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A fourth-order nonlinear evolution equation is derived from a microscopic model for
surface diffusion, namely, the continuum solid-on-solid model. We use the method de-
veloped by Varadhan for the computation of the hydrodynamic scaling limit of nongra-
dient models. What distinguishes our model from other models discussed so far is the
presence of two conservation laws for the dynamics in a nonperiodic box and the com-
plex dynamics that is not nearest-neighbor interaction. Along the way, a few steps have
to be adapted to our new context. As a byproduct of our main result, we also derive the
hydrodynamic scaling limit of a perturbation of the continuum solid-on-solid model, a
model that incorporates both surface diffusion and surface electromigration.

Copyright © 2006 Anamaria Savu. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

A process of great technological importance, molecular beam epitaxy (MBE), is used to
manufacture computer chips and semiconductor devices, see Barabási and Stanley [1].
In general, the chip is constructed by spraying a beam of atoms on a flat surface. There
are three phenomena that take place in the construction process, namely, deposition,
diffusion, and desorption. The atoms arrive or deposit on the surface and do not stick
on the first contact point, but diffuse or walk on the surface. When an atom reaches the
edge of another wandering atom, the two atoms meet or glue together, forming islands.
Sometimes an atom may jump out of the surface. Smaller islands may develop into larger
islands affecting the roughness of the surface on the macroscopic scale. A rough surface
does not have very good contact properties and engineers would like to understand the
basic mechanisms affecting the morphology in general.

How deposition and desorption affect the morphology of the surface is quite well un-
derstood. It is of great importance to know how the profile of the surface evolves on the
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macroscopic scale if the atoms that make up the surface diffuse. We assume that no atoms
arrive or leave the surface.

The present paper discusses a model for surface diffusion, the continuum solid-on-
solid model, known also as the fourth-order Ginzburg-Landau model. The system has
a complex interaction that is not a nearest-neighbor interaction and has two conserved
quantities in a nonperiodic box, namely, the total slope of the surface and the linear mean
of the surface slope. Under the assumption that the molecules of the surface follow the
dynamics of the continuum solid-on-solid model, we will prove that the dynamics of the
surface slope profile on the macroscale is a fourth-order nonlinear equation. Since the
model is nongradient, the derivation of the limit is not trivial and we will use the method
developed by Varadhan in [19] and further extended by Quastel in [13], and by Varadhan
and Yau in [20]. Even though we have an interaction that is not of nearest-neighbor type,
the microscopic current still writes as the sum of the Laplacian of the slope field and the
fluctuations. Usually in nearest-neighbor models after subtracting the fluctuations from
the current, we end up with the gradient of some local functions. We use the result that
for continuum solid-on-solid model, the space of exact functions has codimension one
inside the space of closed functions, see Savu [16, 17].

We also include a discussion of a perturbation of the continuum solid-on-solid model,
where the evolution of the surface is driven by both diffusion and electric field. The elec-
tric field will add one extra second-order term to the final nonlinear equation.

The continuum solid-on-solid model is an approximation of the discrete solid-on-
solid model, and hence is not considered a truly microscopic model. Unfortunately at
the time of writing this paper, we did not have the required techniques to solve the dis-
crete solid-on-solid model. However, partial rigorous results and numerical analysis are
available for the discrete case, see Krug et al. [10].

Finally the paper is organized as follows. Section 2 contains the description of contin-
uum solid-on-solid model and the description of the model for surface electromigration,
the statement of the main results, and a note on similar models considered in the litera-
ture so far. Section 3 outlines the proof of the main result, the computation of the scaling
limit of continuum solid-on-solid model. Section 4 shows how the final nonlinear equa-
tion is identified. In Section 5, we calculate the asymptotics of central limit variance, the
main ingredient used in Section 4 to prove that the microscopic current can be replaced
by a multiple of the field Laplacian. In Section 6, we calculate the scaling limit of the
modified model to incorporate surface electromigration.

2. The models

The continuum solid-on-solid model is a one-dimensional lattice system with continu-
ous-order parameter used to study the evolution of an interface. The model describes the
movement of the interface at the mesoscopic level, and hence is not considered a truly
microscopic model that captures all the aspects of the particle motion, but it has the
advantage of being more suitable for computations.

The height model. Let T be the torus represented as the interval [0,1] with 0 and 1 identi-
fied. For each positive integer N , there are N scaled periodic lattice points located at sites
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i/N in T, i = 1, . . . ,N . We will denote by hi(t) the height of the surface at the site i/N , at
time t. Also because of the periodicity of the lattice points, hN+1(t) = h1(t). The energy
function HN (h) of a height configuration h is chosen to be invariant under the global
translation hi(t) �→ hi(t) + c and has the form

HN (h)=
N∑

i=1

V
(
hi+1−hi

)
. (2.1)

In this paper, we will assume that the potential is quadratic V(x)= x2. We will require
the evolution in time of the surface to be conservative, in other words, to preserve the sum
of the heights, to have as invariant measure the infinite-mass measure e−HN (h)dh, and to
be reversible. All these properties are satisfied by the solution of the stochastic differential
system:

dhi(t)=−N
4

2

(
wi−wi−1

)
dt+N2

(√
aidBi−√ai−1dBi−1

)
, 1≤ i≤N. (2.2)

Above, ai(h)= a(hi−hi−1,hi+1−hi,hi+2−hi+1), where a is a function with bounded con-
tinuous first derivatives. Also a satisfies 0 < 1/a∗ ≤ a(x−1,x0,x1) ≤ a∗ <∞. The n copies
of the Brownian motion Bi, i = 1, . . . ,n, are independent. We define the instantaneous
current wi(h) of particles over the bond {i, i+ 1},

wi(h)= (
∂−1a− 2∂0a+ ∂1a

)(
hi−hi−1,hi+1−hi,hi+2−hi+1

)

− ai(h)
(
V ′(hi−hi−1

)− 2V ′(hi+1−hi
)

+V ′(hi+2−hi+1
))
.

(2.3)

Because the height process preserves the sum of the heights of the surface, this dynamics
models surface diffusion.

The slope process. A crucial property of the dynamics of the heights is the gauge property,
namely, the dynamics invariance under the action of the group G of translation in the
(1, . . . ,1) direction,

G= {
T :RN −→RN | T(x1, . . . ,xN

)= (
x1 + c, . . . ,xN + c

)
, c ∈R}. (2.4)

Hence there exists an induced dynamics on the quotient space RN/G of equivalence
classes. A representative of an equivalence class is the slope configuration xi(t)= hi+1(t)−
hi(t), 1≤ i≤N − 1, and xN (t)= h1(t)−hN (t). Note that

∑N
i=1 xi(t)= 0.

As a function of the slope configuration of the surface, the energy becomes HN (x) =∑N
i=1V(xi).
In the sequel, we will study the slope process rather than the height process. The slope

process is reversible and has as equilibrium distribution, the product probability mea-
sure dν

eq
N = e−HN (x)/ZNdx. Below, we write down the stochastic differential system, the

generator, and the Dirichlet form of the slope process:

dxi(t)= N4

2

(
wi+1− 2wi +wi−1

)
dt+N2

(√
ai−1dBi−1− 2

√
aidBi +

√
ai+1dBi+1

)
,

(2.5)
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N4LN ( f )= N4

2

N∑

i=1

ai(x)
(
∂i+1− 2∂i + ∂i−1

)2
f +wi(x)

(
∂i+1− 2∂i + ∂i−1

)
f , (2.6)

N4DN ( f )= N4

2

∫

RN

N∑

i=1

ai(x)
(
∂i+1 f − 2∂i f − ∂i−1 f

)2
(x)

e−HN (x)

ZN
dx. (2.7)

The factor N4 in the generator with the lattice spacing of 1/N represents the scaling of
space and time. This scaling is needed to observe a nontrivial motion in the limit.

The diffusion (2.5) is driven in the direction of the linear vector fields Xi = ∂i+1− 2∂i +
∂i−1, 1≤ i≤N , therefore is not ergodic in the whole space RN . It becomes ergodic when
restricted to the hyperplane x1 + ···+ xN = Nx̄ of average slope x̄. The unique equilib-
rium probability measure of the dynamics restricted to the hyperplane is the conditional
probability e−HN (x)/ZNdx given that x1 + ···+ xN =Nx̄.

Instantaneously, the slope profile of the surface decreases at some site i twice as much
as it increases at the adjacent sites i− 1, i+ 1. We see that any update of the slope config-
uration affects the slopes at three sites. This type of interaction, known as the three-site
interaction, is quite complex and has been rarely studied, so far (see [2, 12]).

We should note an integration-by-parts property of the currentwi for all bounded and
smooth functions f :

Eeq[wi · f
]= Eeq[ai ·

(
∂i+1− 2∂i + ∂i−1

)
f
]
. (2.8)

The expected value above is with respect to the equilibrium measure dν
eq
N .

The dynamics in a nonperiodic box. Although we are concerned with the study of the
slope process defined on a periodic space, we make use of a similar slope process evolving
in a box with nonperiodic boundary. Below, we describe this new dynamics and its main
properties. Suppose Λ is a box with finitely many sites of the lattice Z. The infinitesimal
generators

LΛ( f )= 1
2

∑

i∈Λ,i+1,i−1∈Λ
ai(x)

(
∂i+1− 2∂i + ∂i−1

)2
f +wi(x)

(
∂i+1− 2∂i + ∂i−1

)
f , (2.9)

respectively,

L∞( f )= 1
2

∑

i∈Z
ai(x)

(
∂i+1− 2∂i + ∂i−1

)2
f +wi(x)

(
∂i+1− 2∂i + ∂i−1

)
f (2.10)

produce two diffusion processes.
In the case of the first dynamics, generated by LΛ, there is no transport of mass over the

boundary of the box, so the box does not have periodic boundary. If the box Λ=[−l, l]∩Z
or Λ = [i− l, i+ l]∩Z, we use the shorter notation Ll, respectively, Li,l for the generator
LΛ. The second dynamics generated by L∞ is a dynamics on the infinite lattice Z. The
dynamics Li,l preserves the average slope y1

i,l = (xi−l + ···+ xi+l)/(2l + 1), and the linear
mean of the slopes y2

i,l = ((−l)xi−l + ··· + lxi+l)/l(l + 1) inside the box [i− l, i + l]∩ Z.
The second conserved quantity y2

i,l should be understood as a boundary condition that
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is preserved in time. The linear mean slope y2
i,l is conserved in time because we have a

model for surface diffusion and the total height of the surface does not change as time
passes by. We will use two different notations x̄i,l and y1

i,l for the mean slope of the field in
the box centered at i, of size l. Also yi,l stands for the vector of the conserved quantities,
(y1

i,l, y
2
i,l). As a convention, we will drop the subscript i, meaning the center of the box, if

the box is centered at the origin.

Equilibrium measures. We proceed to describe next the equilibrium measures of the dy-
namics that we have introduced. For the dynamics Li,l, the grand canonical measure is
the product probability measure ν

gc
α,i,l =

⊗i+l
j=i−l(eαxj−V(xj)/Z(α))dxj , whereas the canoni-

cal measure is the conditional probability measure νcy,i,l = ν
gc
α,i,l(· | yi,l) given the level set

{
x ∈R2l+1

∣∣∣ xi−l + ···+ xi+l
2l+ 1

= y1
i,l,

(−l)xi−l + ···+ lxi+l
l(l+ 1)

= y2
i,l

}
. (2.11)

The canonical measure is the unique stationary probability measure for the restricted dy-
namics on this set. The Dirichlet forms of the operators Ll, Li,l, with respect to the grand
canonical measure with α = 0, are denoted by Dl( f ), respectively, Di,l( f ). The Dirichlet
form of the operator Ll with respect to the canonical measure is denoted by Dνcy,l

( f ). For

L∞, the product measures ν
gc
α =⊗

i∈Z(eαxi−V(xi)/Z(α))dxi are equilibrium measures. We
will use the notation ν

eq
N for the product probability measure

⊗N
i=1(e−V(xi)/Z)dxi.

