approximation, the flow and heat
transfer in the presence of radiation are governed by the following equa-
tions:
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where u and v are the velocity components in the x and y-directions,
respectively, T is the temperature, g is the acceleration due to gravity, ν
is the fluid kinematics viscosity, ρ is the density, σ is the electric conduc-
tivity, β is the coefficient of thermal expansion, k is the thermal conduc-
tivity, cp is the specific heat at constant pressure, and qr is the radiative
heat flux. The boundary conditions of the problem are

u = cx, v = 0, T = Tw at y = 0,

u −→ u∞, T −→ T∞ as y −→∞,
(2.4)

where c > 0, Tw is the constant temperature of sheet, T∞ is the tempera-
ture far away from the sheet, and u∞ is the free stream velocity. By using
the Rosseland approximation [6], we have

qr = −4σ∗

3k∗
∂T4

∂y
, (2.5)
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where σ∗ is the Stefan-Boltzmann constant and k∗ is the mean absorption
coefficient. By using (2.5), the energy equation (2.3) becomes
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Introducing the following nondimensional parameters:
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, ȳ =

cyR

u∞
, ū =
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(2.7)

we can obtain the governing equation in dimensionless form as (with
dropping the bars)
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with the boundary conditions

u = x, v = 0, θ = 1 at y = 0,

u = 1, θ = 0 as y −→∞,
(2.10)

where M=σB2
0/ρc is the magnetic parameter, R=u∞/

√
cν is the Reynolds

number, Gr = gβ(Tw − T∞)/cu∞ is the free convection parameter, Pr =
µcp/k is the Prandtl number, F = kk∗/4σ∗T3

∞ is the radiation parameter,
µ = ρν is the viscosity of the fluid, and r = (Tw − T∞)/T∞ is the relative
difference between the temperature of the sheet and the temperature far
away from the sheet.

Introducing the stream function Ψ defined in the usual way

u =
∂Ψ
∂y

, v = −∂Ψ
∂x

, (2.11)
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equation (2.9) can then be written as
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and the boundary conditions (2.10) become

∂Ψ
∂y

= x,
∂Ψ
∂x

= 0, θ = 1 at y = 0,

∂Ψ
∂y

= 1, θ = 0 as y −→∞.

(2.13)

Introducing,

Ψ(x,y) = f(y) +xg(y), (2.14)

in (2.12) and equating coefficients of x0 and x1, we obtain the coupled
nonlinear ordinary differential equations

f ′′′ = f ′g ′ − gf ′′ +Mf ′ −Grθ, (2.15)

g ′′′ = g ′2 − gg ′′ +Mg ′, (2.16)(
3F + 4(1+ rθ)3)θ′′ + 3PrFgθ′ + 12r(1+ rθ)2θ′2 = 0. (2.17)

The primes above indicate differentiation with respect to y only. The
boundary conditions (2.13) in view of (2.14) is reduced to

f(0) = f ′(0) = g(0) = g ′(∞) = θ(∞) = 0, g ′(0) = θ(0) = f ′(∞) = 1.
(2.18)

The physical quantities interested in this problem are the skin friction
coefficient and the Nusselt number which are defined by
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)∣∣∣∣
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. (2.20)
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Table 2.1. Variation of f ′′, g ′′, θ′ at the plate surface with F, Gr, M,
and Pr parameters.

