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A dynamic model for multi-rigid-body systems which consists of interconnected rigid
bodies based on particle dynamics and a recursive approach is presented. The method
uses the concepts of linear and angular momentums to generate the rigid body equa-
tions of motion in terms of the Cartesian coordinates of a dynamically equivalent con-
strained system of particles, without introducing any rotational coordinates and the cor-
responding rotational transformation matrix. For the open-chain system, the equations
of motion are generated recursively along the serial chains. A closed-chain system is trans-
formed to open-chain by cutting suitable kinematical joints and introducing cut-joint
constraints. An example is chosen to demonstrate the generality and simplicity of the
developed formulation.

1. Introduction

There are different formulations for the dynamic analysis of spatial mechanisms which
vary in the system of coordinates used and in the way they introduce kinematical con-
straint equations [8, 9, 14, 17, 18]. Each formulation has its own advantages and dis-
advantages depending on the application. Some formulations are developed using a two-
step transformation which leads to a simple and reduced system of equations. One
method [13, 16] uses initially the absolute coordinate formulation where the location of
each rigid body in the system is described in terms of a set of translational and rotational
coordinates. Then, the equations of motion are transformed to a reduced set in terms of
the relative joint variables. Another method uses initially the point coordinate formula-
tion in which a dynamically equivalent constrained system of particles replaces the rigid
bodies [1, 2, 3, 4, 5, 6, 7, 10, 15]. The global motion of the constrained system of par-
ticles together with the constraints imposed upon them represent both the translational
and rotational motions of the rigid body. The external forces and couples acting on the
body are distributed over the system of particles. Then, the equations of motion which
are expressed in terms of the Cartesian coordinates of the particles are rederived in terms
of the relative joint variables. The main disadvantage of this two-step transformation is
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the necessity to transform at every time step from the joint variables to the original system
which is time consuming.

The purpose of any multibody dynamic formulation is to write mathematical model
to represent the dynamic response of the multibody system. Since the multibody system
consists of large number of bodies, it is important to search for efficient formulation.
Two main approaches to reach this formulation which are known as the matrix or re-
cursive approaches [8, 18]. According to the construction of the multibody system, every
approach has some advantages over the other. It is known that in the case of long chain
of bodies, the recursive formulation becomes more efficient than the matrix formulation
[8, 18]. However, for short chains with many closed loops, the matrix formulation is more
efficient than the recursive one. Therefore, the recursive formulation is more mathemat-
ical in nature than the matrix formation.

A recursive dynamical formulation for the dynamic analysis of planar mechanisms is
presented by Attia [7]. The concepts of linear and angular momentum are used to write
the rigid body dynamical equations without the need to distribute the external forces
and couples over the particles. The method can be applied to recursively generate the
equations of motion for open and/or closed-chain systems.

In this paper, a dynamic model for multi-rigid-body systems which consists of inter-
connected of rigid bodies is presented based on particle dynamics and a recursive ap-
proach. The method is based upon the idea of replacing the rigid body by its dynamically
equivalent constrained system of particles discussed in [1, 2, 4, 10, 15] with essential
modifications and improvements. In the previous work [1, 2, 4, 10, 15], a matrix formu-
lation was developed, where in the present formulation, a recursive formulation is de-
duced. Therefore, the two approaches and therefore, the resulting form of the equations
are essentially different. In the present work, the concepts of the linear and angular mo-
mentums are used to formulate the rigid body dynamical equations. However, they are
expressed in terms of the rectangular Cartesian coordinates of the equivalent constrained
system of particles. This groups the advantages of the automatic elimination of the un-
known internal forces as in Newton-Euler formulation and results in a reduced system of
differential-algebraic equations. Some useful geometrical relationships are used to obtain
a reduced dynamically equivalent constrained system of particles.

For the open-chain system, the equations of motion are generated recursively along the
serial chains instead of the matrix formulation derived in [1, 2, 3, 4, 5, 6, 7, 10, 15]. Most
of the kinematical constraints due to the kinematical joints are automatically eliminated
by properly locating the equivalent particles. For the closed-chain system, the system is
transformed to open-chain system by cutting suitable kinematical joints and introducing
the cut-joint kinematical constraints. Examples are chosen to demonstrate the generality
and simplicity of the proposed method.

