ON THE GLOBAL SOLVABILITY OF SOLUTIONS TO A QUASILINEAR WAVE EQUATION WITH LOCALIZED DAMPING AND SOURCE TERMS

E. CABANILLAS LAPA, Z. HUARINGA SEGURA, AND F. LEON BARBOZA

Received 18 July 2004 and in revised form 9 March 2005

We prove existence and uniform stability of strong solutions to a quasilinear wave equation with a locally distributed nonlinear dissipation with source term of power nonlinearity of the type $u^{\prime \prime}-M\left(\int_{\Omega}|\nabla u|^{2} d x\right) \Delta u+a(x) g\left(u^{\prime}\right)+f(u)=0$, in $\left.\Omega \times\right] 0,+\infty[, u=0$, on $\Gamma \times] 0,+\infty\left[, u(x, 0)=u_{0}(x), u^{\prime}(x, 0)=u_{1}(x)\right.$, in Ω.

1. Introduction

Let Ω be a bounded domain of \mathbb{R}^{N} with a smooth boundary $\Gamma=\partial \Omega$. We consider the initial-boundary value problem

$$
\begin{gather*}
\left.u^{\prime \prime}-M\left(\int_{\Omega}|\nabla u|^{2} d x\right) \Delta u+a(x) g\left(u^{\prime}\right)+f(u)=0, \quad \text { in } \Omega \times\right] 0,+\infty[, \\
u=0, \quad \text { on } \Gamma \times] 0,+\infty[, \tag{1.1}\\
u(x, 0)=u_{0}(x), \quad u^{\prime}(x, 0)=u_{1}(x), \quad \text { in } \Omega
\end{gather*}
$$

where $M(s)$ is a C^{1}-class function on $\left[0,+\infty\right.$ [satisfying $M(s) \geq m_{0}>0$, for $s \geq 0$, with m_{0} constant, a is a smooth nonnegative function but vanishes somewhere in $\bar{\Omega}, f(u)$ is a nonlinear term like $f(u) \sim-|u|^{\alpha} u$, and g is a real-valued function.

The problem (1.1), when $M(s)=1$ and f is some type of nonlinear function, has been studied by Zuazua [10] and Nakao [9]. Recently, Cabanillas et al. have treated in [2, 3] a more delicate case where M is not a constant function $\left(f(u)=0,-h_{0} u\right)$. KouemouPatcheu [6] investigated the case $M(s)=a_{0}+b s$ with $a(x)=1$ in Ω and $f(u)=0$. We fix $x^{0} \in \mathbb{R}^{N}$ and we set

$$
\begin{equation*}
m(x)=x-x^{0}, \quad R=\sup \{|m(x)| ; x \in \Omega\}, \quad \Gamma_{0}=\{x \in \Gamma ; m(x) \cdot v(x)>0\}, \tag{1.2}
\end{equation*}
$$

where $\nu(x)$ denotes the outward unit normal at $x \in \Gamma$. Let $a=a(x)$ be a smooth nonnegative function such that

$$
\begin{equation*}
a(x) \geq a_{0}>0, \quad \text { a.e. in } \omega, \tag{1.3}
\end{equation*}
$$

where ω is a neighborhood of Γ_{0} and a_{0} is a positive constant. By neighborhood of Γ_{0}, we actually mean the intersection of Ω and a neighborhood of Γ_{0}.

The goal of this work is to obtain global existence and decay estimates of the strong solutions of the quasilinear wave equation (1.1) when M is not a constant function, the function a satisfies (1.3), g is a C^{1}, odd, increasing function, and $f(u) \sim-|u|^{\alpha} u$.

2. Preliminaries and main result

Throughout this paper, the functions considered are all real valued and the notations for their norm are adopted as usual (e.g., Lions [7]).

We consider the following general hypotheses.
(A.1) Assumptions on M :

$$
\begin{gather*}
M \in C^{1}\left(\left[0,+\infty[), \quad M(s) \geq m_{0}>0, \quad \forall s \geq 0,\right.\right. \tag{2.1}\\
\left|M^{\prime}(s)\right| \leq \beta s^{\gamma / 2}, \quad \forall s \geq 0 \tag{2.2}
\end{gather*}
$$

for some constants $\beta \geq 0, \gamma \geq 0$.
(A.2) Assumptions on a :

$$
\begin{equation*}
a \in C^{2}(\Omega) \cap C(\bar{\Omega}), \quad|\Delta a(x)| \leq a_{1} a(x), \quad a_{1}>0 . \tag{2.3}
\end{equation*}
$$

(A.3) Assumptions on f :
f is a C^{1}-class function on \mathbb{R} and satisfies

$$
\begin{equation*}
|f(u)| \leq h_{0}|u|^{\alpha+1}, \quad\left|f^{\prime}(u)\right| \leq h_{0}|u|^{\alpha}, \quad \forall u \in \mathbb{R}, \tag{2.4}
\end{equation*}
$$

with some constant $h_{0}>0$ and

$$
\begin{equation*}
0<\alpha<\frac{2}{(N-4)^{+}}, \tag{2.5}
\end{equation*}
$$

where $(N-4)^{+}=\max \{N-4,0\}$.
(A.4) g is a C^{1} odd increasing function and

$$
\begin{gather*}
C_{1}|s| \leq|g(s)| \leq C_{2}|s|^{q} \quad \text { if }|s| \geq 1 \text { with } 1 \leq q \leq \frac{2}{(N-4)^{+}}, \tag{2.6}\\
C_{3}|s|^{p+1} \leq g(s) s \quad \text { if }|s|<1,1 \leq p<+\infty
\end{gather*}
$$

where $C_{i}, i=1,2,3$, are positive constants.
We have the following fundamental inequalities.
Lemma 2.1 (Sobolev-Poincaré inequality). Let α be a number with $0 \leq \alpha<\infty \quad(N=1,2)$ or $0 \leq \alpha \leq 4 /(N-2)(N \geq 3)$, then there is a constant $C_{*}>0$ such that

$$
\begin{equation*}
|u|_{\alpha+2} \leq C_{*}|\nabla u|_{2} \quad \text { for } u \in H_{0}^{1}(\Omega) . \tag{2.7}
\end{equation*}
$$

Lemma 2.2 (Gagliardo-Nirenberg inequality). Let $1 \leq r<q \leq+\infty$ and $p \leq q$. Then, the inequality

$$
\begin{equation*}
|u|_{W^{k, q}} \leq C|u|_{W^{m, p}}^{\theta}|u|_{r}^{1-\theta} \quad \text { for } u \in W^{m, p} \cap L^{r} \tag{2.8}
\end{equation*}
$$

holds with some $C>0$ and

$$
\begin{equation*}
\theta=\left(\frac{k}{N}+\frac{1}{r}-\frac{1}{q}\right)\left(\frac{m}{N}+\frac{1}{r}-\frac{1}{p}\right)^{-1} \tag{2.9}
\end{equation*}
$$

provided that $0<\theta \leq 1$ (assume that $0<\theta<1$ if $q=+\infty$).
Lemma 2.3. Let $E:[0,+\infty[\rightarrow[0,+\infty[$ be a nonincreasing function and assume that there are two constants $p \geq 1$ and $A>0$ such that

$$
\begin{equation*}
\int_{S}^{+\infty} E^{(p+1) / 2}(t) d t \leq A E(S), \quad 0 \leq S<+\infty . \tag{2.10}
\end{equation*}
$$

