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We study the stochastic dynamics of banking items such as assets, capital, liabilities and
profit. A consideration of these items leads to the formulation of a maximization prob-
lem that involves endogenous variables such as depository consumption, the value of the
bank’s investment in loans, and provisions for loan losses as control variates. A solution
to the aforementioned problem enables us to maximize the expected utility of discounted
depository consumption over a random time interval, [t,τ], and profit at terminal time
τ. Here, the term depository consumption refers to the consumption of the bank’s profits
by the taking and holding of deposits. In particular, we determine an analytic solution
for the associated Hamilton-Jacobi-Bellman (HJB) equation in the case where the utility
functions are either of power, logarithmic, or exponential type. Furthermore, we analyze
certain aspects of the banking model and optimization against the regulatory backdrop
offered by the latest banking regulation in the form of the Basel II capital accord. In keep-
ing with the main theme of our contribution, we simulate the financial indices return on
equity and return on assets that are two measures of bank profitability.

Copyright © 2007 J. Mukuddem-Petersen et al. This is an open access article distributed
under the Creative Commons Attribution License, which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Our study of the dynamics and optimization of banking operations involves imperfectly
competitive market conditions. In this situation, it is guaranteed that profits are made
since the net loan interest margin is greater than the marginal resource cost of deposits
and loans. Besides competition policy, the decisions related to how much bank capital to
hold play an important role in profit-making with the association between capital, credit
issuing, and macroeconomic activity being of considerable significance. In our contribu-
tion, we present a banking model that takes cognizance of the balance sheet items such
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as assets (loans, treasuries, and reserves), liabilities (deposits), and bank capital (share-
holder equity and subordinate debt). As a consequence of this, we are able to formulate a
maximization problem that determines the optimal bank depository consumption over
a random time interval, [t,τ], and terminal profit at τ. In this case, the control variates
are the depository consumption, value of the bank’s investment in loans, and provisions
for loan losses. Here the term depository consumption refers to the consumption of the
bank’s profits by the taking and holding of deposits.

A further factor impacting the procedure for optimizing profit is the prudential aspects
of supervision and regulation. Currently, this banking regulation is embodied by the Basel
II capital accord (see [1, 2]) that will be implemented globally by the end of year 2007.
Basel II adopts a three-pillared approach with the ratio of bank capital to risk-weighted
assets (RWAs), also called the capital adequacy ratio (CAR), playing a major role as an
index of the adequacy of capital held by banks. Our study expresses the CAR as

CAR(ρ)= Bank capital(C)
Total RWAs(a)

, (1.1)

where the total RWAs, a, are comprised of risk-weighted loans, λ, and treasuries, T. In
particular, “procyclicality” has become a buzzword in discussions around the new regu-
latory framework offered by Basel II. In the sequel, the movement in a financial indicator
is said to be “procyclical” if it tends to amplify business cycle fluctuations. In this regard,
it is likely that during a recession a decrease in CARs and an increase in regulatory re-
quirements necessitated by the fall in the risk profile of assets may increase the possibility
of a credit crunch and result in poor economic growth. Also, since RWAs are sensitive to
risk changes, the CAR may increase while the actual levels of bank capital may decrease.
This means that a given CAR can only be sustained if banks hold more regulatory capital.
The most important role of capital is to mitigate the moral hazard problem that results
from asymmetric information between banks, depositors, and debtors. The Modigliani-
Miller theorem forms the basis for modern thinking on capital structure (see [3]). In an
efficient market, their basic result states that, in the absence of taxes, insolvency costs,
and asymmetric information, the bank value is unaffected by how it is financed. In this
framework, it does not matter if bank capital is raised by issuing equity or selling debt
or what the dividend policy is. By contrast, in our contribution, in the presence of loan
market frictions, the value of the bank is dependent on its financial structure (see, e.g.,
[4–7] for banking). In this case, it is well known that the bank’s decisions about lending
and other issues may be driven by the CAR (see, e.g., [8–12]). Further evidence of the
impact of capital requirements on the lending activities of banks is provided by [13].

In the recent past, research into credit models for monetary policy has considered
the relationship between bank capital and loan demand and supply (see, e.g., [14–20]).
This credit channel is commonly known as the bank capital channel and propagates that
a change in interest rates can affect lending via bank capital. We also discuss the effect
of macroeconomic activity on a bank’s capital structure and lending activities (see, e.g.,
[21]). With regard to the latter, for instance, there is considerable evidence to suggest that
macroeconomic conditions impact the probability of default and loss given default on
loans (see, e.g., [21, 22]).
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Empirical evidence suggests that financial indicators like credit prices, asset prices,
bond spreads, ratings from credit-rating agencies, provisioning, profitability, capital,
leverage and risk-weighted capital adequacy ratios, and other ratios such as write-off/loan
ratios and perceived risk, exhibit cyclical tendencies. As was mentioned before, this phe-
nomenon is related to procyclicality and is affected by a risk-sensitive framework such as
Basel II. A consequence of procyclicality is that banks tend to restrict their lending ac-
tivity during economic downturns because of their concern about loan quality and the
probability of loan defaults. This exacerbates the recession since credit constrained busi-
nesses, and individuals cut back on their investment activity. On the other hand, banks
expand their lending activity during boom periods, thereby contributing to a possible
overextension of the economy that may transform an economic expansion into an in-
flationary spiral. Our interest in cyclicality extends to its relationship with credit prices,
risk-weightings, provisioning, profitability, and capital (see, e.g., [15–17, 23–25]). As an
example, we incorporate in our models the fact that provisioning behaves procyclically
by falling during economic booms and rising during recessions.