2. The dynamic formulation

2.1. Construction of the equivalent system of particles. A rigid body and its dynami-
cally equivalent constrained system of particles should have the same mass, the position
of the centre of mass and the inertia tensor with respect to a body attached coordinate
frame which results in ten conditions in the spatial case. The choice of four particles (not
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Figure 2.1. The rigid body system with the equivalent system of ten particles.

all are laying in the same plane) results in 16 unknowns (4 masses + 12 coordinates) that
should satisfy the ten conditions. However, this choice will lead to the solution of nonlin-
ear algebraic equations due to the quadratic form of the second moments and also it does
not give the freedom to choose all the particles in important places in the mechanisms.
A system of ten particles will lead to the solution of ten linear algebraic equations in ten
unknown masses. Also it gives the freedom of positioning the particles on the bodies in
accordance with the joints that connect the bodies in order to reduce the number of parti-
cles and consequently eliminate some geometric and kinematical constraints. Therefore,
a system of ten particles is chosen to replace the rigid body as shown in Figure 2.1. It con-
stitutes four particles 1, . . . ,4, which are denoted as primary particles and six additional
particles 5, . . . ,10, which are denoted as secondary particles. Each secondary particle is
located at the middle point between a pair of primary particles in order to facilitate the
elimination of its acceleration components and, in turn, to reduce the unknown motion
variables. The mass distributions to points must satisfy the following conditions:

m=
10∑
i=1

mi, (2.1a)

mr̄G =
10∑
i=1

mir̄i, (2.1b)

Iξξ =
10∑
i=1

mi
(
ζ2
i +η2

i

)
, (2.1c)

Iηη =
10∑
i=1

mi
(
ζ2
i + ξ2

i

)
, (2.1d)

Iζζ =
10∑
i=1

mi
(
ξ2
i +η2

i

)
, (2.1e)
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Iξη =
10∑
i=1

miξiηi, (2.1f)

Iξζ =
10∑
i=1

miξiζi, (2.1g)

Iζη =
10∑
i=1

miζiηi, (2.1h)

where m is the mass of the body, r̄G is the position vector of the centre of mass of the
body with respect to the body attached coordinate frame, Iξξ , Iηη, Iζζ are the moments of
inertia of the body with respect to the body attached coordinate frame, Iξη, Iξζ , Iζη are the
products of inertia of the body with respect to the body attached coordinate frame, mi is
the mass of particle i, and r̄i is the position vector of particle i with respect to the attached
coordinate frame. Equation (2.1) represents a 10× 10 linear system of algebraic equations
in 10 unknown masses of the primary and secondary particles. At the same time, the
coordinates of the particles can be chosen arbitrarily, which gives the advantage of the
automatic elimination of the kinematical constraints due to some mechanical joints. Also
it allows for two adjacent rigid bodies to contribute to the mass concentrated at the joint
connecting them which reduces the total number of particles replacing the whole system.

2.2. Equations of motion of a single rigid body in spatial motion. Consider a rigid body
which is acted upon by external forces and force couples. The rigid body is replaced by an
equivalent system of ten particles. The distances between the ten particles are invariants
as a result of the internal forces existing between them. The vector sum of these unknown
internal forces or also the vector sum of their moments about any point equals zero by
the law of action and reaction [12]. Then, the linear momentum equation for the whole
system of particles yields,

R=
10∑
i=1

mir̈i, (2.2)

where R is the vector sum of the external forces acting on the rigid body and r̈i is the
acceleration vector of particle i. Also, the angular momentum equation for the whole
system of particles with respect to particle 1 results in [12]

G1 =
10∑
i=2

miri,1∧ r̈i =
10∑
i=2

mir̃i,1r̈i, (2.3)

where G1 is the vector sum of the moments of the external forces and force couples acting
on the body with respect to particle 1 and ri,1 is the relative position vector between
particles i and 1 and the tilde sign above ri,1 is a consequence of an outer product with
the vector which follows. The distance constraints between the ten particles are given as
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(see Figure 2.1)

rT2,1r2,1−d2
2,1 = 0, (2.4a)

rT4,1r4,1−d2
4,1 = 0, (2.4b)

rT4,2r4,2−d2
4,2 = 0, (2.4c)

rT3,1r3,1−d2
3,1 = 0, (2.4d)

rT3,2r3,2−d2
3,2 = 0, (2.4e)

rT3,4r3,4−d2
3,4 = 0, (2.4f)

r5−
(
r1 + r2

)
/2= 0, (2.4g)

r6−
(
r1 + r3

)
/2= 0, (2.4h)

r7−
(
r1 + r4

)
/2= 0, (2.4i)

r8−
(
r2 + r3

)
/2= 0, (2.4j)

r9−
(
r2 + r4

)
/2= 0, (2.4k)

r10−
(
r3 + r4

)
/2= 0, (2.4l)

where the masses m5, m6, m7, m8, m9, m10 are located, respectively, at the middle point
of masses m1 and m2, m1 and m3, m1 and m4, m2 and m3, m2 and m4, and m3 and m4

and di, j is the distance between particles i and j. The equations of motion (2.2), (2.3) and
the constraint equations (2.4) represent a system of differential-algebraic equations that
can be solved to determine the unknown acceleration vectors r̈i of the particles at any
instant of time. However, due to the large number of the geometric constraints the inte-
gration of these equations is inefficient. In the following section, some useful geometrical
relationships are used to eliminate the majority of these constraints.