Then,

$$
E(t) \leq \begin{cases}C E(0) e^{-\lambda t}, & \forall t \geq 0 \text { if } p=1, \tag{2.11}\\ C E(0)(1+t)^{-2 /(p-1)}, & \forall t \geq 0 \text { if } p>1,\end{cases}
$$

where C and λ are positive constants independent of the initial energy $E(0)$.
We will construct a stable set in $H_{0}^{1} \cap H^{2}$. For this, we define the functionals

$$
\begin{align*}
J(u) & =\frac{1}{2} \widetilde{M}\left(|\nabla u|^{2}\right)+\int_{\Omega} F(u) d x, \quad \text { for } u \in H_{0}^{1}, \\
I(u) & =M\left(|\nabla u|^{2}\right)|\nabla u|^{2}+\int_{\Omega} f(u) \cdot u d x, \quad \text { for } u \in H_{0}^{1}, \tag{2.12}\\
E(u, v) & =\frac{1}{2}|v|^{2}+J(u), \quad \text { for }(u, v) \in H_{0}^{1} \times L^{2},
\end{align*}
$$

where

$$
\begin{equation*}
\widetilde{M}(s)=\int_{0}^{s} M(\xi) d \xi, \quad F(\lambda)=\int_{0}^{\lambda} f(s) d s . \tag{2.13}
\end{equation*}
$$

Lemma 2.4. Let $0<\alpha<4 /(N-4)^{+}$. Then, for any $K>0$, there exists a number $\varepsilon_{0}=\varepsilon_{0}(K)$ such that if $|\Delta u| \leq K$ and $|\nabla u| \leq \varepsilon_{0}$,

$$
\begin{equation*}
J(u) \geq \frac{m_{0}}{4}|\nabla u|^{2}, \quad I(u) \geq \frac{m_{0}}{2}|\nabla u|^{2} . \tag{2.14}
\end{equation*}
$$

Proof. By the Gagliardo-Nirenberg inequality, we deduce that

$$
\begin{equation*}
|u|_{\alpha+2}^{\alpha+2} \leq C|u|_{2 N /(N-2)}^{(\alpha+2)(1-\theta)}|\Delta u|^{(\alpha+2) \theta} \leq C|\nabla u|^{(\alpha+2)(1-\theta)}|\Delta u|^{(\alpha+2) \theta} \tag{2.15}
\end{equation*}
$$

with

$$
\begin{equation*}
\theta=\left(\frac{N-2}{2 N}-\frac{1}{\alpha+2}\right)^{+}\left(\frac{2}{N}+\frac{N-2}{2 N}-\frac{1}{2}\right)^{-1}=\left(\frac{(N-2) \alpha-4}{2(\alpha+2)}\right)^{+} \leq 1 \tag{2.16}
\end{equation*}
$$

Here, we note that

$$
(\alpha+2)(1-\theta)-2= \begin{cases}\alpha & \text { if } 0<\alpha<\frac{4}{N-2} \tag{2.17}\\ \frac{(0<\alpha<+\infty, \text { for } N=1,2)}{} \frac{(4-N) \alpha+4}{2} & \text { if } \frac{4}{N-2}<\alpha<\frac{4}{N-4} \\ & \left(\frac{4}{N-2}<\alpha<+\infty, N=3,4\right)\end{cases}
$$

Hence, if $|\Delta u| \leq K$, we get

$$
\begin{align*}
J(u) & \geq \frac{m_{0}}{2}|\nabla u|^{2}-\frac{h_{0}}{\alpha+2}|u|_{\alpha+2}^{\alpha+2} \\
& \geq \frac{m_{0}}{2}|\nabla u|^{2}-C h_{0}|\nabla u|^{(\alpha+2)(1-\theta)}|\Delta u|^{(\alpha+2) \theta} \tag{2.18}\\
& \geq\left\{\frac{m_{0}}{2}-C h_{0} K^{(\alpha+2) \theta}|\nabla u|^{(\alpha+2)(1-\theta)-2}\right\}|\nabla u|^{2} .
\end{align*}
$$

Using (2.17), we can define $\varepsilon_{0}=\varepsilon_{0}(K)$ by

$$
\begin{equation*}
C K^{(\alpha+2) \theta} \varepsilon_{0}^{(\alpha+2)(1-\theta)-2} \leq \frac{m_{0}}{4} . \tag{2.19}
\end{equation*}
$$

Thus, we obtain

$$
\begin{equation*}
J(u) \geq \frac{m_{0}}{4}|\nabla u|^{2} \tag{2.20}
\end{equation*}
$$

if $|\nabla u| \leq \varepsilon_{0}$. In a completely analogous way, we can get (2.14) for $I(u)$.
We define our stable set W_{K} by

$$
\begin{equation*}
W_{K}=\left\{(u, v) \in\left(H_{0}^{1} \cap H^{2}\right) \times H_{0}^{1}:|\Delta u|<K,|\nabla v|<K, \sqrt{4 m_{0}^{-1} E\left(u_{0}, v_{0}\right)}<\varepsilon_{0}\right\} \tag{2.21}
\end{equation*}
$$

for $K>0$.
Remark 2.5. If we consider $f(u) \cdot u \geq 0$, then we need not take $\varepsilon_{0}(K)$, and W_{K} is replaced by

$$
\begin{equation*}
\widetilde{W}_{K}=\left\{(u, v) \in\left(H_{0}^{1} \cap H^{2}\right) \times H_{0}^{1}:|\Delta u|<K,|\nabla v|<K\right\} . \tag{2.22}
\end{equation*}
$$

3. Statement of the results

In this section, we will state our main theorem.
Theorem 3.1 (local existence). Let initial data $\left\{u_{0}, u_{1}\right\}$ belong to $\left(H_{0}^{1} \cap H^{2}\right) \times H_{0}^{1}$ and let the assumptions (A.1)-(A.4) be fulfilled. Then there exists a unique local solution u of (1.1) belonging to

$$
\begin{equation*}
C_{w}^{0}\left(\left[0, T\left[; H_{0}^{1} \cap H^{2}\right) \cap C_{w}^{1}\left(\left[0, T\left[; H_{0}^{1}\right) \cap C^{0}\left(\left[0, T\left[; H_{0}^{1}\right) \cap C^{1}\left(\left[0, T\left[; L^{2}(\Omega)\right)\right.\right.\right.\right.\right.\right.\right.\right. \tag{3.1}
\end{equation*}
$$

for some $T=T\left(\left|\Delta u_{0}\right|,\left|\nabla u_{1}\right|\right)>0$.
Moreover, at least one of the following statements is valid:
(i) $T=+\infty$,
(ii) $\left|\nabla u^{\prime}(t)\right|^{2}+|\Delta u(t)|^{2} \rightarrow \infty$ as $t \rightarrow T^{-}$,
(iii) $M\left(|\nabla u(t)|^{2}\right) \rightarrow 0$ as $t \rightarrow T^{-}$.