F Gr M Pr g ′′(0) θ′(0) f ′′(0)

1 0.5 0.1 0.73 −1.04771(−1.04881) −0.224411 0.820805

2 0.5 0.1 0.73 −1.04771(−1.04881) −0.297402 0.703769

3 0.5 0.1 0.73 −1.04771(−1.04881) −0.335702 0.656791

1 0 0.1 0.73 −1.04771(−1.04881) −0.224411 0.110292

1 0.5 0.1 0.73 −1.04771(−1.04881) −0.224411 0.820805

1 1 0.1 0.73 −1.04771(−1.04881) −0.224411 1.53188

1 0.5 0.01 0.73 −1.00398(−1.00499) −0.230155 1.12575

1 0.5 0.1 0.73 −1.04771(−1.04881) −0.224411 0.820805

1 0.5 0.5 0.73 −1.22325(−1.22474) −0.204004 0.513629

1 0.5 0.1 0.73 −1.04771(−1.04881) −0.224411 0.820805

1 0.5 0.1 2 −1.04771(−1.04881) −0.480357 0.523724

1 0.5 0.1 5 −1.04771(−1.04881) −0.882528 0.36651

Using (2.14), the quantities in (2.19) can be expressed as

τw = µcR
(
f ′′(0) +xg ′′(0)

)
, Nu =

cR

u∞
θ′(0). (2.21)

The effect of the parameters F, Gr, M, and Pr, on the functions f ′′, g ′′,
and θ′ at the plate surface is tabulated in Table 2.1 for r = 0.05.

3. Numerical procedure

The shooting method for linear equations is based on replacing the
boundary value problem by two initial value problems, and the solu-
tion of the boundary value problem is a linear combination between
the solutions of the two initial value problems. The shooting method
for the nonlinear boundary value problem is similar to the linear case,
except that the solution of the nonlinear problem cannot be simply ex-
pressed as a linear combination between the solutions of the two initial
value problems. Instead, we need to use a sequence of suitable initial
values for the derivatives such that the tolerance at the end point of
the range is very small. These sequences of initial values are given by
the secant method. The numerical computations have been done by the
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symbolic computation software Mathematica. The fourth-order Runge-
Kutta method is used to solve the initial value problems. The number of
grid points is 1000 and a value of ymax, the edge of the boundary layer,
ranging from 10 to 15.

The numerical approach is carried out in two stages. Equation (2.16)
has to be solved by the nonlinear shooting method to obtain g. Hence,
equations (2.15) and (2.17) reduce to a system of linear equations with
variable coefficients which could be solved by the linear shooting meth-
od to obtain f and θ. The functions f ′, g ′, and θ are shown in Figures 3.1,
3.2, and 3.3.

Pr = 0.73,Gr = 0.3,M = 0.01, F = 1, r = 0.05
Pr = 0.73,Gr = 0.3,M = 0.01, F = 4, r = 0.05
Pr = 0.73,Gr = 0.5,M = 0.01, F = 1, r = 0.05
Pr = 2,Gr = 0.3,M = 0.01, F = 1, r = 0.05
Pr = 0.73,Gr = 0.3,M = 0.01, F = 1, r = 0.3
Pr = 0.73,Gr = 0.3,M = 0.02, F = 1, r = 0.05
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Figure 3.1. Variation of the dimensionless velocity component f ′

with Pr,Gr,M,r, and F parameters.
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Figure 3.2. Variation of the dimensionless velocity component g ′

with M parameter.
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Figure 3.3. Variation of the dimensionless temperature θ with
Pr,M,r, and F parameters.