2.3. The reduced form of the equations of motion of a single rigid body. The reduced
form of the equations of motion can be achieved in two steps. First, the accelerations
of the secondary particles and their unknown accelerations can be easily eliminated by
substituting the constraint equations (2.4g) to (2.4l) into (2.2) and (2.3) to obtain

R=
4∑
i=1

m̄ir̈i, G1 =
4∑
i=1

Air̈i, (2.5)

where

m̄i =mi +
4∑

j=1, j �=i

1
2
mi, j ,

Ai = ¯̄mir̃i,1 +
4∑

j=2, j �=i

1
4
mi, j r̃ j,1,

¯̄mi =mi +
4∑

j=1, j �=i

1
4
mi, j ,

(2.6)
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and where mi, j denotes the mass of the secondary particle that is located between the
primary particles i and j (m1,2 =m5, . . . etc.). Then, (2.5) in addition to the remaining
constraints equations (2.4a) to (2.4f) represent the equations of motion for a single rigid
body where only the accelerations of the primary particles stay.

A more reduced set of equations of motion can be derived by expressing the position
vector of one of the primary particles in terms of the position vectors of the other three
primary particles. We choose to express the coordinates of particle 3 in terms of the co-
ordinates of particles 1, 2, and 4. As shown in Figure 2.2, three invariant quantities λ̄,
µ̄, and τ̄ can be estimated with the aid of the constraint equations (2.4d) to (2.4f) that
fix the distances between particle 3 and particles 1, 2, and 4, respectively. The invariant
quantities take the form,

λ̄=
∣∣∣∣∣ r

T
3,1r̃2,1r4,1∣∣r̃2,1r4,1

∣∣
∣∣∣∣∣, (2.7a)

ν̄=
√∣∣r3,1

∣∣2− λ̄2, (2.7b)

µ̄=
∣∣r4,2

∣∣∣∣r̃2,1r5̄,1

∣∣∣∣r̃5̄,1r4,2
∣∣ , (2.7c)

τ̄ = ∣∣r4,2
∣∣− µ̄, (2.7d)

where

r5̄,1 = r3,1− λ̄
r̃2,1r4,1∣∣r̃2,1r4,1

∣∣ . (2.8)

Knowing the initial Cartesian coordinates of the primary particles, the invariant quanti-
ties are determined using (2.7). In terms of these invariant quantities, the position vector
of particle 3 is expressed as

r3 = r1 + λ̄
r̃2,1r4,1∣∣r̃2,1r4,1

∣∣ + ν̄
µ̄r4,1 + τ̄r2,1∣∣µ̄r4,1 + τ̄r2,1

∣∣ . (2.9)

Since the quantities in the denominators in the right hand side of (2.9) are invariants we
can rearrange the terms and obtain the simpler form

r3 = r1 + λr̃2,1r4,1 +µr4,1 + τr2,1, (2.10)

where

λ= λ̄∣∣r̃2,1r4,1
∣∣ , µ= ν̄µ̄∣∣µ̄r4,1 + τ̄r2,1

∣∣ , τ = ν̄τ̄∣∣µ̄r4,1 + τ̄r2,1
∣∣ . (2.11)

The corresponding velocity and acceleration vectors of particle 3 are estimated us-
ing the first and second time differentiations of (2.10) respectively which result in the



Hazem Ali Attia 371

λ

2

τ

µ

4

3

1

5

ν

Figure 2.2. The rigid body system with its equivalent primary particles indicating the invariant quan-
tities.

following forms,

ṙ3 = ṙ1 + λ
(
r̃2,1ṙ4,1 + ˙̃r2,1r4,1

)
+µṙ4,1 + τṙ2,1, (2.12)

r̈3 = r̈1 + λ
(
r̃2,1r̈4,1 + ¨̃r2,1r4,1 + 2 ˙̃r2,1ṙ4,1

)
+µr̈4,1 + τr̈2,1. (2.13)