The proof of this theorem is well known.
Theorem 3.2 (global existence and decay property). Suppose (A.1)-(A.4) hold. Then there exists an open set S_{0} in $\left(H_{0}^{1} \cap H^{2}\right) \times H_{0}^{1}$, which contains $(0,0)$ such that if $\left(u_{0}, u_{1}\right) \in S_{0}$, the problem (1.1) admits a unique global solution $u(t)$ on the class

$$
\begin{equation*}
L^{\infty}\left(\left[0,+\infty\left[; H_{0}^{1} \cap H^{2}\right) \cap W^{1, \infty}\left(\left[0,+\infty\left[; H_{0}^{1}\right) \cap W^{2, \infty}\left(\left[0,+\infty\left[; L^{2}\right) .\right.\right.\right.\right.\right.\right. \tag{3.2}
\end{equation*}
$$

Moreover, the energy determined by the solution u has the decay states

$$
\begin{gather*}
E\left(u(t), u^{\prime}(t)\right) \leq C_{0} e^{-\lambda t} \quad \text { if } p=1, \\
E\left(u(t), u^{\prime}(t)\right) \leq \widetilde{C}_{0}(1+t)^{-2 /(p-1)} \quad \text { if } p>1, \tag{3.3}
\end{gather*}
$$

where C_{0}, \widetilde{C}_{0}, and λ are certain positive constants depending on $\left|\nabla u_{0}\right|,\left|u_{1}\right|$, and other quantities.

Proof. We divide the proof into several lemmas. For the moment, we denote $E\left(u(t), u^{\prime}(t)\right)$ by $E(t)$.

Lemma 3.3. Let $u(t)$ be a local solution to the problem (1.1) on $[0, T[, T>0$. Then

$$
\begin{equation*}
\forall 0 \leq S \leq T<+\infty, \quad E(S)-E(T)=\int_{S}^{T} \int_{\Omega} a(x) u^{\prime} g\left(u^{\prime}\right) d x d t . \tag{3.4}
\end{equation*}
$$

Multiplying the equation in (1.1) by $u^{\prime}(t)$ and integrating on [$S, T[$, we get

$$
\begin{align*}
-\int_{S}^{T} \int_{\Omega} a(x) u^{\prime} g\left(u^{\prime}\right) d x d t & =\left[\frac{1}{2}\left|u^{\prime}(t)\right|^{2}+\frac{1}{2} \widetilde{M}\left(|\nabla u(t)|^{2}\right)+F(u(t))\right]_{S}^{T} \tag{3.5}\\
& =E(T)-E(S) .
\end{align*}
$$

It is easy to see the identity

$$
\begin{equation*}
E^{\prime}(t)=-\int_{\Omega} a u^{\prime} g\left(u^{\prime}\right) d x \leq 0 . \tag{3.6}
\end{equation*}
$$

In particular, $E(t)$ is nonincreasing and

$$
\begin{equation*}
E(t) \leq E(0) \tag{3.7}
\end{equation*}
$$

as long as the local solutions exist.
Lemma 3.4. Let $u(t)$ be a local solution to the problem (1.1) satisfying $\left(u(t), u^{\prime}(t)\right) \in W_{K}$ on $[0, T[$ for some $K>0$. Then,

$$
E(t) \leq \begin{cases}C I_{0} e^{-\lambda t}, & \text { if } p=1, \tag{3.8}\\ \hat{q}(1+t)^{-2 /(p-1)}, & \text { on }[0, T[\\ \text { if } p>1,\end{cases}
$$

where $I_{0}^{2}=E(0), \lambda=\lambda\left(K, I_{0}\right)$, and $\hat{q}=\hat{q}\left(K, I_{0}\right)$ denote certain positive constants continuously depending on K and I_{0}.

The proof of this lemma is based on the following identities given by the multiplier method. We omit to write the differential elements in the integrals, in order to simplify the expressions.

Lemma 3.5. Let $q \in\left[W^{1, \infty}(\Omega)\right]^{N}, \beta \in \mathbb{R}$, and $\xi \in W^{1, \infty}(\Omega)$. Then

$$
\begin{align*}
& \int_{S}^{T} \int_{\Gamma} M\left(|\nabla u(t)|^{2}\right) q \cdot v\left|\frac{\partial u}{\partial v}\right|^{2} E^{\sigma} \\
&=\left.\left(u^{\prime}, 2 q \cdot \nabla u+\beta u\right) E^{\sigma}\right|_{S} ^{T}+\int_{S}^{T} \int_{\Omega}(\operatorname{div}(q)-\beta)\left[\left|u^{\prime}\right|^{2}-M\left(|\nabla u(t)|^{2}\right)|\nabla u(t)|^{2} E^{\sigma}\right] \\
&+2 \int_{S}^{T} \int_{\Omega} M\left(|\nabla u(t)|^{2}\right) \frac{\partial q_{k}}{\partial x_{i}} \frac{\partial u}{\partial x_{k}} \frac{\partial u}{\partial x_{i}} E^{\sigma}-\sigma \int_{S}^{T} \int_{\Omega} u^{\prime}(2 q \cdot \nabla u+\beta u) E^{\sigma-1} E^{\prime} \\
&+\int_{S}^{T} \int_{\Omega} a g\left(u^{\prime}\right)(2 q \cdot \nabla u+\beta u) E^{\sigma}-\int_{S}^{T} \int_{\Omega} \operatorname{div}(q) F(u) E^{\sigma}+\beta \int_{S}^{T} \int_{\Omega} f(u) \cdot u E^{\sigma}, \tag{3.9}\\
&\left.\left(u^{\prime}, \xi u\right) E^{\sigma}\right|_{S} ^{T}+\int_{S}^{T} \int_{\Omega} \xi\left[M\left(|\nabla u|^{2}\right)|\nabla u|^{2}-\left|u^{\prime}\right|^{2}\right] E^{\sigma} \\
& \quad- \sigma \int_{S}^{T} \int_{\Omega} u^{\prime} u \xi E^{\sigma-1} E^{\prime}+\int_{S}^{T} \int_{\Omega} M\left(|\nabla u(t)|^{2}\right)(\nabla u, u \nabla \xi) E^{\sigma} \tag{3.10}\\
& \quad+\int_{S}^{T} \int_{\Omega} a g\left(u^{\prime}\right) \xi u E^{\sigma}+\int_{S}^{T} \int_{\Omega} \xi f(u) u E^{\sigma}=0 .
\end{align*}
$$

For the proof, see Lions [8] or Komornik [5].