A model for surface electromigration. We consider also a perturbation of the continuum
solid-on-solid model. The new system describes the evolution of a one-dimensional sur-
face driven by both surface diffusion and surface electromigration. The surface electro-
migration refers to the motion of atoms on a solid surface that is caused by an electric
current in the material. The electric field interacts with the atoms of the surface as the
wind blows the sand particles, and a ripple pattern is observed in the long run. Elec-
tromigration along interfaces is believed to play a crucial role in the failure of metallic
circuits, see Schimschak and Krug [18] for further details.

We assume the electric field is a continuous function E(t,θ) defined on [0,T]×T. As
before, xi represents the slope of the surface at the site i/N . The generator of the system
on a periodic lattice, that incorporates the action of the electric field, is

N4LN ,E( f )=N4LN ( f ) +
N2

2

N∑

i=1

E
(
t,
i

N

)
a
(
xi−1,xi,xi+1

)(
∂i−1− 2∂i + ∂i+1

)
f . (2.12)

Hydrodynamic scaling limit of the models. We will call P
neq
N ,T and P

eq
N ,T the law up to time T

of the slope process (2.5) started in some nonequilibrium distribution ν
neq
N and equilib-

rium distribution ν
eq
N , respectively. The law up to timeT of the slope process (2.12), driven

by the electric field, started in the nonequilibrium measure ν
neq
N will be called P

neq
N ,E,T .

Under P
neq
N ,T and P

eq
N ,T the random variable

πN (t)= 1
N

(
x1(t)δ1/N + ···+ xN (t)δN/N

)
(2.13)
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has distributions Q
neq
N ,T and Q

eq
N ,T , respectively. We also refer to the random variable (2.13)

as the empirical distribution. Every realization of this random variable is a measure-
valued continuous path and Q

neq
N ,T is a distribution on the space � =⋃

(l≥0)C([0,T],�l).
The space � is endowed with the inductive limit topology, the strongest topology that
makes all the inclusions of C([0,T],�l) continuous. The space of signed measures �l,
with total variation not exceeding l, is a metrizable space with the weak topology.

We say that a model has hydrodynamic scaling limit if under certain assumptions, the
sequence of laws of empirical distributions has a limit that is supported on the solution
of an initial value problem.

Definition 2.1. A sequence of initial distributions ν
neq
N on RN is said to correspond to

the macroscopic slope profile m0 ∈ L1(T) if the random variable πN converges weakly in
probability to δm0(θ)dθ , that is, for any continuous function φ ∈ C(T) and any ε > 0,

limsup
N→∞

ν
neq
N

{∣∣∣∣∣
1
N

N∑

i=1

φ
(
i

N

)
xi−

∫

T
φ(θ)m0(θ)dθ

∣∣∣∣∣ > ε
}
= 0. (2.14)

Our first result of the paper says that the continuum solid-on solid model has a scaling
limit and provides the form of the limiting evolution equation. More precisely, we have
the following theorem.

Theorem 2.2. Assume that the potential V(x) is equal to x2/2. Let m0 ∈ L1(T) be a macro-
scopic slope profile such that

∫
Tm0(θ)dθ = 0. Assume that the sequence of initial distributions

{νneq
N }N corresponds to the profile m0 and the initial relative entropy H(ν

neq
N | ν

eq
N ) is of order

�(N). Then the sequence of probability measures {Qneq
N ,T}N≥0 is tight in �.

Any possible limit QT of a convergent subsequence of {Qneq
N ,T}N≥0 is concentrated on the

weak solutions (m(t,θ)dθ)t∈[0,T] of the Cauchy problem with periodic boundary conditions

∂tm=−1
2
∂2
θ

(
â(m)∂2

θm
)
, m(0,θ)=m0(θ), θ ∈ T. (2.15)

The transport coefficient â is a nonrandom continuous function on R, given by the following
variational formula:

â(α)= inf
g
Eν

gc
α

⎡
⎣a

(
x−1,x0,x1

)
(

1 +
(
∂i+1− 2∂i + ∂i−1

)
(
∑

j∈Z
τ jg

))2
⎤
⎦ . (2.16)

The infimum on the line above is taken over all local functions g(x−s, . . . ,xs, ȳ1
0,l) of the

slope configuration. The shift τ j acts on configurations (τ jx)k = xk+ j and on local functions,
(τ jg)(x)= g(τ jx). The expectation Eν

gc
α

is with respect to the grand canonical measure ν
gc
α .

Note. It can be shown that the transport coefficient â is a continuous and bounded above
and below function (see Kipnis and Landim [9]). Also we expect that the methods of
Landim et al. [11] can show that â is smooth, but we will not pursue it here.

Note. By a weak solution of the Cauchy problem (2.15) we mean a path m ∈ � such
that for each time T ≥ 0, the value of the path m at the time T is a Lebesgue absolutely
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continuous measure on T, satisfying the energy estimate

∫ T

0

∫

T

(
∂2
θm(t,θ)

)2
dθdt <∞. (2.17)

Moreover for each 0≤ T <∞ and for each test function φ∈ C1,2([0,T]×T),

∫

T
m(T ,θ)φ(T ,θ)dθ−

∫

T
m(0,θ)φ(0,θ)dθ−

∫ T

0

∫

T
m(s,θ)∂sφ(s,θ)dθds

+
1
2

∫ T

0

∫

T
â(m)∂2

θm(s,θ)∂2
θφ(s,θ)dθds= 0.

(2.18)

If we assume that the initial condition m0 has the property that
∫
Tm0(θ)dθ = 0, then for

each time t ≥ 0, the solution satisfies
∫
Tm(t,θ)dθ = 0.

Uniqueness of weak solutions of the Cauchy problem, which satisfy the energy estimate
(2.17), has not been proved yet. If the transport coefficient â does not depend on the field
m, the uniqueness of the Cauchy problem is known and can be found in Eidel’man’s book
[5].

As will be explained later, the fluctuation-dissipation equation for the continuum
solid-on-solid model follows from the direct sum decomposition of a Hilbert space to
be defined next.

We define the Hilbert space of closed functions �X to be the space of those ξ ∈ L2(dν
gc
α )

that satisfy in the weak sense the equations Xi(τ jξ)= Xj(τiξ) for all integers i and j. It is
not hard to see that a subspace of �X is the closed linear span in L2(dν

gc
α ) of functions ξg =

X0(
∑

j∈Z τ jg), where g is a bounded local function with bounded first derivatives. Even
though the infinite sum

∑
j∈Z τ jg does not make sense, the function ξg is well defined

because the vector field kills all but finitely many terms of the infinite sum. We will call
this space the space of exact functions and we will use the notation �X . The space of exact
functions has codimension one inside the space of closed functions. We include below
the statement of this result.

Lemma 2.3. Let 1 denote the constant function 1. The direct sum decomposition holds:

�X =R1
⊕

�X . (2.19)

In this paper, we do not include the proof of this result, since it is the subject of the
paper by Savu [17]. For the proof of Lemma 2.3, it is important that the potential V(x) is
quadratic and is equal to x2/2.

The second result of the present paper proves that the model for surface electromigra-
tion (2.12) has a scaling limit as well, and calculates the limiting evolution equation.

Theorem 2.4. Suppose the hypotheses of Theorem 2.2 is satisfied. Then the sequence of prob-
ability measures {Qneq

N ,E,T}N≥0 is tight in �, and any possible limit QE,T is supported on the
weak solutions of the Cauchy problem

∂tm=−1
2
∂2
θ

(
â(m)

(
∂2
θm+E

))
, m(0,θ)=m0(θ), θ ∈ T. (2.20)
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The transport coefficient â is given by the same variational formula as in the statement of
Theorem 2.2.

Similar models. The continuum solid-on-solid model belongs to a large class of Ginz-
burg-Landau models. The slope model, considered in this paper, is of nongradient type
and has an unusual dynamics because two neighboring exchanges occur always simulta-
neously. Nishikawa [12], and Bertini et al. [2] have investigated the hydrodynamic scal-
ing limit even in higher dimension of the gradient version of the slope model. They have
found that on the macroscopic scale, the interface follows a fourth-order nonlinear evo-
lution equation. The nongradient model considered in this paper is more accurate and
captures more features of the physical phenomenon than the gradient models discussed
in [2, 12]. Our model is nongradient because the microscopic mobility a defining the
dynamics (2.2) is assumed to depend on the height configuration; an assumption that
is more realistic from a physical point of view than the assumption of [2, 12] that a is
constant and independent of the height configuration.

Another similar model, the second-order Ginzburg-Landau model for a one-dimen-
sional configuration, where the sum of the heights is not conserved, was the subject of
extensive discussions in the literature: the hydrodynamic scaling limit was derived by
Fritz [6], Guo et al. [8] for the gradient version, and by Varadhan [19] for the nongradi-
ent case, whereas the nonequilibrium fluctuations have been proved by Chang and Yau
[3].

We also restrict our attention to the one-dimensional solid-on-solid model, since a
corresponding dynamics on a multidimensional interface is much more difficult to be
treated, already in the nonconservative case (according to the work of Funaki and Spohn
[7]).

The second-order Ginzburg-Landau model and the continuum solid-on-solid model
correspond to Glauber, respectively, Kawasaki dynamics in the context of interacting par-
ticle systems. As expected, a different dynamics at the mesoscopic level causes different
dynamics at the macroscopic level, a second-order parabolic differential equation in the
case of second-order Ginzburg-Landau model versus a fourth-order parabolic differential
equation for the continuum solid-on-solid model.

3. Hydrodynamic scaling limit of continuum solid-on-solid model

In this section, we give a sketch of the main result, Theorem 2.2. We follow a standard
scheme to derive the hydrodynamic scaling limit of the continuum solid-on-solid model.
The existence of the limit follows from the tightness of the sequence of probability mea-
sures {Qneq

N ,T}N . Let QT be the limit of some weakly convergent subsequence of {Qneq
N ,T}N .

We proceed to characterize the limit QT , showing that it is supported on continuous
paths with a certain regularity property, known as the energy estimate (2.17). The most
involved part of the argument is the identification of the possible weak limit QT as some
probability measure supported on the weak solution of the Cauchy problem (2.15). We
will make the assumption that the sequence of initial distributions {νneq

N }N corresponds
to some macroscopic profile m0 ∈ L1(T).
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Note on notations. Throughout the paper, we will make use of the shorter notation
limsupz1→i1,...,zn→in f (z1, . . . ,zn) for the sequence of limits limsupz1→i1 ··· limsupzn→in f (z1,
. . . ,zn). If the limit points i1, . . . , in are all equal to i we use the shorter notation
limsupz1,...,zn→i f (z1, . . . ,zn) for the sequence of limits limsupz1→i ··· limsupzn → i f (z1,
. . . ,zn).

Tightness. As a consequence of Prohorov theorem and Arzela-Ascoli theorem, the tight-
ness of the sequence Q

neq
N ,T follows from the next two lemmas.

Lemma 3.1. For any test function φ ∈ C2(T), any finite time T , and any ε > 0,

limsup
δ→0,N→∞

P
neq
N ,T

{
sup

|s−t|≤δ,0≤s, t≤T

∣∣∣∣∣
1
N

N∑

i=1

φ
(
i

N

)
xi(t)− 1

N

N∑

i=1

φ
(
i

N

)
xi(s)

∣∣∣∣∣ > ε
}
= 0. (3.1)

Lemma 3.2. The following convergence holds:

limsup
l→∞,N→∞

P
neq
N ,T

{
sup

0≤t≤T

1
N

N∑

i=1

∣∣xi(t)
∣∣ > l

}
= 0. (3.2)

It is interesting to note that the stronger superexponential estimates can be established
for the process in equilibrium,

limsup
δ→0,N→∞

1
N

logP
eq
N ,T

{
sup

0≤t,s≤T ,|t−s|≤δ

∣∣∣∣∣

∫ t

s

1
N

N∑

i=1

N2wi(u)φ
(
i

N

)
du

∣∣∣∣∣≥ ε
}
=−∞,

limsup
l→∞,N→∞

1
N

logP
eq
N ,T

{
sup

0≤t≤T

1
N

N∑

i=1

∣∣xi(t)
∣∣≥ l

}
=−∞.