Equation (2.13) expresses the unknown acceleration vector of particle 3 in terms of
the acceleration vectors of the other primary particles which eliminates the constraint
equations (2.4d) to (2.4f). Equation (2.13) can be put in the more convenient form,

r̈3 =
(
1−µ− τ + λr̃4,2

)
r̈1 +

(
τ − λr̃4,1

)
r̈2 + (µ+ λr̃2,1

)
r̈4. (2.14)

Substituting the derived acceleration vector of particle 3 from (2.14) into (2.5), then
the differential equations of motion take the modified form

R= {m̄1 + m̄3
(
1−µ− τ + λr̃4,2

)}
r̈1

+
{
m̄2 + m̄3

(
τ − λr̃4,1

)}
r̈2 +

{
m̄4 + m̄3

(
µ+ λr̃2,1

)}
r̈4 + 2λm̄3 ˙̃r2,1ṙ4,1,

(2.15)

G1 =
{
A1 +A3

(
1−µ− τ + λr̃4,2

)}
r̈1

+
{
A2 +A3

(
τ − λr̃4,1

)}
r̈2 +

{
A4 +A3

(
µ+ λr̃2,1

)}
r̈4 + 2λA3 ˙̃r2,1ṙ4,1.

(2.16)

Equations (2.15) and (2.16) in addition to the constraint equations (2.4a) to (2.4c)
represent the equations of motion of a single floating rigid body in spatial motion. It
can be solved at every time step to determine the unknown acceleration components of
particles 1, 2, and 4. Consequently, (2.14) can be used to determine the acceleration com-
ponents of particle 3. The acceleration components of the particles are integrated numer-
ically knowing their Cartesian coordinates and velocities at a certain time to determine
the positions and velocities for the next time step. Gear’s method [11] for the numerical
integration of differential-algebraic equations is used to overcome the instability problem
resulting during the modeling process of constraint mechanical systems. The motion of
the particles determines completely the translational and rotational motion of the rigid
body. If the rigid body is rotating about a fixed point, then particle 1 may be located at
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Figure 2.3. Serial chain of N rigid bodies with the equivalent system of primary particles.

the centre of this joint. In this case, (2.16) and (2.4a) to (2.4c) are used to solve for the
unknown Cartesian accelerations of particles 2 and 4. Equation (2.15) can be solved to
determine the unknown reaction forces at the joint N1 as,

N1 =
{
m̄1 + m̄3

(
1−µ− τ + λr̃4,2

)}
r̈1

+
{
m̄2 + m̄3

(
τ − λr̃4,1

)}
r̈2 +

{
m̄4 + m̄3

(
µ+ λr̃2,1

)}
r̈4 + 2λm̄3 ˙̃r2,1ṙ4,1−R.

(2.17)

If the rigid body is rotating about a fixed axis, then particles 1 and 2 can be located
along the axis of the joint to define its direction. Then, to solve for the unknown accel-
eration vector of particle 4, the constraint equations (2.4b) and (2.4c) can be used in
addition to one scalar moment equation that is generated by taking the projection of the
vectors in (2.16) along the direction of the fixed axis. Then, (2.15) may be used to get the
reactions at the axis of the revolute joint.

2.4. Equations of motion of a serial chain of rigid bodies

2.4.1. Case of a serial chain contains only spherical joints. Figure 2.3 shows a serial chain
of N rigid bodies connected by spherical joints with the equivalent system of (3N + 1)
particles where connected particles are unified from both bodies.

Since the recursive formulation developed here is suitable for computer implementa-
tion, it is then useful to write the equations of motion in the following organized steps.

Step 1. For the last body “N” in the chain, the equations of motion are derived in a similar
way as (2.16) and (2.4a) to (2.4c) of a single rigid body. The angular momentum equation
takes the form

GN ,3N−2 =
{
A3N−2 +A3N

(
1−µN − τN + λN r̃3N+1,3N−1

)}
r̈3N−2

+
{
A3N−1 +A3N

(
τN − λN r̃3N+1,3N−2

)}
r̈3N−1

+
{
A3N+1 +A3N

(
µN + λN r̃3N−1,3N−2

)}
r̈3N+1

+ 2λNA3N ˙̃r3N−1,3N−2ṙ3N+1,3N−2,

(2.18)
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where

A3N = ¯̄m3N r̃3N ,3N−2 +
3N+1∑

i=3N−1,i �=3N

1
4
m3N ,ir̃i,3N−2,

¯̄m3N =m3N +
3N+1∑

i=3N−2,i �=3N

1
4
m3N ,i,

(2.19)