Discrete- and continuous-time modeling and optimization problems in banking have
been studied in many recent publications (see, e.g., [6, 11, 14, 17, 21, 26–28]). The sto-
chastic model for profit in the present contribution can be considered to be the natural
analogue of the corresponding discrete-time model presented in [14] (see, also, [17]).
The paper [27] has an especially close connection with the present paper. However, in the
current contribution, a major difference is that we focus on profit maximization in the
banking sector whereas [28] (see, also, [27]) discusses an optimal control problem for
the profit of a more general class of institutions called depository financial institutions
(DFIs). Included in this class of institutions are, for instance, insurance companies and
pension schemes as well as investment banks. Our paper is also distinct from [28] in that
we define the problem on a random time interval while the analysis in the aforemen-
tioned contribution is confined to time intervals that are fixed. As a result, our discussion
is more general and closer to reality. On the other hand, [26] examines a problem related
to the optimal risk management of banks in a continuous-time stochastic dynamic set-
ting. In particular, we minimize market and capital adequacy risk that involves the safety
of the assets held and the stability of sources of capital, respectively. In this regard, we sug-
gest an optimal portfolio choice and rate of the bank capital inflow that will keep the loan
level as close as possible to an actuarially determined reference process. This setup leads
to a nonlinear stochastic optimal control problem whose solution may be determined by
means of the dynamic programming algorithm.

The main problems that are solved in this paper can be formulated as follows.

Problem 1.1 (dynamic modeling of banking items). Can we construct stochastic dy-
namic models to describe banking items such as profit in an economically sound manner?
(Section 2).

Problem 1.2 (banking profit maximization problem). Which decisions about the depos-
itory consumption, value of the investment in loans, and provisions for loan losses must
be made in order to maximize banking profit on a random time interval? (Theorems 3.2
and 3.6).
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In the sequel, the modeling and maximization issues raised in Problems 1.1 and 1.2
are discussed in Section 3, respectively. An analysis of the main economic issues is done
in Section 4. Finally, Section 5 offers a few concluding remarks and topics for possible
future research.

2. Stochastic model for banks

The Basel II capital accord (see, e.g., [1, 2]) encourages banks to view balance sheet items
from the viewpoint of the riskiness of assets held and the adequacy of their capital. In
this spirit, we consider a balance sheet that consists of assets (uses of funds) and liabilities
(sources of funds) that are balanced by bank capital (see, e.g., [5]). This leads to the well-
known relation

Total Assets(A)= Total Liabilities(Γ) + Total Bank Capital(C), (2.1)

where

At =Λt +Tt +Rt, Γt = Δt, Ct = ntEt− +Ot. (2.2)

Here, the symbols Λ, T, R, Δ, n, E, and O denote loans, treasuries, reserves, deposits,
number of shares in bank equity, bank equity, and subordinate debt, respectively.

2.1. Assets. In this subsection, the bank assets that we discuss are loans, treasuries, re-
serves, and risk-weighted assets. In the sequel, we suppose that (Ω,F, (�t)t≥0,P) is a fil-
tered probability space.

2.1.1. Loans. We suppose that, after providing liquidity, the bank grants loans at the inter-
est rate on loans or loan rate, rΛt . Due to the expenses related to monitoring and screening,
we assume that these loans incur a constant marginal cost, cΛ. In addition, we introduce
the generic variable, Mt, that represents the level of macroeconomic activity in the bank’s
loan market. Also, we assume that the loan supply process, Λ, follows the geometric Brow-
nian motion process

dΛt =Λt
{(
rΛt − cΛ

)
dt+ σtdZt

}
, (2.3)

where σt > 0 denotes the volatility in the loan supply and Zt is a standard Brownian mo-
tion with respect to a filtration, (�t)t≥0, of the probability space (Ω,F, (�t)t≥0,P). The
value of the bank’s investment in loans, λ, at t is expressed as

λt = nΛt Λt, (2.4)

where nΛt is the number of loans at t.

2.1.2. Provisions for loan losses. The bank’s investment in loans may yield substantial re-
turns but may also result in loan losses. In line with reality, our dynamic banking model
allows for loan losses for which provision can be made. We also briefly consider the sce-
nario in which the bank makes no provision for such losses. The accompanying default
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risk is modeled as a compound Poisson process where N is a Poisson process with a deter-
ministic frequency parameter, φ(t). Here,N is stochastically independent of the Brownian
motion, Z, given in (2.3). Furthermore, we introduce the value of loan losses as

L
(
Mt, t

)= rd
(
Mt
)
λt, (2.5)

where L is independent of N . The formula for L(Mt,s), presented in (2.5), can also be ex-
pressed in terms of profit, Π, as L(Πt,s), by virtue of the evidence from empirical studies
that suggest that a strong positive correlation between Mt and Πt exists (see the discussion
on the procyclicality of bank profitability in, e.g., [23, 24]). Also, we assume that the de-
fault or loan loss rate, rd ∈ [0,1], increases when macroeconomic conditions deteriorate
according to

0≤ rd
(
Mt
)≤ 1,

∂rd
(
Mt
)

∂Mt
< 0. (2.6)

As was the case with the relationship between profit and macroeconomic activity, the
above description of the loan loss rate is consistent with empirical evidence that suggests
that bank losses on loan portfolios are correlated with the business cycle under any cap-
ital adequacy regime (see, e.g., [23–25, 29]). Furthermore, we assume that the provision
made by the bank for loan losses takes the form of a continuous contribution that can be
expressed as

[
1 + θ(s)

]
φ(s)E

[
Ps(L)

]
, (2.7)

where θ is a credit risk compensatory term, θ(t) ≥ 0, and Pt is the actual provision for
loan losses. This means that if the bank suffers a loan loss of λ= l at time t, the provision,
Pt(l), covers these losses. The actual manner in which banks make provision for loan
losses can differ greatly. However, there is invariably some cost incurred by the bank in
administering the process. In this regard, we denote the costs associated with the bank
provisioning for loan losses by cP (see, e.g., [23, 25, 29]).