(3.3)

The techniques used to prove Lemmas 3.1 and 3.2 are not new, and they can be used
for a fairly large class of models (see Kipnis and Landim [9] or Guo et al. [8]), however
they need to be adapted for the model taken into consideration in the present paper. For
the reader’s convenience, we include the proofs for Lemmas 3.1 and 3.2. Before giving
the proofs of Lemmas 3.1 and 3.2, we remind the reader with the helpful inequalities: the
Garsia-Rodemich-Rumsey inequality (3.4) and the entropy inequality (3.5).

Lemma 3.3 (Garsia-Rodemich-Rumsey inequality). Given a function f and a strictly in-
creasing function ψ such that ψ(0)= 0 and limu→∞ψ(u)=∞, then

sup
|t−s|≤δ,0≤t,s≤T

∣∣ f (t)− f (s)
∣∣≤ 8

∫ δ

0
ψ−1

(
4B
u2

)
du√
u

,

where B =
∫∫ T

0
ψ

(∣∣ f (t)− f (s)
∣∣

√
t− s

)
dtds.

(3.4)

We also remind the reader that given two probability measures ν and μ on the same
probability space such that ν is absolutely continuous with respect to μ, the relative en-
tropy of ν with respect to μ is defined by H(ν | μ)= Eμ[(dν/dμ) log(dν/dμ)], where dν/dμ
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is the Radon-Nikodym derivative of ν relative to μ. The entropyH(ν | μ), always a positive
quantity, is the optimal constant that makes the entropy inequality

Eν[ f ]≤ 1
α

{
H(ν | μ)+ logEμ

[
eα f

]}
(3.5)

true for any bounded, measurable function f and α > 0. A trivial consequence of the
entropy inequality (3.5) helps us to estimate ν(A), where A is some event,

ν(A)≤ log(2) +H
(
ν | μ)

log
(
1 + 1/μ(A)

) . (3.6)

Proof of Lemma 3.1. First we give an upper bound for the uniform modulus of continuity
mc(δ) of the path {∑N

i=1φ(i/N)xi(t)}0≤t≤T ,

mc(δ)= sup
|s−t|≤δ,0≤s,t≤T

∣∣∣∣∣
1
N

N∑

i=1

φ
(
i

N

)
xi(t)− 1

N

N∑

i=1

φ
(
i

N

)
xi(s)

∣∣∣∣∣

≤ sup
|s−t|≤δ,0≤s,t≤T

∣∣∣∣∣
N2

N

∫ t

s

N∑

i=1

N2
(
φ
(
i− 1
N

)
− 2φ

(
i

N

)
+φ

(
i+ 1
N

))
widu

∣∣∣∣∣

+ sup
|s−t|≤δ,0≤s,t≤T

∣∣MN (t)−MN (s)
∣∣,

(3.7)

where {MN (t)}t>0 is the martingale,

MN (t)=N
N∑

i=1

(
φ
(
i− 1
N

)
− 2φ

(
i

N

)
+φ

(
i+ 1
N

))√
aiBi(t). (3.8)

The uniform modulus of continuity of the martingale path {MN (t)}0≤t≤T converges
to zero in probability since

P
neq
N ,T

{
sup

|s−t|≤δ, 0≤s,t≤T

∣∣MN (t)−MN (s)
∣∣ > ε

}

≤ Pneq
N ,T

{
2 sup

0≤t≤T

∣∣MN (t)
∣∣ > ε

}
≤ 4Eneq

[
M2

N (T)
]

ε2
,

(3.9)

and limN→∞Eneq[M2
N (T)]= 0, see (4.9).

Since the test function φ has two bounded derivatives, for large values of N , N2(φ((i−
1)/N)− 2φ(i/N) + φ((i+ 1)/N)) is an approximation for φ′′. For the remaining part of
the proof, we relabel φ′′ by φ and we assume that the test function φ is just continuous. It
remains to show that

limsup
δ→0,N→∞

P
neq
N ,T

{
sup

0≤t,s≤T ,|t−s|≤δ

∣∣∣∣∣

∫ t

s

1
N

N∑

i=1

N2wi(u)φ
(
i

N

)
du

∣∣∣∣∣≥ ε
}
= 0. (3.10)
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Note that the entropy inequality (3.6) implies that (3.10) follows from

limsup
δ→0,N→∞

1
N

logP
eq
N ,T

{
sup

0≤t,s≤T ,t−s≤δ

∣∣∣∣∣

∫ t

s

1
N

N∑

i=1

N2wi(u)φ
(
i

N

)
du

∣∣∣∣∣≥ ε
}
=−∞. (3.11)

We can choose the function ψ to be exp(Nu)− 1, in the Garsia-Rodemich-Rumsey in-
equality (3.4), to obtain

sup
|t−s|≤δ,0≤t,s≤T

∣∣ f (t)− f (s)
∣∣≤ 8

N

∫ δ

0
log

(
1 +

4B
u2

)
du√
u

≤ C

N

(√
δ log

(
δ2 + 4B

)
+
√
δ
(
1− log(δ)

))
.

(3.12)

Because of (3.12), the proof of (3.11) is reduced to

lim
N→∞

1
N

log

[∫∫ T

0
Eeq

[
exp

(
N2
√
t− s

∣∣∣∣∣

∫ t

s

N∑

i=1

wi(u)φ
(
i

N

)
du

∣∣∣∣∣

)]
dtds

]
<∞, (3.13)

and to

Eeq

[
exp

(∣∣∣∣∣

∫ t

s
N2

N∑

i=1

wi(u)φ
(
i

N

)
du

∣∣∣∣∣

)]
≤ 2exp

(
C(t− s)

N∑

i=1

φ2
(
i

N

))
, (3.14)

where C is a constant independent of φ. The inequality (3.14) follows from Lemma 3.4.
�

Lemma 3.4. There exists a constant C independent of φ such that

Eeq

[
exp

(∣∣∣∣∣

∫ t

s
N2

N∑

i=1

wi(u)φ
(
i

N

)
du

∣∣∣∣∣

)]
≤ 2exp

(
C(t− s)

N∑

i=1

φ2
(
i

N

))
. (3.15)

Proof. The Feynman-Kac formula implies that

Eeq

[
exp

(∫ t

s
N2

N∑

i=1

wi(u)φ
(
i

N

)
du

)]

≤ exp

(
(t− s)supspec

L2(ν
eq
N )

(
N4LN +N2

N∑

i=1

wi(u)φ
(
i

N

)))
.

(3.16)
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Moreover, we have the following eigenvalue estimate:

supspec
L2(ν

eq
N )

[
N4LN +N2

N∑

i=1

wi(u)φ
(
i

N

)]

= sup
ρ,Eeq[ρ2]=1

N2
N∑

i=1

φ
(
i

N

)
Eeq[aiXi

(
ρ2)]− N4

2
DN (ρ)

≤ sup
ρ,Eeq[ρ2]=1

N2
N∑

i=1

[
A

2
φ
(
i

N

)2

Eeq[aiρ2]+
1

2A
Eeq[ai

(
Xi(ρ)

)2]
]
− N4

2
DN (ρ)

≤ C
N∑

i=1

φ
(
i

N

)2

, if we choose A= 1
N2

.

(3.17)

Thus, the lemma follows. �

Proof of Lemma 3.2. This lemma will follow from estimates on the moment-generating
function of hitting time of the diffusion process (2.5) and the entropy inequality (3.6).

Let us call A the event {sup0≤t≤T(1/N)
∑N

i=1 |xi(t)| ≥ l}. The entropy inequality (3.6)
applied for P

neq
N ,T versus P

eq
N ,T gives us a bound for P

neq
N ,T(A),

P
neq
N ,T(A)≤

log(2) +H
(

ν
neq
N | ν

eq
N

)

log
(
1 + 1/P

eq
N ,T(A)

) , (3.18)

therefore (3.2) follows from

limsup
l→∞,N→∞

1
N

logP
eq
N ,T

{
sup

0≤t≤T

1
N

N∑

i=1

∣∣xi(t)
∣∣≥ l

}
=−∞. (3.19)

For the process {xN (t)}t>0, we define σ to be the first hitting time of the set

{
x ∈RN

∣∣∣∣∣
1
N

N∑

i=1

∣∣xi
∣∣≥ l

}
. (3.20)

Choose some ρ < 1 and define the function f (x)= Ex[ρσ], which has the properties that
f (x)= 1 for x ∈ A and ρ(L f )(x)= (1− ρ) f (x) for x ∈Ac.

It is sufficient to assume T = 1. Chebyshev’s inequality implies that

P
eq
N ,T(A)= Peq

N ,T(σ ≤ 1)≤ 1
ρ
Eν

eq
N

[
ρσ
]≤ 1

ρ

(
Eν

eq
N

[
f 2])1/2 ≤ 1

ρ

(
Eν

eq
N

[
f 2]+

ρ

1− ρDν
eq
N

( f )
)1/2

.

(3.21)
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Note that a minimizer of the variational problem

inf
g,g(x)=1,x∈A

(
Eν

eq
N

[
g2]+

ρ

1− ρDν
eq
N

(g)
)

(3.22)

is the function f defined above. We can choose g=(1/ exp(Nl))(exp(
∑N

i=1 |xi|)∧exp(Nl))
and note that there exists a constant C such that Eν

eq
N

[g2]≤ CN , Dν
eq
N

(g)≤ CN . Therefore,

we can bound P
eq
N ,T(A) by cN exp−Nl and (3.19) is established. �

One last comment, the tightness of the sequence {Qeq
N ,T}N is valid without the assump-

tion that the potential V(x) is quadratic.

Energy estimate. Any limiting point QT of the measure-valued sequence {Qneq
N ,T}N is sup-

ported on paths μ∈� such that at each time t, μ(t) is a Lebesgue absolutely continuous
measure on the torus T with density m(t,θ). Moreover, for each finite time T , the density
m(t,θ) satisfies the energy estimate

∫ T

0

∫

T

(
∂2
θm(t,θ)

)2
dθdt <∞. (3.23)

We note that the energy estimate (3.23) is equivalent to the inequality

sup
φ∈C1,2([0,T]×T)

∫ T

0

∫

T

(
2m(t,θ)∂2

θφ−Cφ2)dθdt <∞, (3.24)

where C is a constant not depending on φ.
The entropy inequality (3.5), the consequence of Feynman-Kac formula (4.18), and

Lemma 4.2 can be used to derive the estimate

limsup
l,N→∞

sup
φ∈C1,2([0,T]×T)

Eneq

[
1
N

N∑

i=1

∫ T

0
2φ

(
t,
i

N

)
N2 Avi+l−1

j=i−l+1(Δx) j

−Vi,l(Δx, y)φ2
(
t,
i

N

)
dt

]
<∞.

(3.25)

Here, the cylinder function Δx is the discrete Laplacian of the slope field x−1 − 2x0 + x1

and the variance Vi,l(Δx, y) is defined later in Section 4, see definition (4.44). As will be
proved in Lemma 5.2, the variance Vi,l(Δx, y) has a uniform-in-y lower bound, therefore
the estimate (3.24) follows from (3.25), after integrating by parts. Moreover, we can con-
clude that at any time t, the weak second derivative of the measure μ(t) is in L2(T,dθ),
and hence μ(t) is absolutely continuous with respect to Lebesgue measure on the torus T.