Proof of Lemma 3.5. We proceed in several steps.
Step 1. Applying (3.9) with $q(x)=m(x)$, observing that $\operatorname{div} q=N$, we obtain

$$
\begin{align*}
\left(u^{\prime}, 2 m\right. & \cdot \nabla u+\beta u)\left.E^{\sigma}\right|_{S} ^{T}+(N-\beta) \int_{S}^{T} \int_{\Omega}\left|u^{\prime}\right|^{2} E^{\sigma} \\
& +(\beta-N+2) \int_{S}^{T} \int_{\Omega} M\left(|\nabla u|^{2}\right)|\nabla u|^{2} E^{\sigma}-\sigma \int_{S}^{T} \int_{\Omega} u^{\prime}(2 m \cdot \nabla u+\beta u) E^{\sigma-1} E^{\prime} \\
& +\int_{S}^{T} \int_{\Omega} a g\left(u^{\prime}\right)(2 m \cdot \nabla u+\beta u) E^{\sigma}+\beta \int_{S}^{T} \int_{\Omega} f(u) \cdot u E^{\sigma}-N \int_{S}^{T} \int_{\Omega} F(u) E^{\sigma} \\
= & \int_{S}^{T} \int_{\Gamma} M\left(|\nabla u|^{2}\right)\left|\frac{\partial u}{\partial v}\right|^{2} E^{\sigma} \leq R M_{0} \int_{S}^{T} \int_{\Gamma_{0}}\left|\frac{\partial u}{\partial v}\right|^{2} E^{\sigma}, \tag{3.11}
\end{align*}
$$

where

$$
\begin{equation*}
m_{0} \leq M\left(|\nabla u|^{2}\right) \leq \max \left\{M(s), 0 \leq s \leq \frac{4 E(0)}{m_{0}}\right\} \equiv M_{0} \tag{3.12}
\end{equation*}
$$

Throughout the remaining part of this work, positive constants will be denoted by C and will change line to line. Here, we observe that under the assumption $\left(u(t), u^{\prime}(t)\right) \in$ W_{K}, the functionals $E(t), e(t)=(1 / 2)\left(\left|u^{\prime}(t)\right|^{2}+|\nabla u(t)|^{2}\right)$ and $\left|u^{\prime}(t)\right|^{2}+I(u(t))$ are all equivalent, by Lemma 2.4.

We take $\beta \in] N-2, N\left[\right.$ and $\theta_{0}=\min \{2(N-\beta), \beta-N+2\}$, we deduce that

$$
\begin{align*}
\theta_{0} \int_{S}^{T} E^{\sigma+1} \leq & \left.R M_{0} \int_{S}^{T} \int_{\Gamma_{0}}\left|\frac{\partial u}{\partial \nu}\right|^{2} E^{\sigma}+\left|\left(u^{\prime}, 2 m \cdot \nabla u+\beta u\right)\right|_{S}^{T} \right\rvert\, \\
& +\left|\int_{S}^{T} \int_{\Omega} a g\left(u^{\prime}\right)(2 m \cdot \nabla u+\beta u) E^{\sigma}\right| \\
& +\sigma\left|\int_{S}^{T} \int_{\Omega} u^{\prime}(2 m \cdot \nabla u+\beta u) E^{\sigma-1} E^{\prime}\right| \tag{3.13}\\
& +\beta\left|\int_{S}^{T} \int_{\Omega} f(u) \cdot u E^{\sigma}\right|+N\left|\int_{S}^{T} \int_{\Omega} F(u) E^{\sigma}\right|
\end{align*}
$$

Since the energy is nonincreasing, using the result of Komornik [5], we find that

$$
\begin{gather*}
\left|\left(u^{\prime}, 2 m \cdot \nabla u+\beta u\right)\right|_{S}^{T} E^{\sigma} \mid \leq C E(S), \tag{3.14}\\
\left|\sigma \int_{S}^{T} \int_{\Omega} u^{\prime}(2 m \cdot \nabla u+\beta u) E^{\sigma-1} E^{\prime}\right| \leq C E(S) . \tag{3.15}
\end{gather*}
$$

By the Hölder inequality, we have

$$
\begin{align*}
\left|\int_{S}^{T} \int_{\Omega_{1}} a g\left(u^{\prime}\right)(2 m \cdot \nabla u+\beta u) E^{\sigma}\right| & \leq \int_{S}^{T} E^{\sigma}\left(\int_{\Omega_{1}} a^{2} g^{2}\left(u^{\prime}\right)\right)^{1 / 2}\left(\int_{\Omega_{1}}|2 m \cdot \nabla u+\beta u|\right)^{1 / 2} \\
& \leq \int_{S}^{T} E^{\sigma}\left(\int_{\Omega_{1}} a^{2}\left(u^{\prime} g\left(u^{\prime}\right)\right)^{2 /(p+1)}\right)^{1 / 2} E^{1 / 2} \\
& \leq C \int_{S}^{T} E^{\sigma+1 / 2}\left|E^{\prime}\right|^{1 /(p+1)}, \tag{3.16}\\
\left|\int_{S}^{T} \int_{\Omega_{2}} a g\left(u^{\prime}\right)(2 m \cdot \nabla u+\beta u) E^{\sigma}\right| & \leq C \int_{S}^{T} E^{\sigma}\left\{\int_{\Omega_{2}}\left|a g\left(u^{\prime}\right)\right||\nabla u|+\int_{\Omega_{2}}\left|a g\left(u^{\prime}\right)\right||u|\right\} \\
& \leq C \int_{S}^{T} E^{\sigma}\left|a g\left(u^{\prime}\right)\right|_{1+q^{-1}}\left\{|\nabla u|_{q+1}+|\nabla u|\right\} . \tag{3.17}
\end{align*}
$$

We observe here, from Lemma 2.2, that

$$
\begin{align*}
&|\nabla u|_{q+1} \leq C|\nabla u|^{1 /(q+1)}|\Delta u|^{q^{/(q+1)} \leq C K^{q /(q+1)} E^{1 / 2(q+1)}}, \tag{3.18}\\
&\left|a g\left(u^{\prime}\right)\right|_{1+q^{-1}}=\left[\int_{\Omega_{2}}\left|a g\left(u^{\prime}\right)\right|^{(q+1) / q}\right]^{q /(q+1)} \\
& \leq C\left[\int_{\Omega_{2}} a u^{\prime} g\left(u^{\prime}\right)\right]^{q /(q+1)} \leq C\left|E^{\prime}\right|^{q /(q+1)} . \tag{3.19}
\end{align*}
$$