2.1.3. Treasury securities. Treasury securities are bonds issued by national treasuries. They
are the debt financing instruments of the federal government and are often referred to
as “treasuries.” There are four types of treasuries: treasury bills, treasury notes, treasury
bonds, and savings bonds. All of the treasury securities besides savings bonds are very
liquid. They are heavily traded on the secondary market. We denote the interest rate on
treasuries or treasury rate by rTt and assume that for all t, we have

rΛt − cΛ > rTt . (2.8)

2.1.4. Reserves. Bank reserves are the deposits held in accounts with a national agency
(e.g., the Federal Reserve for banks) plus money that is physically held by banks (vault
cash). Such reserves are constituted by money that is not lent out but is earmarked to
cater for withdrawals by depositors. Since it is uncommon for depositors to withdraw all
of their funds simultaneously, only a portion of total deposits will be needed as reserves.
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As a result of this description, we may introduce a reserve-deposit ratio, γ, for which

Rt = γΔt . (2.9)

The bank uses the remaining deposits to earn profit either by issuing loans or by investing
in assets such as treasuries and stocks.

2.1.5. Risk-weighted assets. We consider risk-weighted assets (RWAs) that are defined by
placing each on- and off-balance sheet item into a risk category. The more risky assets are
assigned a larger weight. Table 2.1 below provides a few illustrative risk categories, their
risk-weights, and representative items.

As a result, RWAs are a weighted sum of the various assets of the banks. In the sequel,
we denote the risk-weight on treasuries and loans by ωT and ωλ, respectively. With regard
to the latter, we can identify a special risk-weight on loans ωλ = ω(Mt) that is a decreasing
function of current macroeconomic conditions, that is,

∂ω
(
Mt
)

∂Mt
< 0. (2.10)

This is in line with the procyclical notion that during booms, when macroeconomic ac-
tivity increases, the risk-weights will decrease. On the other hand, during recessions, risk-
weights may increase because of an elevated probability of default and/or loss given de-
fault on loans (see, e.g., [23–25]).

2.2. Capital. In this subsection, we discuss total bank capital, binding capital constraints,
and retained earnings for a bank.

2.2.1. Total bank capital. The bank’s total capital, C, has the form

Ct = CT1
t +CT2

t , (2.11)

where CT1
t and CT2

t are Tier 1 and Tier 2 capital, respectively. Tier 1 (T1) capital is the
book value of bank capital defined as the difference between the accounting value of the
assets and liabilities. In our contribution, Tier 1 capital is represented at t−’s market value
of the bank equity, ntEt− , where nt is the number of shares and Et is the market price of the
bank’s common equity at t. Tier 2 (T2) capital consists of preferred stock and subordinate
debt. Subordinate debt is subordinate to deposits and hence faces greater default risk. Tier
2 capital, Ot, issued at t− is represented by bonds that pay an interest rate, rO (see, e.g.,
[14]).

2.2.2. Binding capital constraints. To reflect the book value property of regulatory capital
and its market valuation sensitivity, we assume that at t−, the market value of equity and
treasuries determines the capital constraint to which the bank is subjected at t. While
there are several capital constraints associated with Basel II, it is easy to show that the
binding one is the total capital constraint. This constraint requires that

ρt = Ct

at
≥ 0.08. (2.12)
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Table 2.1. Risk categories, risk-weights, and representative Items.

Risk category Risk-weight Banking items

1 0% Cash, reserves, treasuries

2 20% Shares

3 50% Home loans

4 100% Loans to private agents

For the regulatory ratio of total capital to risk-weighted loans plus treasuries, ρr , a capital
constraint may be represented by

ρr
[
ωλλt +ωTTt

]≤ ntEt− +Ot. (2.13)

As a result of (2.13), it is not necessary to differentiate between the relative cost of rais-
ing debt versus equity. Moreover, when maximizing profits, we consider the regulatory
ratio of total capital to risk-weighted loans, ρr , as an appropriate capital constraint. This
means that we may set ωλ = ω(Mt) and ωT = 0 in (2.13), and express the binding capital
constraint as

ρrω
(
Mt
)
λt ≤ ntEt− +Ot. (2.14)

The exact value of the regulatory ratio, ρr , may differ markedly from institution to insti-
tution (see, e.g., [7, 12]). In fact, subject to an appropriate choice for ρr , some banks may
consider that the equality in (2.14) implies an optimal choice of the investment in loans,
λ, so that

λ∗t =
ntEt− +Ot

ρrω
(
Mt
) . (2.15)

2.3. Liabilities. We only consider the banking item deposits in the category of liabilities.

2.3.1. Deposits. The bank takes deposits, Δt, at a constant marginal cost, cΔ, that may be
associated with cheque clearing and bookkeeping. It is assumed that deposit taking is not
interrupted even in times when the interest rate on deposits or deposit rate, rΔt , is less than
the treasuries rate, rTt . In the sequel, we express the depository consumption, k, as

kt =
[
rΔt + cΔ

]
Δt . (2.16)