Identification of the equation. That any limiting point of the measure-valued sequence
{Qneq

N ,T}N>0 is supported on the weak solutions of (2.15) follows if the event corresponding
to the violation of the limiting equation has probability zero in the limit.
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For each test function φ ∈ C1,2([0,T]×T) that is differentiable in time and twice dif-
ferentiable in space, and each finite time T , we define the function

V(t)= 1
N

N∑

i=1

φ
(
t,
i

N

)
xi(t)− 1

N

N∑

i=1

φ
(

0,
i

N

)
xi(0)

−
∫ t

0

1
N

N∑

i=1

∂sφ
(
s,
i

N

)
x̄i,aN (s)ds+

1
2

∫ t

0

1
N

N∑

i=1

φ′′
(
s,
i

N

)
â
(
x̄i,aN (s)

)

× b−2(x̄i−bN ,cN (s)− 2x̄i,cN (s) + x̄i+bN ,cN (s)
)
ds,

(3.26)

and the event

O
φ
a,b,c,ε =

{
sup

0≤t≤T

∣∣V(t)
∣∣ > ε

}
. (3.27)

We will prove in the next sections that for each ε > 0, we have

limsup
a,b,c→0,N→∞

P
neq
N ,T

(
O
φ
a,b,c,ε

)
= 0. (3.28)

The proof of the result (3.28) is complicated and is divided into several steps. The func-
tion that defines this event can be written as a sum of functions, see the beginning of
Section 4. We will deal separately with each function in the sum and show that it con-
verges to zero in probability.

4. Identification of the limiting equation

In this section, we establish that the event (3.27) is negligible in the limit, and hence any
weak limit QT is supported on the solutions of the Cauchy problem (2.15). To save space,
we are suppressing the time dependence of the test function φ that defines the event
(3.27).

Note on notations. Assume that f is some local function. We denote by Avi+lj=i−l τ j f the
average of shifts of f , namely,

τi−l f + ···+ τi+l f
2l+ 1

. (4.1)

We write

V(t) (4.2)

= 1
N

N∑

i=1

φ
(
i

N

)
xi(t)− 1

N

N∑

i=1

φ
(
i

N

)
xi(0)−

∫ t

0

1
N

N∑

i=1

φ
(
i

N

)
N4LN

(
xi
)
ds (4.3)

+
1
2

∫ t

0

1
N

N∑

i=1

{
N2

[
φ
(
i− 1
N

)
− 2φ

(
i

N

)
+φ

(
i+ 1
N

)]
−φ′′

(
i

N

)}
wids (4.4)
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+
1
2

∫ t

0

1
N

N∑

i=1

φ′′
(
i

N

)
N2(wi−Avi+l1j=i−l1 wj

)
ds (4.5)

+
∫ t

0

1
N

N∑

i=1

φ′′
(
i

N

)
N2

×
[

Avi+l1j=i−l1 wj − â
(
x̄i,l

)
Avi+l1j=i−l1 (Δx) j −Avi+l1j=i−l1 τ

jL∞ fr
]
ds

(4.6)

+
1
2

∫ t

0

1
N

N∑

i=1

φ′′
(
i

N

)
N2L∞

(
Avi+l1j=i−l1 τ

j fr
)
ds (4.7)

+
1
2

∫ t

0

1
N

N∑

i=1

φ′′
(
i

N

)
N2

×
[
â
(
x̄i,l

)
Avi+l1j=i−l1 (Δx) j−â

(
x̄i,aN

)
b−2(x̄i−bN ,cN − 2x̄i,cN + x̄i+bN ,cN

)]
ds.

(4.8)

We proceed to prove that each term in the sum above converges to 0 in probability.

Martingale estimate (the term (4.3)). We call MN (t) the term (4.3). From Itô formula, we
know that the process {MN (t)}t≥0 is a martingale and

Eneq[M2
N (T)

]= Eneq

[∫ T

0

1
N2

N∑

i=1

N4
[
φ
(
i− 1
N

)
− 2φ

(
i

N

)
+φ

(
i+ 1
N

)]2

aids

]
. (4.9)

The test function φ is chosen to have continuous second derivatives, then Eneq[M2
N (T)] is

of order �(1/N). We can use Doob’s inequality

P
neq
N ,T

{
sup

0≤t≤T

∣∣MN (t)
∣∣≥ ε

}
≤ 1
ε2
E
[
M2

N (T)
]
, ε > 0, (4.10)

to conclude that the martingale is negligible in the limit, that is,

lim
N→∞

P
neq
N ,T

{
sup

0≤t≤T

∣∣MN (t)
∣∣≥ ε

}
= 0, ε > 0. (4.11)

The term (4.4). A straightforward computation involving the Chebyshev inequality and
the entropy inequality (3.5) proves that the term (4.4) converges in probability to 0. The
test function needs to have continuous fourth derivative.

A technical lemma. We will prove a lemma that reduces the problem of establishing the
negligibility of an event to finding that the largest eigenvalue of a Schrödinger opera-
tor is negative. For an operator A : � →� acting on a Hilbert space �, we denote by
supspec�A the largest value in the spectrum of A.
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Lemma 4.1. Let {x(t)}t≥0 be the slope process with generator (2.6). Under the assumption

limsup
N→∞

supspec
L2(ν

eq
N )

(
αg +

N4

N
LN

)

= limsup
N→∞

sup
ρ,Eeq[ρ2]=1

[
αEeq[gρ2]− N4

N
DN (ρ)

]
≤ 0, α = 0,

(4.12)

it follows that the event {|∫ T0 g(x(s))ds| ≥ ε} has negligible probability or

lim
N→∞

P
neq
N ,T

{∣∣∣∣
∫ T

0
g
(
x(t)

)
dt
∣∣∣∣≥ ε

}
= 0, ε > 0. (4.13)

Proof. We can use the Chebyshev inequality to reduce the proof of (4.13) to

lim
N→∞

Eneq
[∣∣∣∣

∫ T

0
g
(
x(t)

)
dt
∣∣∣∣
]
= 0. (4.14)

Since we do not have much information about the initial nonequilibrium distribution,
we use the entropy inequality to replace the nonequilibrium distribution in (4.14) by the
equilibrium distribution.

In our context, we use the entropy inequality (3.5) for the distribution of the process
started in the nonequilibrium and the distribution of the process started in the equilib-
rium. We have

Eneq
[∣∣∣∣

∫ T

0
g
(
x(t)

)
dt
∣∣∣∣
]

= Eneq
[

1
Nα

∣∣∣∣
∫ T

0
Nαg

(
x(t)

)
dt
∣∣∣∣
]

≤ 1
Nα

H
(
ν

neq
N | ν

eq
N

)
+

1
Nα

logEeq
[

exp
(
α
∣∣∣∣
∫ T

0
Ng

(
x(t)

)
dt
∣∣∣∣
)]

≤ C

α
+

1
Nα

logEeq
[

exp
(
Nα

∫ T

0
g
(
x(t)

)
dt
)

+ exp
(
−Nα

∫ T

0
g
(
x(t)

)
dt
)]
.

(4.15)

As a consequence of the inequality

log(a+ b)≤max
(

log(2a), log(2b)
)≤ log(2) + max

(
log(a), log(b)

)
(4.16)

for two positive numbers a and b, (4.14) follows as soon as we have

limsup
N→∞

1
N

logEeq
[

exp
(
Nα

∫ T

0
g
(
x(t)

)
dt
)]
≤ 0, α = 0. (4.17)
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A trivial consequence of Feynman-Kac formula proves our lemma,

1
N

logEeq
[

exp
(
Nα

∫ T

0
g
(
x(t)

)
dt
)]
≤ T supspec

L2(ν
eq
N )

(
αg +

N4

N
LN

)
. (4.18)

�

The microscopic current w can be replaced by local average of currents (the term (4.5)). We
will show that the term (4.5) converges to zero in probability. As a consequence the cur-
rent w is replaced by a local average of w that is closer to a deterministic value. w by itself
is a single fluctuating random variable.

We check that the hypothesis of Lemma 4.1 is valid for the function gl,N = (1/
N)

∑N
i=1φ(i/N)N2(wi−Avi+lj=i−l wj). Recall that if the test function φ has continuous sec-

ond-order derivative, the quantity

Avi+lj=i−l φ
(
j

N

)
−φ

(
i

N

)
= φ

(
(i− l)/N)−φ(i/N) + ···+φ

(
(i+ l)/N

)−φ(i/N)
2l+ 1

(4.19)

is of order �(l2/N2). Now, on integrating by parts twice, it follows for a fixed function ρ,
with Eeq[ρ2]= 1, that

∣∣∣∣∣E
eq

[
ρ2 1
N

N∑

i=1

φ
(
i

N

)
N2

(
wi−Avi+lj=i−l wj

)]∣∣∣∣∣

2

= 4

∣∣∣∣∣E
eq

[
N2

N

N∑

i=1

√
aiXi(ρ)

√
ai

(
Avi+lj=i−l φ

(
j

N

)
−φ

(
i

N

))
ρ

]∣∣∣∣∣

2

≤ 4Eeq

[ N∑

i=1

N4

N2
ai

(
Avi+lj=i−l φ

(
j

N

)
−φ

(
i

N

))2

ρ2

]
DN (ρ)≤ C l4

N4

N4

N
DN (ρ).

(4.20)

Therefore,

limsup
l,N→∞

sup
ρ,Eeq[ρ2]=1

(
Eeq

[
ρ2N

∑N
i=1

(
Avi+lj=i−l φ( j/N)−φ(i/N)

)
wi
])2

DN (ρ)
N

N4
= 0, (4.21)

and hence (4.12) is satisfied. Moreover,

lim
l,N→∞

P
neq
N ,T

{∣∣∣∣∣

∫ T

0

1
N

N∑

i=1

φ
(
i

N

)
N2

(
wi−Avi+lj=i−l wj

)
dt

∣∣∣∣∣≥ ε
}
= 0, ε > 0. (4.22)

Inserting the fluctuations (the term (4.7)). Let f (x−s, . . . ,xs, x̄0,l) ∈ C2(R2s+1) be a local
function that depends on the slope configuration in a box of size s and on the mean slope
in a box of a large size l. We use the notation l1 = l−√l for a slightly smaller l. We want
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to show that the fluctuations approach zero in the limit or that

lim
l,N→∞

P
neq
N ,T

{∣∣∣∣∣

∫ T

0

N2

N

N∑

i=1

φ
(
i

N

)
LN

(
Avi+l1j=i−l1 τ

j f
)
dt

∣∣∣∣∣≥ ε
}
= 0, ε > 0. (4.23)

We apply Itô formula,

∫ T

0

N2

N

N∑

i=1

φ
(
i

N

)
LN

(
Avi+l1j=i−l1 τ

j f
)
dt

= 1
N ·N2

N∑

i=1

φ
(
i

N

)[(
Avi+l1j=i−l1 τ

j f
)(
x(T)

)−
(

Avi+l1j=i−l1 τ
j f
)(
x(0)

)]
+

1
N2

MN (t).

(4.24)

The first summand in (4.24) converges to zero, as the function f is bounded. The
second part of (4.24) approaches zero because the L2 norm of MN (T)/N2 is of order
�(l2/N), as we can see below. Let g = (1/N)

∑N
i=1φ(l2/N)(Avi+l1j=i−l1 τ

j f )(x), then

Eneq
[
MN (T)2

N4

]
= Eneq

[∫ T

0
LNg − 2gLNg dt

]
= Eneq

[∫ T

0

N∑

i=1

ai
(
Xig

)2
dt

]

= 1
N2

Eneq

[∫ T

0

N∑

i=1

ai

( N∑

k=1

φ
(
k

N

)
Xi
(

Avk+l1
j=k−l1 τ

j f
))2

dt

]
.

(4.25)

The function Avk+l1
j=k−l1 τ

j f is a cylinder function that depends just on the sites n such that
k− l ≤ n ≤ k + l. Therefore the vector field Xi is zero when acting on most of the sum-
mands inside Avk+l1

j=k−l1 τ
j f . There are no more than 2l sites k such that Xi(Avk+l1

j=k−l1 τ
j f ) =

0. We put all these arguments together to conclude that Eneq[M2(t)/N4]≤ Cl2/N .

Replacing the current by the Laplacian of the slope field (the term (4.6)). In our model,
the instantaneous current w cannot be written as the discrete Laplacian τh− 2h− τ−1h
of some local function h, thus we use the method of Varadhan [19] for computing the
hydrodynamic scaling limit of our model. The main idea is that the current decomposes
as

w = â(x̄l
)
Δx+L∞ f (4.26)

for a suitable coefficient â(x̄l), where x̄l is the average slope in a cube centered at the
origin of microscopic site l. Equation (4.26) is known in the literature as the fluctuation-
dissipation equations. We have explained before that terms of the form L∞ f have no effect
on the macroscopic scale.