where GN ,3N−2 is the sum of the moments of the external forces and force couples acting
on body N with respect to the location of particle 3N − 2. The acceleration equations of
the distance constraint between primary particles belonging to body N are given as

rT3N−2,3N−1r̈3N−2 + rT3N−1,3N−2r̈3N−1 =−ṙT3N−1,3N−2ṙ3N−1,3N−2, (2.20a)

rT3N−2,3N+1r̈3N−2 + rT3N+1,3N−2r̈3N+1 =−ṙT3N+1,3N−2ṙ3N+1,3N−2, (2.20b)

rT3N−1,3N+1r̈3N−1 + rT3N+1,3N−1r̈3N+1 =−ṙT3N+1,3N−1ṙ3N+1,3N−1. (2.20c)

Step 2. Addition of one more body in the chain leads to the inclusion of an angular
momentum vector equation that takes into consideration the contributions of all the as-
cending bodies in the chain together with three distance constraint equations between the
particles belonging to this body. These six scalar equations are appended to the equations
of motion derived for the leading bodies in the chain. For body j, the appended equations
of motion take the form

N∑
k= j

Gk,3 j−2 =
N∑
k= j

{
A3k−2 +A3k

(
1−µk − τk + λkr̃3k+1,3k−1

)}
r̈3k−2

+
{
A3k−1 +A3k

(
τk − λkr̃3k+1,3k−2

)}
r̈3k−1

+
{
A3k+1 +A3k

(
µk + λkr̃3k−1,3k−2

)}
r̈3k+1

+ 2λkA3k ˙̃r3k−1,3k−2ṙ3k+!,3k−2,

(2.21)

where

A3k = ¯̄m3kr̃3k,3k−1 +
3k+1∑

i=3k−1,i �=3k

1
4
m3k,ir̃i,3k−2,

¯̄m3k =m3k +
3k+1∑

i=3k−2,i �=3k

1
4
m3k,i,

(2.22)

rT3 j−2,3 j−1r̈3 j−2 + rT3 j−1,3 j−2r̈3 j−1 =−ṙT3 j−1,3 j−2ṙ3 j−1,3 j−2, (2.23)

rT3 j−2,3 j+1r̈3 j−2 + rT3 j+1,3 j−2r̈3 j+1 =−ṙT3 j+1,3 j−2ṙ3 j+1,3 j−2, (2.24)

rT3 j−1,3 j+1r̈3 j−1 + rT3 j+1,3 j−1r̈3 j+1 =−ṙT3 j+1,3 j−1ṙ3 j+1,3 j−1, (2.25)
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where according to (2.14),

r̈3k =
(
1−µk − τk + λkr̃3k+1,3k−1

)
r̈3k−2

+
(
τk − λkr̃3k+1,3k−2

)
r̈3k−1 +

(
µk + λkr̃3k−1,3k−2

)
r̈3k+1.

(2.26)

If body “ j” is the floating base body in the chain then, three linear momentum equa-
tions, similar to (2.15), are required to solve for the unknown acceleration components
of particle 1. These linear momentum equations equate the sum of the external forces
acting on all the bodies in the chain to the time rate of change of the vectors of linear
momentum of all the equivalent particles that replace the chain which take the form

N∑
k= j

R=
N∑
k= j

{
m̄3k−2 + m̄3k

(
1−µk − τk + λkr̃3k+1,3k−1

)}
r̈3k−2

+
{
m̄3k−1 + m̄3k

(
τk − λkr̃3k+1,3k−2

)}
r̈3k−1

+
{
m̄3k+1 + m̄3k

(
µk + λkr̃3k−1,3k−2

)}
r̈3k+1

+ 2λkm̄3k ˙̃r3k−1,3k−2ṙ3k+1,3k−2,

(2.27)

where

m̄3k =m3k +
3k+1∑

i=3k−2,i �=3k

1
2
m3k,i. (2.28)

In general, for a serial chain of N bodies, an equivalent system of (3N + 1) primary
particles and 6N secondary particles is first constructed. Then, by eliminating all the ac-
celerations of the secondary particles and N primary particles, we are left with 2N + 1
accelerations of the particles and consequently, 6N + 3 unknown acceleration compo-
nents. To solve for these unknowns, 3N angular momentum equations can be generated
recursively along the chain together with 3N distance constraints between the particles
located on each body. Finally, three linear momentum equations can be used to solve
for the unknown acceleration components of particle 1 if body 1 is floating or for the
unknown reaction forces if there is a fixation at point 1.