It is realistic to take cognizance of the possibility that unanticipated deposit withdrawals,
u, will occur. By way of making provision for these withdrawals, the bank is inclined to
hold reserves, R, and treasuries, T, that are very liquid. In our contribution, we assume
that u is related to the probability density function, f (u), that is independent of time.
For the sake of argument, we suppose that the unanticipated deposit withdrawals have a
uniform distribution with support [Δ,Δ] so that the cost of liquidation, cl, or additional
external funding is a quadratic function of the sum of reserves and treasuries, W = R+T.
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In addition, for any t, if we have that

u >Wt, (2.17)

then bank assets are liquidated at some penalty rate, r
p
t . In this case, the cost of deposit

withdrawals is

cw
(
Wt
)= r

p
t

∫∞

Wt

[
u−Wt

]
f (u)du= r

p
t

2Δ

[
Δ−Wt

]2
. (2.18)

2.4. Profit. Suppose that the values of the bank’s investment in loans, λ, loan losses, L,
depository consumption, k, and cost of withdrawals, cw(Wt), are given by (2.4), (2.5),
(2.16), and (2.18), respectively. Here, the differential equation for the profit dynamics of
banks that make provision for loan losses may be represented as

dΠs =
[
rTs Πs +

(
rΛs − cΛ− rTs

)
λs +μa(s)− ks−

[
1 + θ(s)

]
φ(s)E

[
Ps(L)

]]
ds

− cw
(
Ws
)

+ σsλsdZs−
{
L
(
Πs,s

)−Ps
(
L
(
Πs,s

))}
dNs, s≥ t, Πt = π,

(2.19)

where μa(s) is the rate term for auxiliary profits that may be generated from activities such
as special screening, monitoring, liquidity provision, and access to the payment system.
Also, this additional profit may be generated from imperfect competition, barriers to
entry, exclusive access to cheap deposits or tax benefits. On the other hand, the expression
for the profit dynamics of banks that make no provision for loan losses may be given by

dΠs =
[
rTs Πs +

(
rΛs − cΛ− rTs

)
λs +μa(s)− ks

]
ds

− cw
(
Ws
)

+ σsλsdZs−L
(
Πs,s

)
dNs, s≥ t, Πt = π.

(2.20)

3. Optimization on random time intervals

In this section, we make use of the models constructed in the preceding discussion to
solve an optimization problem for banks. An important feature of our analysis is that this
problem is considered on a random time interval, [t,τ].

3.1. Statement of the optimization problem. In the sequel, we study a special case of
(2.19) in which

cw
(
Wt
)= 0, rTs = rT, rΛs = rΛ, σs = σ. (3.1)

As a consequence of these choices, we have that

dΠs =
[
rTΠs +

(
rΛ− cΛ− rT

)
λs +μa(s)− ks−

[
1 + θ(s)

]
φ(s)E

[
Ps(L)

]]
ds

+ σλsdZs−
{
L
(
Πs,s

)−Ps
(
L
(
Πs,s

))}
dNs, s≥ t, Πt = π.

(3.2)

We suppose that the bank aims to optimize (over allowable {kt,λt,Pt}) its expected utility
of the discounted depository consumption during a random time interval, [t,τ], and
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profit at terminal random time, τ. In this case, the set of admissible controls, �, may be
given by

�= {(kt,λt,Pt
)

: measurable with respect to �t, (3.2) has a unique solution.
}
. (3.3)

Also, the value function may be represented by

V(π, t)= sup
{kt ,λt ,Pt}

E
[∫ τ

t
exp

{− δ(s− t)
}
U (1)(ks

)
ds+ exp

{− δ(τ− t)
}
U (2)(Πτ

) |Πt = π
]
.

(3.4)

Here the utilities, U (1) and U (2), are increasing, twice-differentiable, concave functions,
and δ > 0 is the rate at which the depository consumption and terminal profit are dis-
counted. The functions U (1) and U (2) measure the utility of depository consumption and
terminal profit, respectively. An interesting problem is to determine whether we can ob-
tain a smooth or analytical solution for the Hamilton-Jacobi-Bellman (HJB) equation
resulting from the above. In the sequel, we accomplish this for the choices of exponen-
tial, power, and logarithmic utility functions. In this regard, we align our optimization
procedure with the methodology suggested in such contributions as [30].

Next, the stochastic optimization problem for bank depository consumption and ter-
minal profit on a random time interval, [t,τ], is formulated.

Problem 3.1 (optimal depository consumption and profit). Suppose that � �= ∅, where
the admissible class of control laws, �, is given by (3.3). Also, consider the SDE for the
Π-dynamics from (3.2) and the value function, V : �→ R+, given by (3.4). In this case,
solve

sup
kt ,λt ,Pt

V
(
Π;kt,λt,Pt

)
(3.5)

and, if it exists, the optimal control law (k∗t ,λ∗t ,P∗t ) given by

(
k∗t ,λ∗t ,P∗t

)= arg sup
kt ,λt ,Pt

V
(
Π;kt,λt,Pt

)∈�. (3.6)

3.2. Solution to the optimization problem. In this subsection, we solve Problem 3.1 on
the random time interval [t,τ]. In Theorem 3.2, DtV(π, t), DπV(π, t), and DππV(π, t)
denote first- and second-order partial derivatives of V with respect to the variables t and
π, where appropriate. For example, DππV(π, t) is the second partial derivative of V with
respect to π. A general solution (without utility choices being made) of Problem 3.1 is
given in the next result.