A new feature is characteristic to our model due to the complex interaction of the
system: after filtering off the fluctuations from the current, we are left with the Laplacian
of some function and not a gradient, as happened for models previously considered in
the literature. The precise meaning of (4.26) is given below.
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Our aim is to prove the existence of a sequence { fr}r≥0 of local functions and of the
transport coefficient â such that

limsup
r,l,N→∞

P
neq
N ,T

{∣∣∣∣∣

∫ T

0

N2

N

N∑

i=1

φ
(
i

N

)[
Avi+l1j=i−l1 wj − â

(
x̄i,l

)
Avi+l1j=i−l1 (Δx) j

−Avi+l1j=i−l1 τ
jL∞ fr

]
dt

∣∣∣∣∣≥ ε
}
= 0.

(4.27)

The local function fr(x−s, . . . ,xs, x̄0,l) depends on two arguments, the mean slope x̄0,l in a
box of size l and the slope field inside a box of size s, the size s being much smaller than l.
We can assume that the operator L∞ does not act on the first argument x̄0,l, since we can
show that the action of the operator L∞ at the boundary sites is negligible. To be more
precise, Avi+l1j=i−l1 τ

jL∞ fr stands for

L∞ fr(x̄i,l,τi−l1x) + ···+L∞ fr
(
x̄i,l,τi+l1x

)

2l1 + 1
. (4.28)

Note that the function Avi+l1j=i−l1 τ
jL∞ fr depends just on the value of the field inside the

box centered at i and of size l.
As before, we use Lemma 4.1 to conclude that the event (4.27) has negligible proba-

bility in the limit. An additional difficulty shows up. If λε is the largest eigenvalue of the
perturbation L+ εW of a negative operator L with principal eigenvalue 0, the eigenvalue
λε has the formal series expansion,

λε = 0 + εEν[W] + ε2〈W , (−L)−1W
〉

ν + �
(
ε3). (4.29)

Hence if the potential W has mean zero, one expects limε→0 λεε−2 = 〈W , (−L)−1W〉ν.
Fortunately for suitable potentialW , the central limit variance 〈W , (−L)−1W〉ν converges
to zero.

We will need in our context a particular result about the largest eigenvalue of a pertur-
bation operator. The reader can find further details in Quastel in [15].

Lemma 4.2. Let W be a real potential that satisfies

〈u,Wu〉ν ≤ l−1/2Dl(u)1/2‖u‖2, l < Cε−2/5 (4.30)

for some C small enough, or

‖W‖∞ ≤ C, K ≤ (Cε)−1/5. (4.31)

Provided that the generator l4Ll has spectral gap of order one, the following estimate holds:

ε−2l−5 supspec
L2(ν)

(
l4Ll − εl5W

)≤ l〈W ,
(−Ll

)−1
W

〉
ν + �(1). (4.32)
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Spectral gap. Indeed the generator l4Ll of our model, defined by (2.9), has a spectral gap
of order 1. The proof is standard by the Bakry-Emery method (see Chang and Yau [3] or
Deuschel and Stroock [4]).

The operator Ll is an unbounded operator defined on the subspace C∞0 (R2l+1) of the
Hilbert space L2(ν

gc
α,l) and is negative definite, with spectrum included in the negative

semiaxis of the real line. Zero is an eigenvalue of the operator Ll but the eigenspace cor-
responding to this eigenvalue is quite large, being infinite dimensional.

It is not hard to see that we can write the Hilbert space L2(ν
gc
α,l) as the direct sum⊕

y∈R2 L2(νcy,l). Moreover because of the ergodicity of the dynamics (2.9) on the level sets

of the function y0,l = (y1
0,l, y

2
0,l), we know that the eigenspace corresponding to zero of the

restriction of the operator Ll onto each Hilbert subspace L2(νcy,l) is one dimensional. The
next eigenvalue of the restriction Ll|L2(νcy,l) is a negative number. The distance between the
largest eigenvalue and the next largest eigenvalue of the operator Ll|L2(νcy,l) is called the
spectral gap of the operator, because it is the gap in the spectrum of the operator.

We provide next a bound on the size of the spectral gap of an operator more general
than Ll.

Lemma 4.3. Suppose that L is the unique symmetric operator given by the quadratic form

DL(ρ)= 〈
(−L)ρ,ρ

〉
ν =

∫

RN

N∑

i=1

(
∂iρ

)2
e−U(x)dx. (4.33)

The function U is such that at each point x ∈ RN , the Hessian of U, (HessU)(x) =
{∂i∂j(U(x))}1≤i, j≤N , has the property 〈(HessU)(x)v,v〉 ≥ C‖v‖2, v ∈ RN . The constant
C is supposed to be independent of the point x. Under these assumptions, L has a gap in the
spectrum of size at least C and that for any ρ such that Eν[ρ]= 0,

CEν
[
ρ2]≤ 〈

(−L)ρ,ρ
〉

ν. (4.34)

Proof. Integrating by parts in (4.33), we find the form of the operator −L:

(−L)ρ=
N∑

i=1

[− ∂2
i (ρ) + ∂i(U)∂i(ρ)

]
. (4.35)

Assume that λ is a nonzero eigenvalue of −L and ρ, with the property that Eν[ρ] is the
corresponding eigenfunction such that (−L)ρ = λρ. In both sides of this equality, we dif-
ferentiate with respect to the jth coordinate and multiply with ∂j(ρ) to get

N∑

i=1

[− ∂j∂2
i (ρ)∂j(ρ) + ∂j∂i(U)∂i(ρ)∂j(ρ) + ∂i(U)∂j∂i(ρ)∂j(ρ)

]= λ(∂j(ρ)
)2
. (4.36)

We sum over all possible values of j and then integrate over RN in (4.36) to get

∫

RN

∑

1≤i, j≤N

[(
∂i∂j(ρ)

)2
+
(
∂i∂j

)
(U)∂i(ρ)∂j(ρ)

]
dν= λ

∫

RN

N∑

i=1

(
∂i(ρ)

)2
(x)dν. (4.37)

Since ρ is not a constant function, it follows immediately that the eigenvalue λ≥ C. �
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Lemma 4.4 (spectral gap). There is a universal constant C that does not depend on the
conserved quantities y0,l = (y1

0,l, y
2
0,l)∈R2 such that

C

l4
Eνcy,l

[
ρ2]≤ 〈(−Ll

)
ρ,ρ

〉
νcy,l

(4.38)

for any mean-zero function ρ, Eνcy,l
[ρ]= 0.

Proof. To save on notations, throughout the proof of this lemma, we label the coordinates
of the underlying space R2l+1 of the measure νcy,l by x0,x1, . . . ,x2l.

First, we observe that the canonical measure νcy,l satisfies the hypothesis of Lemma 4.3.
For this, we need a formula for the expectation of a function ρ with respect to the canon-
ical measure. Any point x ∈ R2l+1 on the level set (y1

0,l = x0 + ···+ x2l, y2
0,l = x1 + 2x2 +

···+ 2lx2l) can be thought of as being a point in the image of the function

f
(
x2, . . . ,x2l

)= (
y1

0,l − y2
0,l + x2 + ···+ (2l− 1)x2l, y2

0,l − 2x2−···− 2lx2l,x2, . . . ,x2l
)
.

(4.39)

This allows us to write

Eνcy,l
[ρ]=

∫
R2l−1 ρ

(
f
(
x2, . . . ,x2l

))
e−U(x2,...,x2l)dx2 ···dx2l∫

R2l−1 e−U(x2,...,x2l)dx2 ···dx2l
, (4.40)

where U(x2, . . . ,x2l+1)=H2l+1( f (x)).
We calculate the Hessian of U to get

Hess(U)=V ′′(y1
0,l − y2

0,l + x2 + ···+ (2l− 1)x2l
)
M1

+V ′′(y2
0,l − 2x2−···− 2lx2l

)
M2 +D,

(4.41)

where M1 = {(i− 1)( j− 1)}2≤i, j≤2l, M2 = {i j}2≤i, j≤2l are two positive matrices and D is a
diagonal matrix such that the entries on the main diagonal areD(i, i)=V ′′(xi), 2≤ i≤ 2l.
If V ′′ is uniformly bounded from below by some constant C, then we obtain the required
condition 〈Hess(U)v,v〉 ≥ C‖v‖2 for all vectors v ∈R2l−1. Note that for a quadratic po-
tential V(x)= x2/2, this condition is satisfied, V ′′(x)= 1.

Recall that the vector field Xi = ∂i−1 − 2∂i + ∂i+1. Before proving this result, we must
note that for a smooth function ρ, we have

∂i(ρ ◦ f )= [(
(i− 1)∂0(ρ)− i∂1(ρ) + ∂i

)
ρ
]◦ f = [(

Xi−1 + 2Xi−2 + ···+ (i− 1)X1
)
ρ
]◦ f .
(4.42)

It follows from Lemma 4.3 that there is a constant independent of y0,l = (y1
0,l, y

2
0,l) such

that

CEνcy,l

[
ρ2]≤ Eνcy,l

[ 2l∑

i=2

[(
Xi−1 + 2Xi−2 + ···+ (i− 1)X1

)
ρ
]2
]
≤ l4Eνcy,l

[2l−1∑

i=1

(
Xi(ρ)

)2
]
.

(4.43)

Therefore, the operator −Ll|L2(νcy,l) has a gap in the spectrum of order 1/l4. �
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Since the generator Ll of our model has a spectral gap, see Lemma 4.4, we can intro-
duce the central limit theorem variance in our context.

Definition 4.5. Let f (x−s, . . . ,xs) be a cylinder function such that Eνcy,s
[ f ]= 0 for all pos-

sible values of y ∈R2. Recall that νcy,s is the canonical measure in a box centered at 0 and
size s defined in Section 2. The central limit theorem variance (CLT-variance) of f on the
box Λi,l is defined to be

Vi,l( f , y)= 2(2l)
〈

Avi+l1j=i−l1 τ
j f ,

(−Li,l
)−1

(
Avi+l1j=i−l1 τ

j f
)〉

νcy,i,l

. (4.44)

If the box Λi,l is centered at 0, then use the shorter notationVl( f , y) for the CLT-variance.

At this point, we stress that Vi,l( f , y) is a local function depending on the field inside
Λi,l, more precisely depending on the conserved quantities yi,l = (y1

i,l, y
2
i,l), the mean slope,

and the linear mean of the slope field.
The strategy is to give a bound for the largest eigenvalue of a perturbation operator in

terms of the CLT-variance Vi,l( f , y). Extra care must be taken because the CLT-variance
Vi,l( f , y) is uniformly-in-y small on bounded sets and not on unbounded sets.

The canonical measure νci,l,y for our model has been obtained by conditioning the
grand canonical measure on the configurations with fixed mean slope and fixed linear
mean slope in a box centered at i and of size l. The second conditioning makes the canon-
ical measure not having identical marginals. Actually, the expected values of the marginals
depend linearly on the site. However the finite-dimensional marginals of the canoni-
cal measure converge towards the finite-dimensional marginals of the grand canonical
distribution as the size of the box approaches infinity, see Lemma 5.1. To benefit from
this fact, we will replace the CLT-variance Vl( f , y) in a box of size l with its expectation
Eeq[Vl( f , y) | yk] with respect to the canonical measure νcy,k in a box of larger size k. We
let k go first to infinity. We formalize below.