From (3.17), (3.18), and (3.19), we have

$$
\begin{equation*}
\left|\int_{S}^{T} \int_{\Omega_{2}} a g\left(u^{\prime}\right)(2 m \cdot \nabla u+\beta u) E^{\sigma}\right| \leq C \int_{S}^{T}|E|^{\sigma+1 / 2(q+1)}\left|E^{\prime}\right|^{q /(q+1)} \tag{3.20}
\end{equation*}
$$

where we set for each $t \geq 0$,

$$
\begin{equation*}
\Omega_{1}=\Omega_{1}(t)=\left\{x \in \Omega:\left|u^{\prime}(x, t)\right| \leq 1\right\}, \quad \Omega_{2}=\Omega \backslash \Omega_{1} . \tag{3.21}
\end{equation*}
$$

Thus, from (3.16) and (3.20), we get

$$
\begin{equation*}
\left|\int_{S}^{T} \int_{\Omega} a g\left(u^{\prime}\right)(2 m \cdot \nabla u+\beta u) E^{\sigma}\right| \leq C \int_{S}^{T}\left[E^{\sigma+1 / 2}\left|E^{\prime}\right|^{1 /(p+1)}+|E|^{\sigma+1 / 2(q+1)}\left|E^{\prime}\right|^{q /(q+1)}\right] \tag{3.22}
\end{equation*}
$$

Now, using the Young inequality, we obtain

$$
\begin{equation*}
\left|\int_{S}^{T} \int_{\Omega} a g\left(u^{\prime}\right)(2 m \cdot \nabla u+\beta u) E^{\sigma}\right| \leq \varepsilon \int_{S}^{T} E^{\sigma+1}+E(S), \quad \varepsilon>0 \tag{3.23}
\end{equation*}
$$

It follows from (3.14), (3.15), and (3.23) that

$$
\begin{equation*}
\frac{\theta_{0}}{2} \int_{S}^{T} E^{\sigma+1} \leq C E(S)+\int_{S}^{T} \int_{\Omega}\left(\frac{\beta^{2}}{\theta_{0}}|f(u)|^{2}+N F(u)\right) E^{\sigma}+R M_{0} \int_{S}^{T} \int_{\Gamma_{0}}\left|\frac{\partial u}{\partial \nu}\right|^{2} E^{\sigma} . \tag{3.24}
\end{equation*}
$$

To estimate the last term in (3.24), we utilize (3.10) with $\xi=\eta$, where $\eta \in W^{1, \infty}(\Omega)$ is a function (constructed by Zuazua in [10]) which satisfies

$$
\begin{gather*}
0 \leq \eta \leq 1, \\
\eta=1, \quad \text { in } \hat{\omega}, \quad \frac{|\nabla \eta|^{2}}{\eta} \in L^{\infty}(\omega), \tag{3.25}\\
\eta=0, \quad \text { in } \Omega \backslash \omega,
\end{gather*}
$$

and $\hat{\omega}$ is an open set in Ω, with $\Gamma_{0} \subseteq \widehat{\omega} \varsubsetneqq \omega$.
First, we have from (3.10)

$$
\begin{align*}
\int_{S}^{T} \int_{\Omega} \eta M\left(|\nabla u|^{2}\right)|\nabla u|^{2} E^{\sigma}= & \left.\left(-u^{\prime}, \eta u\right) E^{\sigma}\right|_{S} ^{T}-\int_{S}^{T} \int_{\Omega} a g\left(u^{\prime}\right) u \eta E^{\sigma} \\
& -\int_{S}^{T} \int_{\Omega} M\left(|\nabla u|^{2}\right) \nabla u \cdot u \nabla \eta E^{\sigma} \\
& +\int_{S}^{T} \int_{\Omega} \eta\left|u^{\prime}\right|^{2} E^{\sigma}-\int_{S}^{T} \int_{\Omega} \eta f(u) u E^{\sigma} \tag{3.26}\\
& +\sigma \int_{S}^{T} \int_{\Omega} u^{\prime} u \xi E^{\sigma-1} E^{\prime} .
\end{align*}
$$

Simple calculations, using the Young inequalities, show that

$$
\begin{gather*}
\left|-\left(u^{\prime}, \eta u\right) E^{\sigma}\right|_{S}^{T}+\sigma \int_{S}^{T} \int_{\Omega} u^{\prime} u \xi E^{\sigma-1} E^{\prime} \mid \leq C E(S), \tag{3.27}\\
\left|\int_{S}^{T}\left(a g\left(u^{\prime}\right), \eta u\right) E^{\sigma}\right| \leq C E(S)+\frac{\varepsilon}{2} \int_{S}^{T} E^{\sigma+1}, \quad \varepsilon>0, \tag{3.28}\\
\left|-\int_{S}^{T} \int_{\Omega} M\left(|\nabla u|^{2}\right) \nabla u \cdot u \nabla \eta E^{\sigma}\right| \leq C \int_{S}^{T} \int_{\omega}|u|^{2} E^{\sigma}+\frac{1}{2} \int_{S}^{T} \int_{\Omega} \eta M\left(|\nabla u|^{2}\right)|\nabla u|^{2} E^{\sigma} . \tag{3.29}
\end{gather*}
$$

From (3.26)-(3.29), we obtain

$$
\begin{align*}
\frac{1}{2} \int_{S}^{T} \int_{\Omega} \eta M\left(|\nabla u|^{2}\right)|\nabla u|^{2} E^{\sigma} \leq & C\left[E(S)+\int_{S}^{T} \int_{\omega}\left(\left|u^{\prime}\right|^{2}+|u|^{2} E^{\sigma}\right)\right] \\
& +\frac{C_{*}}{m_{0}^{2}} \int_{S}^{T} \int_{\Omega}|f(u)|^{2} E^{\sigma}+\varepsilon \int_{S}^{T} E^{\sigma+1} \tag{3.30}
\end{align*}
$$

Step 2. We take a vector field $h \in\left[W^{1, \infty}(\Omega)\right]^{N}$ such that

$$
\begin{equation*}
h=v, \quad \text { on } \Gamma_{0}, \quad h \cdot v \geq 0, \quad \text { on } \Gamma, \quad h=0, \quad \text { on } \Omega \backslash \widehat{\omega} . \tag{3.31}
\end{equation*}
$$