Theorem 3.2 (general solution of Problem 3.1). Suppose that the value function, V(π, t),
is given by (3.4). In this case, a solution to the loan component of Problem 3.1 is of the form

λ∗t =−
rΛ− cΛ− rT

σ2

DπV
(
Π∗t , t

)

DππV
(
Π∗t , t

) , (3.7)
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where Π∗t is the optimally controlled profit. Also, the optimal depository consumption, {k∗t },
solves the equation

DkU
(1)(k∗t

)=DπV
(
Π∗t , t

)
. (3.8)

Proof. In our proof, via the dynamic programming approach, V solves the Hamilton-
Jacobi-Bellman (HJB) equation

δV(π, t)=DtV(π, t) + max
λ

[
((
rΛ− cΛ

)− rT
)
λDπV(π, t) +

1
2
σ2λ2DππV(π, t)

]

+max
k

[
U (1)(k)− kDπV(π, t)

]
+
(
rTπ +μa(t)

)
DπV(π, t)

+max
P

[
φ(t)

{
EV
(
π−(L−P(L)

)
, t
)−V(π, t)

}−(1+θ(t)
)
φ(t)E

[
P(L)

]
DπV(π, t)

]

+ηp(t)
[
U (2)(π)−V(π, t)

]

lim
s→∞E

[
exp

{
−
∫ s

t

(
δ +ηp(u)

)
du
}
V
(
Π∗s ,s

) |Π∗t = π
]
= 0,

(3.9)

where ηp(t) is the rate of inclination towards bankruptcy at time t of a bank which has
been in existence for the time p+ t.

We note that the value function, V , is increasing and concave with respect to profit π,
because the utility functions U (1) and U (2) are increasing and concave and because the
differential equation for profit is linear with respect to the controls. These observations
culminate in the fact that the optimal investment strategy in (3.7) holds. �

3.2.1. Optimal provisioning process. Suppose that the profit dynamics of banks that make
provision for loan losses are represented by (2.19) and the dynamics of banks that make
no provision are given by (2.20). With regard to the optimal provisioning process, P∗ =
{P∗t }0≤t≤τ , we have the following result from [28].

Proposition 3.3 (optimal provisioning process). Suppose that the value function, V(π, t),
is described by (3.4).

(1) The optimal provisioning process, P∗, is either no provisioning or per-loan loss pro-
visioning, in which the provisioning costs may vary with respect to time. Specifically,
at a given time, the optimal provisioning costs cP∗ = {cP∗t }0≤t≤τ solve

[
1− θ(t)

]
DπV

(
Π∗t , t

)=DπV
(
Π∗t − cPt , t

)
. (3.10)

No provisioning is optimal at time t if and only if

[
1− θ(t)

]
DπV

(
Π∗t , t

)≥DπV
(
Π∗t − esssupλ

(
Π∗t , t

)
, t
)
. (3.11)

(2) An increase in the instantaneous price of provisioning reduces the instantaneous
inclination towards provisioning.

(3) Suppose that c
p∗
t exists. In this case, if V in (3.4) exhibits decreasing absolute risk

aversion with respect to profit, then the inclination towards provisioning decreases
with increasing profit.
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We are now in a position to make our utility choices mentioned earlier, namely, expo-
nential, power, and logarithmic utility functions.

3.2.2. Optimization with exponential utility. Suppose

U (1)(k)= 0, U (2)(π)=−1
γ

exp{−γπ}, γ > 0. (3.12)

We can verify the following result.

Theorem 3.4 (optimization with exponential utility). Suppose that the exponential utili-
ties are given as in (3.12) and assume that the loan loss L is independent of profit, with the
probability distribution of L being a deterministic function of time. In this case,

V(π, t)= f (t)exp{−γπ} (3.13)

in which f (t) solves

f ′ +G(t) f = ηp(t)
γ

,

G(t)= φ(t)
[

exp
{
γcP

∗}− 1 +
(
1 + θ(t)

)(
L(t)− cP

∗
t

)
γ
]−

(
rΛ− cΛ

)2

2σ2
+π(t)γ+ηp(t) + δ.

(3.14)

Assume that the parameter values are such that f (t) < 0. Moreover, optimal provisioning
cost is given by

c
p∗
t =min

[
1
γ

ln
(
1 + θ(t)

)
,esssupL(t)

]
. (3.15)

The optimal bank investment in loans is

λ∗t =
rΛ− cΛ

σ2γ
, (3.16)

and the optimal consumption is given by

k∗t = 0. (3.17)

Proof. The proof proceeds via standard arguments from stochastic optimization theory
in continuous time. For instance, the formula for the optimal provisioning cost, c

p∗
t , in

(3.15) is a direct consequence of Proposition 3.3. Also, the optimal bank investment in
loans, λ∗t , given by (3.16) can be derived from an application of (3.7) in Theorem 3.2 to
the expression for V(π, t) in (3.13). From U (1)(k)= 0, it follows that the optimal deposi-
tory consumption is identically 0 as in (3.17). �

3.2.3. Optimization with exponential utility and a once-off provisioning payment. Suppose
that, as in Section 3.2.2, we consider the utility functions

U (1)(k)= 0, U (2)(π)=−1
γ

exp{−γπ}, γ > 0. (3.18)
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Furthermore, we assume that the model is stationary so that

μa(t)≡ μa, φ(t)= φ, θ(t)≡ θ, ηp(t)≡ ηp. (3.19)

Also, we suppose that the loan loss, L, does not depend on time and profit, and the loan
loss provisions are made as a single payment at time t and are equal in value to the product
of the expected present value of the loan loss and the credit risk compensatory term, 1 + θ.
As a consequence, the single provisioning payment made at time t is given by

1
ηp (1 + θ)φE

(
L− cp

)
+. (3.20)

Since the model is stationary, the provisioning installment payable at time t is indepen-
dent of t. In this situation, for a fixed cost of provisioning, cp, the value function V(π)
(cf. (3.9)) solves

δV = μaDtV −
(
rΛ− cΛ

)2(
DtV

)2

2σ2DttV
+φ
{

EV
(
π−L∧ cp

)−V(π)
}

+ηp
[
U (2)(π)−V

]
,

lim
s→∞E

[
exp

{− (δ +ηp
)
(s− t)

}
V
(
Π∗
) |Π∗t = π

]= 0.