Let us define the function g as

g = N2

N

N∑

i=1

φ
(
i

N

)[
Avi+l1j=i−l1 wj − â

(
xi,l

)
Avi+l1j=i−l1 (Δx) j −Avi+l1j=i−l1 τ

jL∞ fr
]
. (4.45)

Thanks to Lemma 4.1, the event (4.27) has negligible probability if

limsup
r,l,N→∞

supspec
L2(ν

eq
N )

(
g + 2β

N4

N
LN

)
≤ 0, β > 0. (4.46)

We write the operator g + 2β(N4/N)LN as a sum of operators and we estimate the size of
the principal eigenvalue of each operator in the sum

g + 2β
N4

N
LN =Ω1 +Ω2 +Ω3 +Ω4, (4.47)
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where

Ω1 = g − 1
βN

N∑

i=1

φ
(
i

N

)2

Vi,l
(
w− â(xi,l

)
Δx−L∞ fr , y

)
+β

N4

N
LN ,

Ω2 = 1
βN

N∑

i=1

φ
(
i

N

)2[
Vi,l

(
w− â(xi,l

)
Δx−L∞ fr , y

)

−Eeq[Vi,l
(
w− â(xi,l

)
Δx−L∞ fr , y) | yi,k

]]
+β

N4

N
LN ,

Ω3 = 1
βN

N∑

i=1

φ
(
i

N

)2

Eeq[Vi,l
(
w− â(xi,l

)
Δx− l∞ fr , y

) | yi,k
]

1|yi,k|≥δ ,

Ω4 = 1
βN

N∑

i=1

φ
(
i

N

)2

Eeq[Vi,l
(
w− â(xi,l

)
Δx−L∞ fr , y

) | yi,k
]

1|yi,k|≤δ.

(4.48)

The operators Ω2, Ω3, and Ω4 are understood as multiplication operators.

The operator Ω1. Assume that M is an upper bound for the test function |φ|. Define

gi,l = Avi+l1j=i−l1 wj − â
(
xi,l

)
Avi+l1j=i−l1 (Δx) j −Avi+l1j=i−l1 τ

jL∞ fr . (4.49)

We have

supspec
L2(ν

eq
N )

(
Ω1

)≤ sup
|λ|≤M

sup
ρ,Eeq[ρ2]=1

[
Eeq

[
λN2g0,lρ

2− λ2

β
Vl
(
w− â(xl

)
Δx−L∞ fr , y

)
ρ2
]

− βN4

2l+ 1
Dl(ρ)

]

≤ sup
|λ|≤M

sup
yl∈R2

[
sup

ρ,Eeq[ρ2|yl]=1

[
Eeq[λN2g0,lρ

2]− βN4

2l+ 1
Dνcy,l

(ρ)
]

− λ2

β
Vl
(
w− â(xl

)
Δx−L∞ fr , y)

]
.

(4.50)

Integrating by parts, we can show that there is a constant C, not depending on l and the
values of the conserved quantities, such that for each density ρ,

Eeq[g0,lρ
2 | yl

]≤ C
√
Dνcy,l

(ρ)
√

2l+ 1
. (4.51)
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Hence, the hypothesis of Lemma 4.2 is satisfied and

limsup
N→∞

sup
ρ,Eeq[ρ2|yl]=1

[
Eeq[λN2g0,lρ

2]− βN4

2l+ 1
Dνcy,l

(
ρ2)

]

= 1
(2l+ 1)l4

limsup
N→∞

N4 sup
ρ,Eeq[ρ2|yl]=1

[
Eeq

[
λ(2l+ 1)l4

N2
g0,lρ

2
]
−βl4Dνcy,l

(ρ2)
]

≤ λ2

β
Vl
(
w− â(xl

)
Δx−L∞ fr , y

)
.

(4.52)

The convergence on the line above is uniform over the set of all possible values of the
conserved quantity yl = (y1

l , y2
l )∈R2, therefore the principal eigenvalue of the operator

Ω1 becomes negative as N →∞.

The operator Ω2. Let us define

vi,k =Vi,l
(
w− â(xi,l

)
Δx−L∞ fr , y

)−Eeq[Vi,l
(
w− â(xi,l

)
Δx−L∞ fr , y

) | yi,k
]
. (4.53)

We observe that Ω2 contains vi,k without being multiplied with a factor N2. Then,

supspec
L2(ν

eq
N )

(
Ω2

)= supspec
L2(ν

eq
N )

[
1
βN

∑

i

φ
(
i

N

)2

vi,k +β
N4

N
LN

]

≤ sup
|λ|≤M

sup
yk∈R2

sup
ρ,Eeq[ρ2|yk]=1

[
Eeq

[
λ2

β
v0,kρ

2
]
− βN4

2k+ 1
Dνcy,k

(ρ)
]

= 1
(2k+ 1)k4

sup
|λ|≤M

sup
yk∈R2

N4 sup
ρ,Eeq[ρ2|yk]=1

[
Eeq

[
λ2(2k+ 1)k4

N4β
v0,kρ

2
]

−βk4Dνcy,k
(ρ)

]
.

(4.54)

Moreover, vi,k is a bounded function (see Lemma 5.2) and Eeq[v0,k | yk]= 0. We can apply
Lemma 4.2,

limsup
N→∞

N4 sup
ρ,Eeq[ρ2|yk]=1

[
Eeq

[
λ2(2k+ 1)k4

N4β
v0,kρ

2
]
−βk4Dνcy,k

(ρ)
]
≤ 0. (4.55)

The convergence on the line above is uniform over all possible values of the conserved
quantities yl = (y1

l , y2
l ); therefore limsupN→∞ supspecL2(ν

eq
N )(Ω2)≤ 0.

The operator Ω3. We refer to Lemma 4.1. Rather than proving that

limsup
δ,r,l,k,N→∞

supspec
L2(ν

eq
N )

(Ω3)= 0, (4.56)
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we will show that

limsup
δ,r,l,k,N→∞

1
N

logEeq

[
exp

(∫ T

0
NΩ3 ds

)]
= 0, (4.57)

where

Ω3 = 1
βN

N∑

i=1

φ
(
i

N

)2

Eeq[Vl
(
w− â(x̄l

)
δx−L∞ fr , y

) | yk
]

1|yk|≥δ. (4.58)

Equation (4.57) follows from the estimations

1
N

logEeq

[
exp

(
N
∫ T

0
Ω3ds

)]

≤ 1
N

logEeq

[
1
T

∫ T

0
exp

(
NTΩ3

)
ds

]

= 1
N

logEeq

[
exp

( N∑

i=1

φ
(
i

N

)2

Eeq[Vl
(
w− â(x̄l

)
Δx−L∞ fr , y

) | yk
]

1|yk|≥δ

)]

≤ logEν
gc
0

[
exp

(
M2Eeq[Vl

(
w− â(x̄l

)
Δx−L∞ fr , y

) | yk
]

1|yk|≥δ
)]
.

(4.59)

The dominated convergence theorem can be applied (see the note at the end of Section
5) and gives us

lim
δ �→∞

logEν
gc
0

[
exp

(
M2Eeq[Vl

(
w− â(x̄l

)
Δx−L∞ fr , y

) | yk
]

1|yk|≥δ
)]
. (4.60)

The operator Ω4. The main purpose of Section 5 is to show that there exists a sequence
of functions { fr}r≥0 such that for any δ > 0,

limsup
r,l,k→∞

sup
|yk|≤δ

Eeq[Vl
(
w− â(x̄l

)
Δx−L∞ fr , y

) | yk
]= 0,

sup
r

sup
yk∈R2

Eeq[Vl
(
w− â(x̄l

)
Δx−L∞ fr , y

) | yk
]≤∞. (4.61)

The term (4.8). It follows that the term (4.8) converges to zero in probability from the fol-
lowing two lemmas. We refer the reader to Bertini et al. [2] or Guo et al. [8] for the proof.
The proof uses mainly the entropy inequality (3.5) and the consequence of Feynman-Kac
formula (4.18).

Lemma 4.6 (local ergodicity). Let f be a cylinder function. Define f̃ : R→ R to be the

function f̃ (α)= Eν
gc
α

[ f ]. Then for any δ > 0, φ : T→R a smooth function,

limsup
k,N→∞

P
neq
N ,T

{∫ t

0

∣∣∣∣∣
1
N

N∑

i=1

φ
(
i

N

)(
τi f

(
x(s)

)− f̃
(

Avi+kj=i−k xj(s)
))∣∣∣∣∣ds≥ δ

}
= 0. (4.62)
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Lemma 4.7 (two-block estimate). For any continuous function g :R→R, let

Fk,a,N =
{∫ t

0
AvNi=1 Avi+aNj=i−aN

(
g
(

Avi+kl=i−k xl(s)
)
− g

(
Av

j+k
l= j−k xl(s)

))2
ds≥ δ

}
. (4.63)

Then for any δ > 0,

limsup
k→∞,a→0,N→∞

P
neq
N ,T

{
Fk,a,N

}= 0. (4.64)

5. Computation of the central limit theorem variances

In this section, we compute the value of the limit

limsup
l→∞

sup
|α|≤δ

Eν
gc
α

[
Vl( f , y)

]
(5.1)

for a particular class of cylinder functions f to be described later.
We will need a result that relates canonical and grand canonical measures, known as

the equivalence of ensemble. The equivalence of ensemble says that asymptotically the
marginal in a fixed box of the canonical measure is the marginal of the grand canonical
measure.

Lemma 5.1 (equivalence of ensemble). Let f (x−s, . . . ,xs) be a bounded, local function.
Then, for any ε > 0, there exist N ∈N, δ > 0, and M > 0 such that

∣∣Eνcy,k
[ f ]−Eν

gc
α

[ f ]
∣∣≤ ε (5.2)

as long as k > N and |y1
k −α| < δ, |y2

k| <M. Assume that the potential V(x)= x2/2.

Proof. To keep the computations at minimum, we assume that the local function f de-
pends only on two coordinates xi and xj . Since the potential V(x)= x2/2, the canonical
measure νcy,k is a multidimensional Gaussian probability measure. We will identify below
the marginals of νcy,k as Gaussian probability measures with certain means and variances.

Recall that

y1
k =

1
2k+ 1

k∑

i=−k
xi, y2

k =
1

k(k+ 1)

k∑

i=−k
ixi, (5.3)

and that νcy,k is the conditional probability measure ν
gc
β,k(· | y1

k , y2
k). We can take β = 0.

Under the grand canonical measure ν
gc
0,k, the random variables x−k, . . . ,xk are indepen-

dent and identically standard Gaussian distributed. Then, the covariance matrix of the
random variables (xi, y1

k , y2
k) can be found to be

Σ(xi, y1
k , y2

k)=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
1

2k+ 1
i

k(k+ 1)
1

2k+ 1
1

2k+ 1
0

i

k(k+ 1)
0

2k+ 1
3k(k+ 1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (5.4)
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and the conditional expectation

E
[
xi | y1

k , y2
k

]= 3k2(k+ 1)2(2k+ 1)
2k2(k+ 1)− 3i2

[
1

3k(k+ 1)
y1
k +

i

k(k+ 1)(2k+ 1)
y2
k

]
. (5.5)

It is not difficult to observe that if {xi}i∈Z is a double-sided sequence such that y1
k → α

as k→∞ and {y2
k}k≥1 is bounded, then

E
[
xi | y1

k , y2
k

]−→ α as k −→∞. (5.6)

Moreover the conditional variance and covariance have the properties

E
[(
xi−E

(
xi | y1

k , y2
k

))2 | y1
k , y2

k

]= 2k2(k+ 1)− 3i2

k(k+ 1)(2k+ 1)
−→ 1, as k −→∞,

E
[(
xi−E

(
xi | y1

k , y2
k

))(
xj −E

(
xj | y1

k , y2
k

)) | y1
k , y2

k

]

=
[
k(k+1)+3i j

][
k(k+1)

(
4k2−1

)
+k

(
6i2 +6 j2

)−6i j
]

(2k+1)
[(

2k2(k+1)−3 j2
)(

2k2(k+1)−3i2
)−k(k+1)−3i j

] −→0 as k−→∞.
(5.7)

The convergences exhibited above lead us to conclude that under the assumption that
y1
k → α as k→∞ and that there existsM such that |y2

k| ≤M, k ≥ 1, the marginal in a finite
box of the canonical measure νcy,k converges towards the marginal of the grand canonical

measure ν
gc
α as k→∞. This convergence is in the sense explained in the statement of this

lemma. The lemma follows. It is very possible that the techniques outlined in [8] or [11]
can establish this lemma for a more general potential V(x). �

We will need a new notation, namely, X∗0 for the adjoint of the vector field X0 = ∂−1−
2∂0 + ∂1 with respect to the inner product of the Hilbert space L2(adν

eq
N ). The adjoint is

given by the formula

X∗0 (h)=−X0(ah) +
(
V ′(x−1

)− 2V ′(x0
)

+V ′(x1
))
ah. (5.8)

Note that the current w is equal to X∗0 (−1), and the slope Laplacian Δx is equal to
X∗0 (1/a).