Step 3. If body j is connected to body j − 1 by a revolute joint, then we take the projec-
tion of all the moment vectors in (2.21) along the axis of the joint which is defined by
two particles from both bodies that are commonly located on it. Two additional distance
constraints, that fix the distances between the remaining fourth particle and the other
two particles along the axis of the joint, together with the angular momentum equation
can be used to solve for the acceleration vector of the fourth particle on body j.

Step 4. If bodies “ j” and “ j− 1” in a serial chain are connected by a prismatic joint, then
particles 3 j − 5, 3 j − 4, 3 j − 3, and 3 j − 2 are located on body “ j − 1” while particles
3 j− 1, 3 j, 3 j + 1, and 3 j + 2 are assigned to body “ j.” Particles 3 j− 5 and 3 j− 2 on body
“ j − 1” and particles 3 j − 1 and 3 j + 2 on body “ j” are arbitrarily located along the axis
of the prismatic joint. To obtain the equations of motion for body “ j,” one force equa-
tion can be written by taking the projection of all the vectors in (2.21) along the axis of
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the prismatic joint together with the distance constraint equations (2.24)-(2.25). More-
over, five independent kinematical constraint equations associated with the prismatic
joint are included and take the form,

(
r3 j−5− r3 j−2

)
x
(
r3 j−1− r3 j+2

)= 0, (2.29a)(
r3 j−5− r3 j−2

)
x
(
r3 j−1− r3 j−2

)= 0, (2.29b)(
r3 j−4,3 j−5 −

rT
3 j−4,3 j−5

r3 j−2,3 j−5∣∣r3 j−2,3 j−5

∣∣
)T(

r3 j,3 j−1 −
rT

3 j,3 j−1
r3 j+2,3 j−1∣∣r3 j+2,3 j−1

∣∣
)
= 0. (2.29c)

Therefore, for a preceding body “h” in the chain the moment equation is generated re-
cursively along the serial chain as addressed above which take the form,

N∑
k=h

Gk,3h−2 =
j−1∑
k=h

{
A3k−2 +A3k

(
1−µk − τk + λkr̃3k+1,3k−1

)}
r̈3k−2

+
{
A3k−1 +A3k

(
τk − λkr̃3k+1,3k−2

)}
r̈3k−1

+
{
A3k+1 +A3k

(
µk + λkr̃3k−1,3k−2

)}
r̈3k+1

+ 2λkA3k ˙̃r3k−1,3k−2ṙ3k+!,3k−2

+
N∑
k= j

{
A3k−1 +A3k+1

(
1−µk − τk + λkr̃3k+2,3k

)}
r̈3k−1

+
{
A3k +A3k+1

(
τk − λkr̃3k+2,3k−1

)}
r̈3k

+
{
A3k+2 +A3k+1

(
µk + λkr̃3k,3k−1

)}
r̈3k+2

+ 2λkA3k+1 ˙̃r3k,3k−1ṙ3k+2,3k−1.

(2.30)

If body “h” is the floating base body in the chain, then a force equation, similar to
(2.27), is written to solve for the unknown acceleration of particle 1 in the form,

N∑
k=h

Rk =
j−1∑
k=h

{
m̄3k−2 + m̄3k

(
1−µk − τk + λkr̃3k+1,3k−1

)}
r̈3k−2

+
{
m̄3k−1 + m̄3k

(
τk − λkr̃3k+1,3k−2

)}
r̈3k−1

+
{
m̄3K=1 + m̄3k

(
µk + λkr̃3k−1,3k−2

)}
r̈3k+1

+ 2λkm̄3k ˙̃r3k−1,3k−2ṙ3k+1,3k−2

+
N∑
k= j

{
m̄3k−1 + m̄3k+1

(
1−µk − τk + λkr̃3k+2,3k

)}
r̈3k−1

+
{
m̄3k + m̄3k+1

(
τk − λkr̃3k+2,3k−1

)}
r̈3k

+
{
m̄3k+2 + m̄3k+1

(
µk + λkr̃3k,3k−1

)}
r̈3k+2

+ 2λkm̄3k+1 ˙̃r3k,3k−1ṙ3k+2,3k−1.