Choosing $\beta=0$ and $q=h$ in (3.9), we get

$$
\begin{align*}
&\left|\int_{S}^{T} \int_{\Omega} a g\left(u^{\prime}\right) h \cdot\right| \nabla u\left|E^{\sigma}\right| \leq C \int_{S}^{T}\left[E^{\sigma+1 / 2}\left|E^{\prime}\right|^{1 /(p+1)}+E^{\sigma+1 / 2(q+1)}\left|E^{\prime}\right|^{q /(q+1)}\right], \\
& m_{0} \int_{S}^{T} \int_{\Gamma_{0}}\left|\frac{\partial u}{\partial \nu}\right|^{2} E^{\sigma} \leq C E(S)+3 \alpha_{0} \int_{S}^{T} \int_{\widehat{\omega}}\left(\left|u^{\prime}\right|^{2}+M\left(|\nabla u|^{2}\right)|\nabla u|^{2}\right) E^{\sigma} \tag{3.32}\\
&+\alpha_{0} \int_{S}^{T} \int_{\Omega}|F(u)| E^{\sigma}+\varepsilon^{\prime} \int_{S}^{T} E^{\sigma+1}, \quad \varepsilon^{\prime}>0
\end{align*}
$$

where $\sum_{i, j=1}^{N}\left|\partial h_{j} / \partial x_{i}\right| \leq \alpha_{0}$, for all $x \in \bar{\Omega}$.
Combining (3.30) and (3.32), we have

$$
\begin{align*}
m_{0} \int_{S}^{T} \int_{\Gamma_{0}}\left|\frac{\partial u}{\partial v}\right|^{2} E^{\sigma} \leq & C\left[E(S)+\int_{S}^{T} \int_{\omega}\left(\left|u^{\prime}\right|^{2}+|u|^{2}\right) E^{\sigma}\right] \\
& +\frac{\sigma C_{*}^{2} \alpha_{0}}{m_{0}^{2}} \int_{S}^{T} \int_{\Omega}|f(u)|^{2} E^{\sigma}+\alpha_{0} \int_{S}^{T} \int_{\Omega}|F(u)| E^{\sigma}+\varepsilon \int_{S}^{T} E^{\sigma+1} \tag{3.33}
\end{align*}
$$

We conclude from (3.24) and (3.33) that

$$
\begin{align*}
\frac{\theta_{0}}{2} \int_{S}^{T} E^{\sigma+1} \leq & \left(\frac{\sigma C_{*}^{2} \alpha_{0} R M_{0}}{m_{0}^{3}}+\frac{\beta^{2}}{\theta_{0}}\right) \int_{S}^{T} \int_{\Omega}|f(u)|^{2} \\
& +\left(N+\frac{\alpha_{0} R M_{0}}{m_{0}}\right) \int_{S}^{T} \int_{\Omega}|F(u)| \tag{3.34}\\
& +C\left[E(S)+\int_{S}^{T} \int_{\omega}\left(\left|u^{\prime}\right|^{2}+|u|^{2}\right)\right] .
\end{align*}
$$

Now, in order to absorb the last term into the right-hand side of (3.34), we adapt a method introduced in Conrad and Rao [4]. To this end, we consider $z(t) \in H_{0}^{1}(\Omega)$, solution of

$$
\begin{equation*}
-\Delta z=\chi(\omega) u, \quad \text { in } \Omega, \quad z=0, \quad \text { on } \Gamma, \tag{3.35}
\end{equation*}
$$

where $\chi(\omega)$ is the characteristic function of ω. It is easy to verify that z^{\prime} is solution of the problem

$$
\begin{equation*}
-\Delta z^{\prime}=\chi(\omega) u^{\prime}, \quad \text { in } \Omega, \quad z^{\prime}=0, \quad \text { on } \Gamma . \tag{3.36}
\end{equation*}
$$

A simple computation gives

$$
\begin{equation*}
|z| \leq C|u|_{L^{2}(\omega)}, \quad\left|z^{\prime}\right| \leq C\left|u^{\prime}\right|_{L^{2}(\omega)}, \quad(\nabla z, \nabla u)=|u|_{L^{2}(\omega)}^{2} . \tag{3.37}
\end{equation*}
$$

Next, we "multiply" the equation in (1.1) by $z E^{\sigma}$, integrate by parts on $\left.\Omega \times\right] S, T$, and use (3.37). Thus, we find

$$
\begin{align*}
\int_{S}^{T} \int_{\omega} M\left(|\nabla u|^{2}\right)|\nabla u|^{2} E^{\sigma}= & -\left.\left(u^{\prime}, z\right) E^{\sigma}\right|_{S} ^{T}+\int_{S}^{T}\left(u^{\prime}, z^{\prime}\right) E^{\sigma}+\sigma \int_{S}^{T} E^{\sigma-1} E^{\prime}\left(u^{\prime}, z^{\prime}\right) \tag{3.38}\\
& -\int_{S}^{T}\left(\operatorname{ag}\left(u^{\prime}\right), z\right) E^{\sigma}-\int_{S}^{T}(f(u), z) E^{\sigma} .
\end{align*}
$$

Here, we note that

$$
\begin{gather*}
\left|-\left(u^{\prime}, z\right) E^{\sigma}\right|_{S}^{T}+\sigma \int_{S}^{T} E^{\sigma-1} E^{\prime}\left(u^{\prime}, z^{\prime}\right) \mid \leq C E(S), \tag{3.39}\\
\left|\int_{S}^{T}\left(u^{\prime}, z\right) E^{\sigma}\right| \leq C \int_{S}^{T} \int_{\omega}\left|u^{\prime}\right|^{2} E^{\sigma}+\varepsilon \int_{S}^{T} E^{\sigma+1}, \quad \varepsilon>0, \tag{3.40}\\
\left|\int_{S}^{T}\left(a g\left(u^{\prime}\right), z\right) E^{\sigma}\right| \leq C E(S)+\varepsilon^{\prime} \int_{S}^{T} E^{\sigma+1}, \quad \varepsilon^{\prime}>0, \tag{3.41}\\
\left|-\int_{S}^{T}(f(u), z) E^{\sigma}\right| \leq \frac{1}{2 m_{0}} \int_{S}^{T} \int_{\Omega}|f(u)|^{2} E^{\sigma}+\frac{m_{0}}{2} \int_{S}^{T} \int_{\omega}|u|^{2} E^{\sigma} . \tag{3.42}
\end{gather*}
$$

Using (3.39)-(3.41), we have in (3.38)

$$
\begin{equation*}
\int_{S}^{T} \int_{\omega}|u|^{2} E^{\sigma} \leq C\left(E(S)+\int_{S}^{T} \int_{\omega}\left|u^{\prime}\right|^{2} E^{\sigma}\right)+\frac{1}{m_{0}^{2}} \int_{S}^{T} \int_{\Omega}|f(u)|^{2} E^{\sigma}+\varepsilon \int_{S}^{T} E^{\sigma+1}, \quad \varepsilon>0 . \tag{3.43}
\end{equation*}
$$