Lemma 5.2. Let h(x−s, . . . ,xs) be a bounded, cylinder function such that f =X∗0 (h)∈L2(ν
gc
α,s)

for all α∈R. Then there exists C(h) <∞ that depends just on the function h such that

sup
l,y0,l∈R2

1
l

〈
(−Ll

)−1
(

∑

| j|≤l−√l
τ j f

)
,

∑

|i|≤l−√l
τi f

〉

νcy,l

≤ C(h). (5.9)



28 Continuum solid-on-solid model

In addition if the function h is bounded away from zero, h ≥ C > 0, there exists the lower
bound C1(h) > 0 that depends just on h,

C1(h)≤ sup
l,y0,l∈R2

1
l

〈
(−Ll

)−1
(

∑

| j|≤l−√l
τ j f

)
,

∑

|i|≤l−√l
τi f

〉

νcy,l

. (5.10)

Proof. Remember thatVl( f , y)=(1/l)〈(−Ll)−1(
∑
| j|≤l−√l τ j f ),

∑
|i|≤l−√l τi f 〉νcy,l

. We use the
variational formula

Vl( f , y)= sup
u

〈
u,
∑
| j|≤l−√l τ j f

〉2

νcy,l

lDνcy,l
(u)

. (5.11)

We have

〈
u,

∑

| j|≤l−√l
τ j f

〉2

νcy,l

=
〈
u,

∑

| j|≤l−√l
X∗j

(
τ jh

)
〉2

νcy,l

= Eνcy,l

⎡
⎢⎣

∑

| j|≤l−√l
a jXj(u)τ jh

⎤
⎥⎦

2

≤Dνcy,l
(u)Eνcy,l

⎡
⎢⎣

∑

| j|≤l−√l
a j
(
τ jh

)2

⎤
⎥⎦≤ 2lC(h)Dνcy,l

(u),

(5.12)

therefore the upper bound for the variance is established.
For the lower bound, we may choose a particular function u in (5.11), namely, u =∑l
i=−l(i2/2)xi. Note that Xi(u)= 1 for any −l+ 1≤ i≤ l− 1. It follows that

〈
u,
∑
| j|≤l−√l τ j f

〉2

νcy,l

lDνcy,l
(u)

=
Eνcy,l

[∑
| j|≤l−√l a jτ jh

]2

lEνcy,l

[∑
| j|≤l−1 aj

] ≥ C1(h). (5.13)

We have just used that a and h are functions bounded away from zero, and a is a bounded
function. �

Note. Lemma 5.2 is true for any local function f =∑s
i=−s X

∗
j (hj), where the functions hj

are bounded, local functions.

Definition 5.3. For a bounded, local function f such that Eνcy,l
[ f ] = 0, for all possible

values of y ∈R2, define the seminorm

〈〈 f 〉〉2
α = limsup

l→∞,y1
k→α

1
l
Eνcy,k

⎡
⎢⎢⎣

〈
(−Ll

)−1
(

∑

|i|≤l−√l
τi f

)
,

∑

| j|≤l−√l
τ j f

〉

νcy,l

⎤
⎥⎥⎦ . (5.14)
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We saw in Lemma 5.2 that 〈〈 f 〉〉α is a finite number as long as f is equal to X∗0 (h),
where h is a bounded, local function. By polarization, we can extend the seminorm 〈〈·〉〉α
to a semi-inner product 〈〈·,·〉〉α. For the remaining part of this section, we compute the
value of the seminorm 〈〈 f 〉〉α for certain function f .

Lemma 5.4. Assume that g is a bounded cylinder function with bounded first derivatives,
f = L∞g, w = X0(a)− (V ′(x−1)− 2V ′(x0) +V ′(x1))a, and Δx = x−1 − 2x0 + x1, then the
following identities hold:

(a) 〈〈L∞g〉〉2
α = Eν

gc
α

[a(x−1,x0,x1)(X0(
∑

j∈Z τ jg))2],

(b) 〈〈w〉〉2
α = 4Eν

gc
α

[a(x−1,x0,x1)],
(c) 〈〈L∞g,w〉〉α = 2Eν

gc
α

[a(x−1,x0,x1)X0(
∑

j∈Z τ jg)],
(d) 〈〈L∞g,Δx〉〉α = 0,
(e) 〈〈w,Δx〉〉α = 4.

Proof. One checks directly using equivalence of ensemble Lemma 5.1 and the asymptotic
shift invariance of νcy,k that the relations (a)–(e) hold. In particular, for (d) and (e), it is
important to notice that Δx = x−1− 2x0 + x1 = X∗0 (1/a). �

Definition 5.5. Define the Hilbert space �α to be the closed linear span in L2(a dν
gc
α ) of

the function 1 and functions ξg = X0(
∑

j∈Z τ jg), where g is a bounded local function with
bounded first derivatives.

It is not hard to see that if f is equal to X∗0 (h), then

〈〈
f ,L∞g

〉〉
α = Eν

gc
α

[
aProj�α

(2h)X0

(
∑

j∈Z
τ jg

)]
,

〈〈 f ,w〉〉α = Eν
gc
α

[
aProj�α

(2h)2
]
.

(5.15)

On both lines above, Proj�α
stands for the projection operator in the subspace �α. We

are left to calculate 〈〈 f 〉〉α for a function f = X∗0 (h). As we will show in the following
lemma, 〈〈 f 〉〉2

α = Eν
g
αc[a(Proj�α

(2h))2].

Lemma 5.6. Suppose that f is equal to X∗0 (h), where h is a bounded cylinder function. Then
the following holds:

〈〈 f 〉〉2
α = Eν

gc
α

[
a
(

Proj�α
(2h)

)2]
. (5.16)

Proof. Using Cauchy-Schwarz inequality, it follows that

〈〈 f 〉〉2
α = liminf

l→∞,y1
k→α

1
l
Eνcy,k

⎡
⎢⎢⎣

〈
(−Ll

)−1
(

∑

|i|≤l−√l
τi f

)
,

∑

| j|≤l−√l
τ j f

〉

νcy,l

⎤
⎥⎥⎦

≥ Eν
gc
α

[
a
(

Proj�α
(2h)

)2]
.

(5.17)
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Consider g =∑
| j|≤l−√l τ j f , where f = X∗0 (h), then

1
l

〈
(−Ll

)−1
(

∑

|i|≤l−√l
τi f

)
,

∑

| j|≤l−√l
τ j f

〉

νcy,l

= sup
ρ,Dνcy,l

(ρ)=2l

〈
ρ,
∑
| j|≤l−√l τ j f

〉2
νcy,l

2l2
=

〈
ρl,

∑
| j|≤l−√l τ j f

〉2
νcy,l

2l2

=
〈
ρl,

∑
| j|≤l−√l X

∗
j

(
τ jh

)〉2
νcy,l

2l2
= 1

2l2
Eνcy,l

⎡
⎢⎣

∑

| j|≤l−√l
a
(
x− j ,xj ,xj

)
Xj

(
ρl
)
τ jh

⎤
⎥⎦

2

.

(5.18)

Above, ρl is some maximizer function with Dνcy,l
(ρl)= 2l.

Define ul = (1/2l)
∑
| j|≤l−√l τ− j(Xjρl). We have

Eν
gc
α

[
a
(
ul
)2]≤ Eν

gc
α

⎡
⎢⎣
a

2l

∑

| j|≤l−√l

(
τ− j

(
Xjρl

))2

⎤
⎥⎦= 1

l
Dν

gc
α

(
ρl
)≤ 2. (5.19)

The above inequality shows that {ul}l is a bounded sequence in L2(adν
gc
α ), and hence has

a weakly convergent subsequence in L2(adν
gc
α ). Let u be the weak limit of a convergent

subsequence of {ul}l. It follows that

limsup
l→∞,y1

k→α

1
l
Eνcy,k

⎡
⎢⎢⎣

〈
(−Ll

)−1
(

∑

|i|≤l−√l
τi f

)
,

∑

| j|≤l−√l
τ j f

〉

νcy,l

⎤
⎥⎥⎦

≤ 2Eν
gc
α

[auh]2 = 2Eν
gc
α

[
auProj�α

h
]2

≤ 2Eν
gc
α

[
au2]Eν

gc
α

[
a
(

Proj�α
h
)2]≤ Eν

gc
α

[
a
(

Proj�α
2h

)2]
.

(5.20)

The key point that has allowed us to write the above inequalities is that the func-
tion u has the property Xa(τbu) = Xb(τau) for all integers a and b, and a function with
this property belongs to �α (see Lemma 2.3 or Savu [16, 17]). The next estimate shows
that Xa(τbu)= Xb(τau) is valid in a weak sense. Consider a smooth test function φ, with
bounded first derivatives. Assume a > b. We have

〈
Xa

(
τbul

)
,φ
〉

ν
gc
α
=
〈

1
2l

∑

| j|≤l−√l
τb− j

(
ρl
)
,X∗b X

∗
a φ

〉

ν
gc
α

,

〈
Xa

(
τbul

)−Xb
(
τaul

)
,φ
〉

ν
gc
α

=
〈

1
2l

a+l−√l∑

j=b+1+l−√l
τ j
(
ρl
)− 1

2l

a−1−l+√l∑

j=b−l+√l
τ j
(
ρl
)
,X∗b X

∗
a φ

〉

ν
gc
α

=
〈

1
2l

a+l−√l∑

j=b+1+l−√l
τ jXb− j

(
ρl
)

+
1
2l

a−1−l+√l∑

j=b−l+√l
τ jXb− j

(
ρl
)
,X∗a φ

〉

ν
gc
α

.

(5.21)
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By Cauchy-Schwarz inequality, we obtain

〈
Xa

(
τbul

)−Xb
(
τaul

)
,φ
〉2

ν
gc
α

≤ Eν
gc
α

⎡
⎢⎢⎣

⎛
⎜⎝

1
2l

a+l−√l∑

j=b+1+l−√l
τ jXb− j

(
ρl
)

+
1
2l

a−1−l+√l∑

j=b−l+√l
τ jXb− j

(
ρl
)
⎞
⎟⎠

2
⎤
⎥⎥⎦Eν

gc
α

[(
X∗a φ

)2]

≤ C(a− b)
(2l)2

⎛
⎜⎝

−1−l+√l∑

j=b−a−l+√l
Eν

gc
α

[(
Xjρl

)2]
+

l−√l∑

j=b−a+1+l−√l
Eν

gc
α

[(
Xjρl

)2]
⎞
⎟⎠

≤ C(a− b)
(2l)2

Dν
gc
α

(
ρl
)≤ C(a− b)

2l
.

(5.22)

As l converges to infinity, the sequence {ul}l approaches u in the weak sense. Combining
this fact with (5.22), we can establish Xa(τbu)= Xb(τau).

Now we can conclude that if we have a local function f such that f = X∗0 (h), then

〈〈 f , f 〉〉α = lim
l→∞,y1

k→α
1
l
Eνcy,k

⎡
⎢⎢⎣

〈
(−Ll)−1

(
∑

|i|≤l−√l
τi f

)
,

∑

| j|≤l−√l
τ j f

〉

νcy,l

⎤
⎥⎥⎦

= Eν
gc
α

[
a
(

Proj�α
(2h)

)2]
.

(5.23)

�

The results proved so far in this section allow us to conclude that if g is a local function
equal to X∗0 (h) and b(y1

k) is a coefficient that depends on the mean slope in a box of size
k, then

〈〈
g + bw+L∞ f ,g + bw+L∞ f

〉〉
α

= lim
l→∞,y1

k→α
Eνcy,k

[
Vl
(
g + bw+L∞ f , y

)]

= Eaν
gc
α

[(
Proj�α

(2h) + 2b+X0

(
∑

i∈Z
τi f

))2]
.