4. Results and discussion

The system of differential equations (2.15), (2.16), and (2.17) governed
by the boundary condition (2.18) was solved numerically by using the
shooting method. It is observed here that radiation does affect the ve-
locity and temperature field of free convection flow of an electrically
conducting fluid near isothermal stretching sheets in the presence of a
transverse magnetic field. Velocity components f ′ and g ′ as well as the
temperature θ distribution are presented in Figures 3.1, 3.2, and 3.3 for
various values of radiation parameter, magnetic field parameter, Prandtl
number, and Grashof number. Figure 3.1 shows the variation of f ′ for
several sets of values of the dimensionless parameters F, Pr, Gr, r, and
M. Moreover, Figure 3.1 shows that f ′ decreases with increasing the
radiation parameter F and Prandtl number Pr. It is seen, as expected,
that f ′ decreases with increasing the magnetic field parameter M. As
M increases, the Lorentz force, which opposes the flow, also increases
and leads to enchanted deceleration of the flow. This result qualitatively
agrees with the expectations, since the magnetic field exerts a retard-
ing force on the free convection flow. However, f ′ increases with an in-
crease in Grashof number Gr and the parameter of relative difference be-
tween the temperature of the sheet and the temperature far away from
the sheet r. Figure 3.2 describes the behavior of g ′ with changes in the
values of the magnetic field parameter M. It is seen, as expected, that
g ′ decreases with increasing the magnetic field parameter M. The ef-
fects of the parameters Pr, M, F, and r on the heat transfer are shown in
Figure 3.3. It is observed that the temperature increases with an increase
in r and M parameters. It is seen that the temperature θ decreases as the
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radiation parameter F increases. This result qualitatively agrees with ex-
pectations, since the effect of radiation is to decrease the rate of energy
transport to the fluid, thereby decreasing the temperature of the fluid. It
is also observed that the temperature decreases with an increase in the
Prandtl number Pr. This is in agreement with the physical fact that the
thermal boundary layer thickness decreases with increasing Pr.
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Figure 4.1. Variation of the heat flux θ′(0) with F and M parameters.
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Figure 4.2. Variation of f ′′(0) with F and M parameters.

Figures 4.1 and 4.2 describe the behavior of f ′′(0) and the heat flux
θ′(0) with changes in the values of the flow parameters F and M. We
observe that the effect of increasing M is the decrease in the wall
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temperature gradient θ′(0) and f ′′(0). On the other hand, the magnitude
of θ′(0) increases and f ′′(0) decreases as F increases. Furthermore, the
negative values of the wall temperature gradient, for all values of the
parameters, are indicative of the physical fact that the heat flows from
the sheet surface to the ambient fluid.

Finally, in order to verify the proper treatment of the present problem,
we will compare the obtained numerical solution with the exact values
of g ′′(0). The exact solution of (2.16) (g(y) = −v) is given by

g(y) =
1√

M+ 1

(
1− e−

√
M+1y

)
. (4.1)

In Table 2.1, the given numbers between brackets refer to the exact values
and the given numbers without brackets refer to the approximated val-
ues. Vajravelu and Hadyinicolaou [9] have obtained for g ′′(0) (M = 0.01)
the value of −1.0025, while our result is −1.00398 and the exact value
is −1.00499. Therefore, the present results are in satisfactory agreement
with the exact values.

References

[1] C. K. Chen and M. I. Char, Heat transfer of a continuous, stretching surface with
suction or blowing, J. Math. Anal. Appl. 135 (1988), no. 2, 568–580.

[2] J. E. Danberg and K. S. Fansber, Nonsimilar solution for the flow in the boundary
layer past a stretched wall, Quart. Appl. Math. 34 (1976), 305–311.

[3] E. M. A. Elbashbeshy, Heat transfer over a stretching surface with variable surface
heat flux, J. Phys. D: Appl. Phys. 31 (1998), 1951–1954.

[4] L. E. Erickson, L. T. Fan, and V. G. Fox, Heat and mass transfer on a moving
continuous flat plate with suction or injection, Indust. Eng. Chem. 5 (1966),
19–25.

[5] P. S. Gupta and A. S. Gupta, Heat and mass transfer on a stretching sheet with
suction or blowing, Canadian J. Chem. Engrg. 55 (1977), 744–746.

[6] W. M. Rohsenow, J. P. Hartnett, and Y. I. Cho (eds.), Handbook of Heat Transfer,
3rd ed., McGraw-Hill, New York, 1998.

[7] B. C. Sakiadis, Boundary layer behaviour on continuous solid surfaces: I. The
boundary layer equations for two-dimensional and axisymmetric flow, AIChE
J. 7 (1961), 26–28.