(2.31)

Similar treatment can be used in dealing with all other kinds of lower or higher-pair
kinematical joints [14].
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2.4.2. Case of an open-chain or closed-chain. In the case of an open-chain system or
closed-chain system, it can be transformed to a system of serial chains by cutting suit-
able joints and consequently cut-joint constraints are introduced. In the case of a closed-
chain system, the cut-joints avoid the need to introduce loop closure equations and the
corresponding loop closure constraint forces and then allows the use of the laws of mo-
mentum/moment of momentum with respect to a joint axis. Equivalent particles are con-
veniently chosen to locate at the positions of the connection joints and in terms of their
Cartesian coordinates the cut-joint constraint equations are easily formulated. The cut-
joints kinematical constraints substitute for the unknown cut-joints constraint reaction
forces that appear explicitly in the linear and angular momentum equations generated
recursively along the separated serial chains.

It should be noted that in this formulation, the kinematical constraints due to some
common types of kinematical joints (e.g., revolute or spherical joints) can be automati-
cally eliminated by properly locating the equivalent particles. The remaining kinematical
constraints along with the geometric constraints are, in general, either linear or quadratic
in the Cartesian coordinates of the particles. Therefore, the coefficients of their Jacobian
matrix are constants or linear in the rectangular Cartesian coordinates. Whereas in the
formulation based on the relative coordinates [8], the constraint equations are derived
based on loop closure equations which have the disadvantage that they do not directly
determine the positions of the links and points of interest which makes the establishment
of the dynamic problem more difficult. Also, the resulting constraint equations are highly
nonlinear and contain complex circular functions. The absence of these circular functions
in the point coordinate formulation leads to faster convergence and better accuracy. Fur-
thermore, preprocessing the mechanism by the topological graph theory is not necessary
as it would be the case with loop constraints.

Also, in comparison with the absolute coordinates formulation, the manual work of
the local axes attachment and local coordinates evaluation as well as the use of the rota-
tional variables and the rotation matrices in the absolute coordinate formulation are not
required in the point coordinate formulation. This leads to fully computerized analysis
and accounts for a reduction in the computational time and memory storage. In addition
to that, the constraint equations take much simpler forms as compared with the absolute
coordinates.

The elimination of the rotational coordinates, angular velocities and angular acceler-
ations in the presented formulation, leads to possible savings in computation time when
this procedure is compared against the absolute or relative coordinate formulation. It has
been determined that numerical computations associated with rotational transformation
matrices and their corresponding coordinate transformations between reference frames
is time consuming and, therefore, if these computations are avoided more efficient codes
may be developed [15]. The elimination of rotational coordinates can also be found very
beneficial in design sensitivity analysis of multibody systems. In most procedures for de-
sign sensitivity analysis, leading to an optimal design process, the derivatives of certain
functions with respect to a set of design parameters are required. Analytical evaluation of
these derivatives are much simpler if the rotational coordinates are not present and if we
only deal with translational coordinates.
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Some practical applications of multibody dynamics require one or more bodies in the
system to be described as deformable in order to obtain a more realistic dynamic response
[15]. Deformable bodies are normally modeled by the finite element technique. Assume
that the deformable body is connected to a rigid body described by a set of particles.
Then, one or more particles of the rigid body can coincide with one or more nodes of the
deformable body in order to describe the kinematical joint between the two bodies. This
is a much simpler process that when the rigid body is described by a set of translational
and rotational coordinates. In general, the point coordinates have additional advantages
over the other systems of coordinates since they are the most suitable coordinates for the
graphics routines and the animation programs.

Also, since we are dealing in this formulation with a system of particles instead of
rigid bodies, therefore only the laws of particle dynamics are utilized in generating the
equations of motion of the mechanical system. This makes the formulation much sim-
pler than the other dynamic formulations which use the rigid body dynamical equations
of motion both translational and rotational. In summary, the methodologies presented
in this paper have many interesting characteristics which may be found useful in some
applications. These methodologies can be combined with other methods to develop even
more efficient, accurate, and flexible procedures. It should be noted that there is no single
multibody formulation to be considered as the best formulation for general multibody
dynamics. Each formulation has its own unique or common features and, therefore, se-
lected features should be adopted to our advantages [15].

2.5. Dynamic simulation of a vehicle with a wishbone double A-arms suspension. The
model consists of a main chassis, two double A-arms suspension sub-systems, two simple
A-arm suspension sub-systems, and four wheels as shown in Figure 2.4a. The front tires
are connected to the main chassis by the simple A-arms suspensions. A suspension spring
and a shock absorber are included in every suspension sub-system. The system has two
kinematical closed loops in the front suspensions and two kinematical open loops in the
rear suspensions. The whole vehicle has 16 degrees of freedom. The main chassis has six
degrees of freedom, as a floating base body; three for the translational motion and three
for the rotational motion. The front suspensions each has two degrees of freedom and
the rear suspensions each has one degree of freedom. The four tires have four degrees
of freedom corresponding to the rolling motion. Each tire is analytically modeled in the
radial direction by an equivalent linear translational spring system which has damping
characteristics. The inertia characteristics are presented in Table 2.1. The characteristics
of the suspension springs and dampers, and the wheels are presented in Tables 2.2 and
2.3, respectively.