(5.24)

Since Proj�α
(2h) is a function in the closed linear span of the functions 1 and

X0(
∑

i∈Z τi f ), where f is a local function, there follows the existence of a sequence of
functions { fr}r>0 and of a coefficient b = 1/â such that

lim
r→∞

〈〈Δx+ bw+L∞ fr〉
〉
α = 0. (5.25)
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Lemma 5.7. Let a∗ > 0 be an upper bound for the function a. For any ε > 0 and δ > 0, there
exists a smooth function f (x−l, . . . ,xl,α) such that

sup
|α|≤δ

〈〈
w−L∞ f − â(α)Δx

〉〉
α < ε,

sup
α

〈〈
w−L∞ f − â(α)Δx

〉〉
α < 2a∗.

(5.26)

Proof. We calculate

〈〈
w−L∞ f − â(α)Δx

〉〉2
α = 4

⎡
⎣Eν

gc
α

⎡
⎣a

(
1 +X0

(
∑

i∈Z
τi f

))2
⎤
⎦− â(α)

⎤
⎦ . (5.27)

Let us introduce the notation �l,B for the set of cylinder functions f (x−l, . . . ,xl) with
‖ f ‖∞ ≤ B and ‖∂i f ‖∞ ≤ B for i = −l, . . . , l. Let A( f ,α) = Eν

gc
α

[a(1 + X0(
∑

i∈Z τi f ))2]−
â(α) and let Al,B(α) = inf f∈�l,B A( f ,α). The function Al,B(α) is upper semicontinuous
and nonincreasing in l and B, and for each α∈R, liml,B→∞Al,B(α)= 0, therefore

lim
l,B→∞

sup
|α|≤δ+1

Al,B(α)= 0. (5.28)

Therefore we can find for each α a cylinder function f (α) such that A( f (α),α) ≤ ε if
|α| ≤ δ + 1. We extend f to be zero on |α| > δ + 1. Then on |α| > δ + 1, we have that
A( f (α),α)= Eν

gc
α

[a(x−1,x0,x1)]− â(α) and A( f (α),α)≤ a∗. To be able to avoid the prob-
lem that occurs when f is not smooth, we take the convolution of f with a smoothing
kernel φ. The required function is the convolution f ∗φ. For a complete argument, see
Quastel [14, Lemma 2.6]. �

Note. From the equivalence of ensemble Lemma 5.1, we know that for any bounded
cylinder function f and any ε > 0, there exist N1 ∈N and δ1 > 0 such that

∣∣Eeq[Vl
(
w− â(x̄i,l

)
Δx−L∞ f , y

) | yk
]− 〈〈

w− â(α)Δx−L∞ f
〉〉2

α

∣∣≤ ε, (5.29)

as long as k > N1, l > N1, and |y1
k −α| < δ1. Then Lemma 5.7 helps us to conclude that for

any ε > 0, there exists a bounded cylinder function fr such that

limsup
l,k→∞

sup
|yk|≤δ

Eeq[Vl
(
w− â(x̄l

)
Δx−L∞ fr , y

) | yk
]
< 2ε,

sup
yk∈R2

Eeq[Vl
(
w− â(x̄l

)
Δx−L∞ fr , y

) | yk
]≤ 3a∗.

(5.30)

a∗ on the line above is the upper bound for the function a in the hypothesis of Lemma 5.7.
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Properties of the transport coefficient. The transport coefficient â has been defined as the
unique real number such that

inf
f

〈〈w− â(α)Δx−L∞ f 〉
〉2
α = 0. (5.31)

It is important to notice that the transport coefficient is also given by the formula

â(α)=
〈〈w,Δx〉〉α〈〈Δx,Δx〉〉α

= Eν
gc
α

[
2(2/a)a

]

Eν
gc
α

[(
Proj�α

(2/a)
)2
a
] = 1

Eν
gc
α

[(
Proj�α

(1/a)
)2
a
]

= 1

supγ,g Eν
gc
α

[(
Projγ+X0(

∑
j∈Z τ j g)(1/a)

)2
a
] = inf

γ,g

Eν
gc
α

[(
γ+X0

(∑
j∈Z τ jg

))2
a
]

Eν
gc
α

[
(1/a)

(
γ+X0

(∑
j∈Z τ jg

))
a
]2

= inf
g
Eν

gc
α

[
a
(
x−1,x0,x1

)
(

1 +X0

(
∑

j∈Z
τ jg

))2]
.

(5.32)

6. Hydrodynamic scaling limit of the model for surface electromigration

In this section, we will show that the model for surface electromigration (2.12) has a
hydrodynamic scaling limit as well. We will prove Theorem 2.4. The proof is inspired by
Quastel [14]. From Cameron-Martin-Girsanov formula, we can find the Radon-Nikodym
derivative

dP
neq
N ,E,T

dP
eq
N ,T

= dν
neq
N

dν
eq
N

exp

⎛
⎝1

2

N∑

i=1

∫ T

0
E
(
t,
i

N

)√
a
(
xi−1,xi,xi+1

)
dBi

−1
8

N∑

i=1

∫ T

0
E2
(
t,
i

N

)
a
(
xi−1,xi,xi+1

)
dt

⎞
⎠ ,

(6.1)

and the relative entropy

H
(
P

neq
N ,E,T | Peq

N ,T

)
=H

(
ν

neq
N | ν

eq
N

)
+EPneq

N ,E,T

[
1
8

N∑

i=1

∫ T

0
E2
(
t,
i

N

)
a
(
xi−1,xi,xi+1

)
dt

]
.

(6.2)

Hence, there exists a constant C such that H(P
neq
N ,E,T|Peq

N ,T)≤ CN . We can use the inequal-
ity (3.6) and the superexponential estimates (3.11) and (3.19) to conclude that the se-
quence of probability measures {Qneq

N ,E,T}N≥0 is tight in the topology of the space �. De-
note by QE,T a weak limit of a subsequence of {Qneq

N ,E,T}N≥0.
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We proceed further to identify the limit QE,T . To save space, we ignore the time depen-
dence of the test function φ,

1
N

N∑

i=1

φ
(
i

N

)
xi(T)− 1

N

N∑

i=1

φ
(
i

N

)
xi(0) (6.3)

=
∫ T

0

1
2N

N∑

i=1

(
N2wi +E

(
t,
i

N

)
ai

)
φ′′

(
i

N

)
dt+MN (T) (6.4)

=
∫ T

0

N2

2N

N∑

i=1

(
wi− â

(
x̄i,k

)
(Δx)i−L∞τi fr

)
φ′′

(
i

N

)
dt+MN (T) (6.5)

+
∫ T

0

N2

2N

N∑

i=1

LN ,Eτ
i frφ

′′
(
i

N

)
dt (6.6)

+
∫ T

0

1
2N

N∑

i=1

[
E
(
t,
i

N

)(
ai− â

(
x̄i,k

))
+N2(L∞τi fr −LN ,Eτ

i fr
)]
φ′′

(
i

N

)
dt

(6.7)

+
∫ T

0

1
2N

N∑

i=1

â
(
x̄i,k

)[
N2(Δx)i +E

(
t,
i

N

)]
φ′′

(
i

N

)
dt. (6.8)

Above {MN (t)}t≥0 is a martingale, and as in Section 4 we can prove that it is negligible in
the limit. Because of the entropy inequality (3.5) and the superexponential estimate

limsup
r,l,N→∞

1
N

logEeq

[
exp

(∣∣∣∣∣

∫ T

0
N2

N∑

i=1

[
Avi+l1j=i−l1 wj − â

(
x̄i,l

)
Avi+l1j=i−l1 (Δx) j

−Avi+l1j=i−l1 τ
jL∞ fr

]
ds

∣∣∣∣∣

)]
≤ 0,

(6.9)

the event on line (4.27) is negligible under P
neq
N ,E,T . For the new model, we have that the

negligible fluctuations are LN ,E f and not L∞ f (i.e., the term (6.6) has no contribution
towards the limit of the model). The contribution coming from nontrivial fluctuations
LN ,E f − L∞ f are gathered in the coefficient in front of the vector field E in the nonlin-
ear equation (2.20). Because of this reason, the coefficient turns out to be the transport
coefficient â, defined by the variational formula (2.16) and not ã(α)= Eν

gc
α

[a].
We will show that the sequence of smooth local functions { fr}r≥0 introduced in the

note right after Lemma 5.7 can be chosen to have the additional property that the term
(6.7) is negligible in the limit. Note that the term (6.7) is negligible if

limsup
r,k,N→∞

P
neq
N ,E,T

{∣∣F(T)
∣∣ > ε

}= 0, (6.10)
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where

F(T)=
∫ T

0

1
2N

N∑

i=1

E
(
t,
i

N

)[
aigi− â

(
x̄i,k

)]
dt, gi = 1 +Xi

(
∑

j∈Z
τ j fr

)
. (6.11)

We can write

F(T)=
∫ T

0

1
2N

N∑

i=1

E
(
t,
i

N

)(
aigi−Eν

gc

ȳ1
i,k

[
aigi

])

+
∫ T

0

1
2N

N∑

i=1

E
(
t,
i

N

)(
Eν

gc

ȳ1
i,k

[
aigi

]− â(x̄i,k
))

1| ȳ1
i,k|≤δ

+
∫ T

0

1
2N

N∑

i=1

E
(
t,
i

N

)(
Eν

gc

ȳ1
i,k

[
aigi

]− â(x̄i,k
))

1| ȳ1
i,k|≥δ.

(6.12)

Recall that in the proof of Lemma 5.7, we introducedA( f ,α) to be the difference Eν
gc
α

[a(1+
X0(

∑
i∈Z τi f ))2]− â(α). We will show that we can modify the sequence { fr}r≥0 to have the

properties

sup
α,r

A
(
fr(α),α

)≤ a∗, sup
α,r

∣∣Eν
gc
α

[
ag0

]− â(α)
∣∣≤ 5a∗, (6.13)

lim
r→∞ sup

|α|≤δ
A
(
fr(α),α

)= 0, (6.14)

lim
r→∞ sup

|α|≤δ

∣∣Eν
gc
α

[
ag0

]− â(α)
∣∣= 0. (6.15)

We write

Eν
gc
α

[
ag0

]− â(α)= (
Eν

gc
α

[
ag0

]−Eν
gc
α

[
ag2

0

])
+
(
Eν

gc
α

[
ag2

0

]− â(α)
)

= Eν
gc
α

[
ag0

(
g0− 1

)]
+A

(
fr(α),α

)
.

(6.16)

Since |Eν
gc
α

[ag0(g0 − 1)]| ≤ 4a∗ and A( fr(α),α) ≤ a∗ uniform in α and r, (6.13) follows.
Consider f ∗(α) to be the minimizer of A( f ,α) among local functions of x−l through xl.
f ∗ has the property that for any fr ,

Eν
gc
α

[
a

(
1 +X0

(
∑

j∈Z
τ j f ∗

))
X0

(
∑

j∈Z
τ j fr

)]
= 0. (6.17)

Now, thanks to Cauchy-Schwarz inequality,

∣∣Eν
gc
α

[
ag0

(
g0− 1

)]∣∣=
∣∣∣∣∣Eν

gc
α

[
aX0

(
∑

j∈Z
τ j fr

)
X0

(
∑

j∈Z
τ j
(
f ∗ − fr

)
)]∣∣∣∣∣

≤ Eν
gc
α

[
a

(
X0

(
∑

j∈Z
τ j fr

))2]1/2

Eν
gc
α

[
a

(
X0

(
∑

j∈Z
τ j
(
f ∗ − fr

)
))2]1/2

.

(6.18)



36 Continuum solid-on-solid model

We modify fr such that

sup
|α|≤δ

Eν
gc
α

[
a

(
X0

(
∑

j∈Z
τ j
(
f ∗ − fr

)
))2]

≤ ε2

6a∗
. (6.19)

To conclude, (6.13) is negligible because of local ergodicity (Lemma 4.6), (6.14) is negli-
gible because for any fixed δ we have (6.15), and (6.15) shrinks to zero once δ becomes
very large. Also it is important to have property (6.13). Thus our result follows.
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