(3.21)

This means that

V(π)=−1
γ

exp{−γπ} ηp

ηp + δ + ρ + γμa− θ
[
ML∧cp(γ)− 1

] , (3.22)

where

ρ=
(
rΛ− cΛ

)2

2σ2
. (3.23)

The next result follows from the preceding discussion.

Theorem 3.5 (optimization with exponential utility and a once-off provisioning install-
ment). Assume that the conditions are as given in Theorem 3.4 and that (3.19) and (3.20)
hold. Furthermore, suppose that the exponential utilities are defined by (3.18) and that

ηp + δ + ρ + γμa− θ
[
ML∧cp(γ)− 1

]
> 0. (3.24)

The optimal provisioning cost solves

ηp exp
{
γcp
}= (1 + θ)

(
ηp + δ + ρ + γμa− θ

[
ML∧cp(γ)− 1

])
. (3.25)

Furthermore, the optimal bank investment in loans is

λ∗t =
rΛ− cΛ

σ2γ
, (3.26)

and the optimal consumption is given by

k∗t = 0. (3.27)
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Proof. We note that we maximize

V
(
π− 1

ηp (1 + θ)φE
(
L− cp

)
+

)
, (3.28)

with respect to cp, in order to conclude that (3.25) should hold. �

3.2.4. Optimization with power utility. In this regard, for a choice of power utility, we
have that

U
(1)

(k)= kα

α
, U

(2)
(π)= b

πα

α
(3.29)

for some 0 �= α < 1 and b ≥ 0. The parameter b represents the weight that the bank gives
to terminal profit versus depository consumption and can be viewed as a measure of the
bank’s inclination towards deposit taking. This leads to the following important result.

Theorem 3.6 (optimization with power utility). Suppose that the additional profit rate is
zero, the power utilities are given as in (3.29), and assume that the loan loss is proportional
to profit via

L
(
Πt, t

)= β(t)Πt (3.30)

for some deterministic loan loss severity function, β, where 0≤ β(t)≤ 1. In this case,

V(π, t)= πα

α
ξ(t). (3.31)

Here, ξ solves the nonlinear, nonhomogeneous, differential equation

0= ξ′ −Hξ + (1−α)ξ
α/α−1

+ bηp(t) (3.32)

with

H =H(t) +ηp(t), (3.33)

in which H is given by

H(t)= δ +φ(t)− κα+
(
1 + θ(t)

)
φ(t)αmax

(
0,
(
1 + θ(t)

)1/1−α− (1−β(t)
))

−φ(t)max
((

1 + θ(t)
)1/1−α

,1−β(t)
)

,

κ= rT +

(
rΛ− cΛ− rT

)2

2σ2(1−α)
.

(3.34)

Assume the parameters are such that ξ(t) > 0. This implies that the optimal provisioning cost
is

c
p∗
t =min

[
1− (1 + θ(t)

)1/α−1
,β(t)

]
Π∗t , (3.35)
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the optimal consumption is given by

k∗t =DπV
1/1−α = ξ(t)1/1−αΠ∗t , (3.36)

and the optimal bank investment in loans is

λ∗t =
rΛ− cΛ− rT

σ2(1−α)
Π∗t . (3.37)

Proof. The proof relies on standard arguments from stochastic optimization theory. Also,
(3.36) is determined by using (3.8) with power utility. �

The following corollary to Theorem 3.6 comments on the relationship between for-
mulas for the optimal bank investment in loans, λ∗, obtained in (2.15) and (3.37).

Corollary 3.7 (optimization with power utility). Suppose that the optimal bank invest-
ment in loans, λ∗, given by (2.15) and (3.37) are equal. Then, a formula for the optimal
profit is given by

Π∗t =
σ2(1−α)

(
ntEt− +Ot

)

ρrω
(
Mt
)(
rΛ− cΛ− rT

) . (3.38)

3.2.5. Optimization with logarithmic utility. Suppose that the value function, V(π, t), is
described by

Ũ (1)(k)= lnk, Ũ (2)(π)= b lnπ. (3.39)

Corollary 3.8. Assume that the value function is given by (3.39). Then, the optimal pro-
visioning cost and bank investment in loans are consistent with the results for α �= 0. The
optimal consumption is given by

k∗t =DπṼ
−1(π, t)= ξ̃(t)−1Π∗t , (3.40)

where ξ̃(t) is given by

ξ̃(t)= bA
δ
x+t . (3.41)

4. Analysis of the main economic issues

In accordance with the dictates of Basel II, the models of banking items constructed in
this paper are related to the methods currently being used to assess the riskiness of bank
portfolios and their minimum capital requirement (see [1, 2]).

4.1. Stochastic banking model. In this subsection, we analyze aspects of banking items
as introduced in Section 2. As far as the bank behavior is concerned, we make a specific
choice of the “bank capital channel” approach as alluded to in such contributions as [14–
20].
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4.1.1. Assets. Section 2.1.1 suggests that the dynamics of the macroeconomic process,
M = {Mt}t≥0, may follow the geometric Brownian motion process

dMt =Mt
[
μMt dt+ σMt dZM

t

]
, (4.1)

where σMt and ZM
t denote volatility in macroeconomic activity and the Brownian motion

driving the macroeconomic activity, respectively.
Our model also allows us to comment on loan demand. In this regard, the bank may

face a Hicksian demand for loans given by

Λt = lo− l1

∫ t

0
rΛs ds+

∫ t

0
σΛs dZ

d
s + l2Mt, (4.2)

where σΛs and Zd
s denote volatility in the loan demand and the Brownian motion driv-

ing the demand for loans (which may be correlated with the macroeconomic activity),
respectively. We note that the loan demand in (4.2) is an increasing function of M and a
decreasing (increasing) function of

∫ t
0 r

Λ
s ds > 0(< 0).