[8] H. S. Takhar, R. S. R. Gorla, and V. M. Soundalgekar, Radiation effects on MHD
free convection flow of a gas past a semi-infinite vertical plate, Internat. J. Nu-
mer. Methods Heat Fluid Flow 6 (1996), no. 2, 77–83.

[9] K. Vajravelu and A. Hadjinicolaou, Convective heat transfer in an electrically
conducting fluid at a stretching surface with uniform free stream, Internat. J.
Engrg. Sci. 35 (1997), no. 12-13, 1237–1244.

Ahmed Y. Ghaly: Department of Mathematics, Faculty of Education, Ain Shams
University, Roxy, Heliopolis, Cairo, Egypt



A. Y. Ghaly and E. M. E. Elbarbary 103

Elsayed M. E. Elbarbary: Department of Mathematics, Faculty of Education, Ain
Shams University, Roxy, Heliopolis, Cairo, Egypt

Current address: Department of Mathematics, Al Jouf Teacher College, Al Jouf,
Skaka, P.O. Box 269, Saudi Arabia

URL: http://elbarbary.cjb.net
E-mail address: eelbarbary@hotmail.com

http://elbarbary.cjb.net
mailto:eelbarbary@hotmail.com


Mathematical Problems in Engineering

Special Issue on

Time-Dependent Billiards

Call for Papers
This subject has been extensively studied in the past years
for one-, two-, and three-dimensional space. Additionally,
such dynamical systems can exhibit a very important and still
unexplained phenomenon, called as the Fermi acceleration
phenomenon. Basically, the phenomenon of Fermi accelera-
tion (FA) is a process in which a classical particle can acquire
unbounded energy from collisions with a heavy moving wall.
This phenomenon was originally proposed by Enrico Fermi
in 1949 as a possible explanation of the origin of the large
energies of the cosmic particles. His original model was
then modified and considered under different approaches
and using many versions. Moreover, applications of FA
have been of a large broad interest in many different fields
of science including plasma physics, astrophysics, atomic
physics, optics, and time-dependent billiard problems and
they are useful for controlling chaos in Engineering and
dynamical systems exhibiting chaos (both conservative and
dissipative chaos).

We intend to publish in this special issue papers reporting
research on time-dependent billiards. The topic includes
both conservative and dissipative dynamics. Papers dis-
cussing dynamical properties, statistical and mathematical
results, stability investigation of the phase space structure,
the phenomenon of Fermi acceleration, conditions for
having suppression of Fermi acceleration, and computational
and numerical methods for exploring these structures and
applications are welcome.

To be acceptable for publication in the special issue of
Mathematical Problems in Engineering, papers must make
significant, original, and correct contributions to one or
more of the topics above mentioned. Mathematical papers
regarding the topics above are also welcome.

Authors should follow the Mathematical Problems in
Engineering manuscript format described at http://www
.hindawi.com/journals/mpe/. Prospective authors should
submit an electronic copy of their complete manuscript
through the journal Manuscript Tracking System at http://
mts.hindawi.com/ according to the following timetable:

Manuscript Due March 1, 2009

First Round of Reviews June 1, 2009

Publication Date September 1, 2009

Guest Editors

Edson Denis Leonel, Department of Statistics, Applied
Mathematics and Computing, Institute of Geosciences and
Exact Sciences, State University of São Paulo at Rio Claro,
Avenida 24A, 1515 Bela Vista, 13506-700 Rio Claro, SP,
Brazil; edleonel@rc.unesp.br

Alexander Loskutov, Physics Faculty, Moscow State
University, Vorob’evy Gory, Moscow 119992, Russia;
loskutov@chaos.phys.msu.ru

Hindawi Publishing Corporation
http://www.hindawi.com

http://www.hindawi.com/journals/mpe/
http://www.hindawi.com/journals/mpe/
http://mts.hindawi.com/
http://mts.hindawi.com/

	1Call for Papers-4pt
	Guest Editors