Then inserting (3.43) into (3.34) gives

$$
\begin{equation*}
\int_{S}^{T} E^{\sigma+1} \leq C\left(E(S)+\int_{S}^{T} \int_{\omega}\left|u^{\prime}\right|^{2} E^{\sigma}\right)+\delta_{0} \int_{S}^{T} \int_{\Omega}|f(u)|^{2} E^{\sigma}+\delta_{1} \int_{S}^{T}|F(u)| E^{\sigma}, \tag{3.44}
\end{equation*}
$$

where

$$
\begin{equation*}
\delta_{0}=\frac{8}{\theta_{0}}\left[\frac{\sigma C_{*} \alpha_{0} R M_{0}}{m_{0}^{3}}+\frac{\beta^{2}}{\theta_{0}}+\frac{1}{m_{0}^{2}}\right], \quad \delta_{1}=\frac{8}{\theta_{0}}\left[N+\frac{\alpha_{0} R M_{0}}{m_{0}}\right] . \tag{3.45}
\end{equation*}
$$

Now, we observe that

$$
\begin{align*}
\delta_{0} \int_{\Omega}|f(u)|^{2} & \leq \delta_{0} h_{0}|u|_{2(\alpha+1)}^{2(\alpha+1)} \leq C \delta_{0} h_{0}|u|_{2 N /(N-2)}^{2\left(1-\theta_{1}\right)(\alpha+1)}|\Delta u|^{2 \theta_{1}(\alpha+1)} \tag{3.46}\\
& \leq C \delta_{0} h_{0} \varepsilon_{0}^{2\left(1-\theta_{1}\right)(\alpha+1)-2} K^{2 \theta_{1}(\alpha+1)}|\nabla u|^{2}
\end{align*}
$$

if $N \geq 3$ and $\alpha>2 /(N-2)$, with $\theta_{1}=((\alpha+1)(N-2)-N) / 2(\alpha+1)$.
Further, we have that since $\alpha \leq 2 /(N-4)^{+}$,

$$
\begin{equation*}
\left(1-\theta_{1}\right)(\alpha+1) \geq 1 . \tag{3.47}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\delta_{0} h_{0}|u|_{2(\alpha+1)}^{2(\alpha+1)} \leq C \delta_{0} h_{0} \varepsilon_{0}^{2\left(1-\theta_{1}\right)(\alpha+1)-2} K^{2 \theta_{1}(\alpha+1)}|\nabla u|^{2} . \tag{3.48}
\end{equation*}
$$

When $N \leq 2$ or $\alpha \leq 2 /(N-2)^{+}$, we see that (3.48) holds with $\theta_{1}=0$. Thus, under a little more stronger assumption than (2.19),

$$
\begin{equation*}
C h_{0}\left(\varepsilon_{0}^{(\alpha+2)\left(1-\theta_{1}\right)-2} K^{(\alpha+2) \theta}+\varepsilon_{0}^{2\left(1-\theta_{1}\right)(\alpha+1)-2} K^{2 \theta_{1}(\alpha+1)}\right) \leq \frac{m_{0}}{4}, \tag{3.49}
\end{equation*}
$$

we obtain from (3.44) that

$$
\begin{equation*}
\int_{S}^{T} E^{\sigma+1} d t \leq C\left(E(S)+\int_{S}^{T} \int_{\omega}\left|u^{\prime}\right|^{2} E^{\sigma}\right) . \tag{3.50}
\end{equation*}
$$

In order to absorb the second term in (3.50), we consider two cases.
(i) The case $p=1$. We take $\sigma=0$, hence by (2.6),

$$
\begin{equation*}
\int_{S}^{T} E \leq C E(S)+\frac{C}{a_{0}} \int_{S}^{T} \int_{\omega} a\left|u^{\prime}\right|^{2} \leq C E(S)+\int_{S}^{T} \int_{\omega} a\left|g\left(u^{\prime}\right)\right| u^{\prime} \leq C E(S) . \tag{3.51}
\end{equation*}
$$

Applying Lemma 2.3, we obtain

$$
\begin{equation*}
E(t) \leq C I_{0} e^{-\lambda t}, \quad \lambda=\lambda\left(K, I_{0}\right) . \tag{3.52}
\end{equation*}
$$

(ii) When $p>1$, we take $\sigma=(p-1) / 2$. It follows from (2.6) that

$$
\begin{align*}
\int_{S}^{T} E^{(p+1) / 2} & \leq C E(S)+\frac{C}{a_{0}} \int_{S}^{T} \int_{\omega} a\left|u^{\prime}\right|^{2} E^{(p-1) / 2} \\
& \leq C E(S)+C \int_{S}^{T} \int_{\Omega} a\left|u^{\prime}\right|^{2} E^{(p-1) / 2} \\
& \leq C\left[E(S)+\int_{S}^{T} E^{(p-1) / 2}\left(\int_{\Omega_{1}} a\left|u^{\prime}\right|^{2}+\int_{\Omega_{2}} a\left|u^{\prime}\right|^{2}\right)\right] \tag{3.53}\\
& \leq C\left[E(S)+\int_{S}^{T}\left(E^{(p-1) / 2}\left|E^{\prime}\right|^{2 /(p+1)}+E^{(p-1) / 2}\left|E^{\prime}\right|\right)\right] \\
& \leq C\left[E(S)+E^{(p+1) / 2}(S)\right]+\varepsilon \int_{S}^{T} E^{(p+1) / 2}, \quad \varepsilon>0 .
\end{align*}
$$

Hence

$$
\begin{equation*}
\int_{S}^{T} E^{(p+1) / 2} \leq C E(S) \tag{3.54}
\end{equation*}
$$

Using Lemma 2.3 again, we conclude that

$$
\begin{equation*}
E(t) \leq q\left(K, I_{0}\right)(1+t)^{-2 /(p-1)}, \quad t \geq 0, \tag{3.55}
\end{equation*}
$$

as long as the local solutions exist, where $q\left(K, I_{0}\right)$ denotes a certain constant continuously depending on K and I_{0}.

We are now in a position to obtain H^{2} a priori bounds. Set

$$
\begin{equation*}
E_{1}(t)=M\left(|\nabla u(t)|^{2}\right)|\Delta u(t)|^{2}+\left|\nabla u^{\prime}(t)\right|^{2} . \tag{3.56}
\end{equation*}
$$

Then we have the following estimate, which is the heart of this paper.