4.1.2. Capital. Despite the effort made in Section 2.2, bank capital has proven to be diffi-
cult to define, monitor, and measure. For instance, the valuing of all the bank’s financial
instruments and other assets is key in measuring equity, E. In our case, the modeling of
E is largely motivated by the following two observations. Firstly, it is meant to reflect the
nature of the book value of equity and the second observation being recognized is that the
book and market value of equity is highly correlated. Under Basel II, the bank capital re-
quirements have replaced reserve requirements (see Section 2.1.4) as the main constraint
on the behaviour of banks. A first motivation for this is that bank capital has a major role
to play in overcoming the moral hazard problem arising from asymmetric information
between banks, creditors, and debtors. Also, bank regulators require capital to be held to
protect themselves against the costs of financial distress, agency problems, and the reduc-
tion of market discipline caused by the safety net. And again, it is only proper to provide
for deposit withdrawals.

Section 2.2.2 suggests that a close relationship exists between bank capital holding and
macroeconomic activity in the loan market. As was mentioned before, Basel II dictates
that a macroeconomic shock will affect the loan risk-weights in the CAR. In general,
a negative (positive) shock results in the tightening (loosening) of the capital constraint
given by (2.14). As a consequence, in terms of a possible binding capital constraint, banks
are free to increase (decrease) the loan supply when macroeconomic conditions improve
(deteriorate). On the other hand, if the risk-weights are constant, a shock does not af-
fect the loan supply, but rather results in a change in the loan rate when the capital
constraint binds. It is not always true that the Basel II risk-sensitive weights lead to an
increase (decrease) in bank capital when macroeconomic activity in the loan market in-
creases (decreases). A simple explanation for this is that macroeconomic conditions not
only necessarily affect loan demand but also influence the total capital constraint from
(2.14). Furthermore, banks do not necessarily need to raise new capital to expand their
loan supply since a positive macroeconomic shock may result in a decrease in the RWAs
with a corresponding increase in CARs (cf. (1.1)). Similiarly, banks are not compelled to
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decrease their capital when the loan demand decreases since the capital constraint usually
tightens in response to a negative macroeconomic shock. A further complication is that
an improvement in economic conditions may result in an increase in the loan demand
and, as a consequence, an increase in the probability that the capital constraint will be
binding. Banks may react to this situation by increasing capital to maximize profits (cf.
the definition of the return on equity (ROE) presented subsequently in Section 4.1.4).
Our main conclusion is that bank capital is procyclical because it is dependent on fluctu-
ations in loan demand which, in turn, is reliant on macroeconomic activity.

4.1.3. Liabilities. In some quarters, the deposit rate, rΔ, described in Section 2.3.1 from
Section 2.3, is considered to be a strong approximation of bank monetary policy. Since
such policy is usually affected by macroeconomic activity, M, we expect the aforemen-
tioned items to share a close connection.

4.1.4. Profit. We are able to establish a connection between our research and the two main
measures of bank profitability. The first measure is the return on assets (ROA) which may
be given by

ROA= Net Profit After Taxes
Assets

. (4.3)

The ROA provides information about how much profit is generated per average by each
unit of assets. Therefore, the ROA is an indicator of how efficiently a bank is being man-
aged. The second measure is the return on equity (ROE) that is represented by

ROE= Net Profit After Taxes
Equity Capital

. (4.4)

The ROE provides information about how much shareholders are earning on their in-
vestment in the bank equity.

4.1.5. Numerical results. We would like to simulate the two measures of profitability,
namely, return on assets (ROA) and return on equity (ROE) mentioned in Section 4.1.4.
In order to accomplish this, we use appropriate data provided by the US Federal Deposit
Insurance Corporation (FDIC) on their website [31]. The relevant data about ROA and
ROE are provided in Tables 4.1 and 4.2 with the corresponding simulations being pre-
sented subsequently in Figures 4.1 and 4.2.

Table 4.1 provides data of both ROA and ROE from the year 1999 to the year 2005.
Also, Table 4.2 contains all the parameters used in the calculations which lead to the simu-
lations given in Figure 4.1. The latter figure provides information about how much profit
is generated per average by each unit asset of the FDIC-insured institution. Furthermore,
the simulation presented in Figure 4.2 gives an indication of how much shareholders are
earning on their investment in FDIC-insured institutional equity.

4.2. Optimization on random time intervals. In this subsection, we discuss some of
the issues related to the optimal control problem presented in Section 3. We note from
Theorem 3.2, that [30] can be used to derive the associated HJB equation (cf. (3.9)).
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Table 4.1. Source FDIC-insured institutions.

ROA ROE

2005 1.31 12.91

2004 1.3 13.74

2003 1.4 15.31

2002 1.33 14.46

2001 1.15 13.08

2000 1.18 13.99

1999 1.31 15.3

Table 4.2. Parameter choices for the ROE and ROA simulation.

Parameter Symbol Value

Bank equity E 1164

Volatility of E σe 0.286

Total expected returns on E μe 0.06

Value of net profit after tax Πn
t 16878

Dividend payments on E δe 0.05

Interest and principal payments on O δs 1.06

Interest rate r 0.06

Subordinate debt O 135

Volatility of assets σA 0.3

Net expected returns on assets μA 0.003
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Figure 4.1. Trajectories of simulated ROA.
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Figure 4.2. Trajectories of simulated ROE.