This vehicle model is an example of an open/closed loop system. Each rigid body is
represented by its equivalent system of particles. The main chassis is replaced by the four-
primary-particles representation. The knuckles, the front A-arms, and the rear A-arms
each is replaced by the three-primary-particles representation. Each wheel is represented
by the two-primary-particles representation along the wheel axis of every revolute joint
to define its orientation and one particle is located at the centre of every spherical joint
to define its location. The masses of these shared particles receive contributions from
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Table 2.1. Description of the rigid bodies.

Body no. Description Mass (kg)
Inertia ( kg.m2)

ξξ, ηη, ζζ , ηζ , ξζ , ξη
1 Main chassis 800.0 130,250,200,0,0,0
2 Right-front-lower A-arm 0.5 0.5,0.5,0.5,0,0,0
3 Right-front-upper A-arm 0.5 0.5,0.5,0.5,0,0,0
4 Right-front knuckle 5.0 1,1,1,0,0,0
5 Right-front wheel 20.0 2,3,2,0,0,0

10 Right-rear A-arm 0.5 0.5,0.5,0.5,0,0,0
11 Right-rear wheel 30.0 2,3,2,0,0,0

- Bodies in the left-hand side are symmetric to those in the right-hand side.

Table 2.2. Description of springs and dampers.

No. Connected bodies K (N/m) D (N.s/m) lo (m)
1 (1,2) 9.16E+04 1.44E+04 0.345
2 (1,6) 9.16E+04 1.44E+04 0.345
3 (1,10) 9.16E+04 1.44E+04 0.362
4 (1,12) 9.16E+04 1.44E+04 0.362

Table 2.3. Description of tires.

Radius 0.35m
Stiffness 1.5E+05 N/m

Damping coefficient 1.3E+04 N.s/m

the two adjacent bodies. The whole vehicle is represented by a resultant system of 24 par-
ticles. For each rigid body, the locations of the particles are chosen arbitrary in reference
to a centroidal local coordinate frame as shown in Figure 2.4b. The vehicle is divided
into 3 independent serial branches: one branch is connecting an A-arm to the chassis to
another A-arm and the other two branches each consists of a double A-arm suspension
after cutting the joints connecting it to the chassis. Knowing the external forces applied
to the vehicle and the initial coordinates and velocities of the different particles, then
the equations of motion can be generated recursively along each branch as discussed in
Section 2.4. Since the system consists of many rigid bodies in serial chains, it is advantages
to use the recursive formulation developed here.

The motion of the vehicle is started from the rest position under the action of the
gravitational forces and the wheels compression forces. Figures 2.5 and 2.6 show the time
variations of the vertical displacement and acceleration of the center of the chassis re-
spectively. Initially, the chassis is subjected to impulsive forces which result in a sudden
change in the acceleration of its center. During time progression, due to the motion of
the elements of the system, the variable force elements starts imposing constraint forces.
Then, the chassis undergoes damped oscillations up to the steady state.
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Figure 2.5. The time variation of the vertical displacement of the chassis (m).
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Figure 2.6. The time variation of the vertical acceleration of the chassis (m/s2).

3. Conclusions

In the present work, a recursive multi-rigid-body formulation for generating the equa-
tions of motion for the spatial motion of a system of rigid bodies is presented based
on particle dynamics with recursive approach. The concepts of linear and angular mo-
mentums are used to formulate the rigid body dynamical equations of motion which are
expressed in terms of the rectangular Cartesian coordinates of a dynamically equivalent
constrained system of particles. This groups the advantages of the automatic elimination
of the unknown internal constraint forces, the absence of any rotational coordinates in
addition to the rotational transformation matrices, and the elimination of the necessity
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to distribute the external forces and force couples over the particles. Also, the formula-
tion can be considered as a natural extension to the finite element representation for a
deformable body. Some useful geometric relations are used which result in a reduced sys-
tem of differential-algebraic equations. The formulation can be applied to open and/or
closed-chain with the common types of kinematical joints. The developed formulation
with its interesting characteristics may be found useful in some applications.
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