4.2.1. Statement of the optimization problem. Problem 3.1 (see, also, Problem 1.2) ad-
dresses issues in bank operations that are related to the optimal implementation of fi-
nancial economic principles. The parameter δ is an idiosyncratic discount rate that is not
a market parameter, but rather a part of the utility functional. Note that an assumption
is that U (1) and U (2) are additively separable which is not necessarily true for all banks.

4.2.2. Solution of the optimization problem. The boundary condition

lim
s→∞E

[
exp

{
−
∫ s

t

(
δ +ηp(u)

)
du
}
V
(
Π∗s ,s

) |Π∗t = π
]
= 0 (4.5)

emanates from the work of Merton in [32]. The contributions [33, 34] provide a proof
to Theorem 3.2 based on a martingale approach. In order to determine an exact solution
for our optimization problem in Theorem 3.2, we are required to make a specific choice
for the utilities U (1) and U (2). Essentially, these utilities can be almost any function in-
volving k and π, respectively. However, in order to obtain smooth analytic solutions to
the maximization problem in the ensuing discussion, we choose power, logarithmic, and
exponential utility functions and analyze the effect of the different choices.

From the discussion in Section 3.2.2, we may conclude that the optimal loan invest-
ment strategy does not depend on the parameters of the loan loss. Also, the optimal cost
of provisioning is independent of the price process for the loan. The strategies related
to the optimal cost of provisioning and loan allocation are not reliant on the inclination
towards bankruptcy, ηp, and thus also independent of the bank’s horizon. However, the
value function, V , is driven by the horizon through the reliance of f and G on ηp. At this
stage, it is not absolutely clear how this impacts the banking dynamics.

Section 3.2.3 suggests that the optimal cost of provisioning depends on the parameters
of the loan price process and on the Poisson frequency parameter, φ. In addition,cp∗
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depends on the bank’s horizon via its reliance on the inclination towards bankruptcy, ηp.
A number of interesting properties of the optimal cost of provisioning can be discerned.
For instance, we have that

∂cp∗

∂θ
> 0,

∂cp∗

∂ρ
> 0,

∂cp∗

∂δ
> 0,

∂cp∗

∂φ
< 0,

∂cp∗

∂μa
> 0. (4.6)

The first inequality implies that as the expense associated with provisioning increases
(θ increases), the demand for provisioning decreases (cp∗ increases). Also, the second
inequality intimates that as the credit risk increases (ρ decreases), the demand for pro-
visioning increases (cp∗ decreases). Moreover, the third inequality suggests that as the
value of future profit decreases (δ increases), the demand for provisioning decreases (cp∗

increases). The penultimate inequality implies that as the frequency, φ, of the loan losses
increases, the demand for provisioning increases (cp∗ decreases). The final inequality im-
plies that as the auxiliary profits increase (μa increases), the demand for provisioning
decreases (cp∗ increases).

The optimal provisioning cost, depository consumption, and investment in loans, ob-
tained in Theorem 3.6 of Section 3.2.4, can each be represented as a linear function of
optimal profit. Another observation is that ξ, and hence V from (3.31), and k∗ in (3.36)
are affected explicitly by the inclination towards bankruptcy ηp. Also, cP∗ and λ∗ given
by (3.35) and (3.36), respectively, are influenced by the inclination towards bankruptcy
via the impact of k∗s on profit. Note also that the optimal provisioning costs, cP∗, are
not reliant on the loan price parameters, and the optimal loan investment, λ∗, does not
depend on loan losses.

For (3.41) in Corollary 3.8, we define the provisions which the bank is compensated
with in case it faces bankruptcy at a random time τ with the rate of discount equal to δ.
In a special case of constant rate of inclination towards bankruptcy, ηp, we have that

ξ̃(t)−1 = ηp + δ

1 + bηp . (4.7)

Thus if δb < 1, we have that ξ̃−1 increases with ηp. As a consequence, it appears that a
bank with a longer horizon consumes a smaller proportion of profit.

5. Concluding remarks

In our contribution, we solve a stochastic maximization problem that is related to de-
pository consumption and banking profit on a random time interval. In particular, we
demonstrate that a bank is able to maximize its expected utility of discounted deposi-
tory consumption on a random time interval, [t,τ], and its final profit at time τ. Here,
the associated Hamilton-Jacobi-Bellman (HJB) equation has a smooth solution whenthe
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optimal controls are computed by means of power, logarithmic, and exponential utility
functions. This enables us to make a direct comparison between the economic proper-
ties of the solutions for different choices of utility function. By way of conclusion, we
provide an analysis of the economic aspects of the banking modeling and optimization
discussed in the main body of the paper. A feature of our approach throughout is that we
can incorporate inherent cyclical effects in credit prices, risk-weightings, provisioning,
profitability, and capital in the modeling of the aforementioned items.

Current research entails constructing dynamic models of bank items driven by general
processes that deviate from the classical Black-Scholes models. An example of such pro-
cesses is the Lévy process (example of a semimartingale) that facilitates the characteriza-
tion of the dynamics of noncontinuous economic and financial indices more accurately.
In keeping with this new thrust of research, recent investigations have substituted the
Brownian motion-based bank models (see, e.g., [6, 9, 12, 35]) by systems driven by such
processes. Also, further studies on risk management within a Basel II regulatory frame-
work (see, e.g., [26, 36]) are sorely needed. These effects are not fully recognized in our
contribution and require further attention.
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