Lemma 3.6. Assume that $u(t)$ is a solution satisfying $\left(u(t), u^{\prime}(t)\right) \in W_{K}$ on $[0, T[$, for some $K>0$. Then,

$$
\begin{equation*}
\left|\nabla u^{\prime}(t)\right|^{2}+|\Delta u(t)|^{2} \leq Q^{2}\left(I_{0}, I_{1}, K\right), \tag{3.57}
\end{equation*}
$$

with

$$
\begin{equation*}
\lim _{I_{0} \rightarrow 0} Q^{2}\left(I_{0}, I_{1}, K\right)=\frac{I_{1}^{2}}{\min \left\{1, m_{0}\right\}}, \tag{3.58}
\end{equation*}
$$

and where

$$
\begin{equation*}
I_{1}^{2}=\left|\nabla u_{1}\right|^{2}+M\left(\left|\nabla u_{0}\right|^{2}\right)\left|\Delta u_{0}\right|^{2} . \tag{3.59}
\end{equation*}
$$

Proof. For $E_{1}(t)$ with respect to t, we get

$$
\begin{align*}
& \frac{1}{2} \frac{d}{d t} E_{1}(t)+\left(a g^{\prime}\left(u^{\prime}\right) \nabla u^{\prime}(t), \nabla u^{\prime}(t)\right) \\
& \quad=-\left(f^{\prime}(u) \nabla u, \nabla u^{\prime}\right)+M^{\prime}\left(|\nabla u(t)|^{2}\right)\left(\nabla u^{\prime}(t), \nabla u(t)\right)|\Delta u(t)|^{2}-\left(g\left(u^{\prime}\right) \nabla a, \nabla u^{\prime}\right) . \tag{3.60}
\end{align*}
$$

Using the assumptions on a, g, and f, it follows from (3.60) that

$$
\begin{align*}
\frac{d}{d t} E_{1}(t) & \leq C\left\{\int_{\Omega}\left(|u|^{\alpha}|\nabla u|\left|\nabla u^{\prime}\right|\right)+|\nabla u|_{2}^{\gamma+1}\left|\nabla u^{\prime}\right|_{2}|\Delta u|_{2}^{2}+\sum_{i=1}^{n} \int_{\Omega} \frac{\partial a}{\partial x_{i}} \frac{\partial}{\partial x_{i}} \int_{0}^{u} g(\xi) d \xi\right\} \\
& \leq C\left\{\int_{\Omega}\left(|u|^{\alpha}|\nabla u|\left|\nabla u^{\prime}\right|\right)+|\nabla u|_{2}^{\gamma+1}\left|\nabla u^{\prime}\right|_{2}|\Delta u|_{2}^{2}+\int_{\Omega}\left|\int_{0}^{u} g\right||\Delta a|\right\} \\
& \leq C\left\{\left(\int_{\Omega}|u|^{2 \alpha}|\nabla u|^{2}\right)^{1 / 2}\left(\int_{\Omega}\left|\nabla u^{\prime}\right|^{2}\right)^{1 / 2}+E(t)^{(\gamma+1) / 2} K^{3}+\int_{\Omega} a g\left(u^{\prime}\right) u^{\prime}\right\} . \tag{3.61}
\end{align*}
$$

Further, we observe that

$$
\begin{align*}
\left(\int_{\Omega}|u|^{2 \alpha}|\nabla u|^{2}\right)^{1 / 2} & \leq|u|_{N \alpha}^{\alpha}|\nabla u|_{2 N /(N-2)} \\
& \leq C|u|_{2 N /(N-2)}^{\alpha\left(1-\theta_{0}\right)}|\Delta u|_{2}^{\alpha \theta_{0}}|\Delta u|_{2} \quad \text { (by Lemma 2.2) } \tag{3.62}\\
& \leq C|\nabla u|_{2}^{\alpha\left(1-\theta_{0}\right)}|\Delta u|_{2}^{\alpha \theta_{0}+1} \\
& \leq C E(t)^{\alpha\left(1-\theta_{0}\right) / 2} K^{\alpha \theta_{0}+1},
\end{align*}
$$

with

$$
\begin{equation*}
\theta_{0}=\left(\frac{N-2}{2}-\frac{1}{\alpha}\right)^{+}=\frac{((N-2) \alpha-2)^{+}}{2 \alpha} \leq 1 . \tag{3.63}
\end{equation*}
$$

Then, it follows from (3.61) and (3.62) that

$$
\begin{equation*}
\frac{d}{d t} E_{1}(t) \leq C\left\{E(t)^{\alpha\left(1-\theta_{0}\right) / 2} K^{\alpha \theta_{0}+2}+E(t)^{(y+1) / 2} K^{3}-E^{\prime}(t)\right\} . \tag{3.64}
\end{equation*}
$$

Thus, integrating (3.64) over $\left[0, t\left[\right.\right.$, we obtain $\int_{\Omega}\left|\int_{0}^{u^{\prime}} g\right||\Delta a|$,

$$
\begin{align*}
& |\Delta u(t)|^{2}+\left|\nabla u^{\prime}(t)\right|^{2} \\
& \quad \leq \frac{1}{\min \left\{1, m_{0}\right\}}\left\{I_{1}^{2}+C K^{\alpha \theta_{0}+2} \int_{0}^{+\infty} E(t)^{\alpha\left(1-\theta_{0}\right) / 2} d t+C K^{3} \int_{0}^{+\infty} E(t)^{(\gamma+1) / 2} d t+C I_{0}^{2}\right\} \\
& \quad \leq \frac{1}{\min \left\{1, m_{0}\right\}}\left\{I_{1}^{2}+C I_{0}^{2}+C I_{0}^{(\gamma+1) / 2} K^{3}+C I_{0}^{\alpha\left(1-\theta_{0}\right) / 2} K^{\alpha \theta_{0}+2}\right\} \\
& \tag{3.65}\\
& \equiv Q^{2}\left(I_{0}, I_{1}, K\right), \quad \text { on }[0, T[.
\end{align*}
$$

Define

$$
\begin{gather*}
S_{K}=\left\{\left(u_{0}, u_{1}\right) \in\left(H_{0}^{1} \cap H^{2}\right) \times H_{0}^{1}: Q^{2}\left(I_{0}, I_{1}, K\right)<K\right\}, \\
S_{0}=\bigcup_{K>0} S_{K} . \tag{3.66}
\end{gather*}
$$

Since

$$
\begin{equation*}
\lim _{I_{0} \rightarrow 0} Q^{2}\left(I_{0}, I_{1}, K\right)=\frac{I_{1}^{2}}{\min \left\{1, m_{0}\right\}} \tag{3.67}
\end{equation*}
$$

the S_{K} is not empty if $I_{1}<\min \left\{1, m_{0}\right\} K^{2}$ and I_{0} is sufficiently small.
If $\left(u_{0}, u_{1}\right) \in S_{K}$ for some $K>0$, then the corresponding local solution $u(t)$ exists on some interval [$0, T$ [and satisfies

$$
\begin{equation*}
E_{1}(u(t)) \leq \min \left\{1, m_{0}\right\} K^{2} \quad \text { on } 0 \leq t<T . \tag{3.68}
\end{equation*}
$$

From (3.43), we have $\left(u(t), u^{\prime}(t)\right) \in W_{K}$.
Hence, it follows from Lemma 3.6 that

$$
\begin{equation*}
\left|\nabla u^{\prime}(t)\right|^{2}+|\Delta u(t)|^{2} \leq Q^{2}\left(I_{0}, I_{1}, K\right)<K^{2}, \quad \text { on }[0, T[. \tag{3.69}
\end{equation*}
$$

Next, we affirm that

$$
\begin{equation*}
\left(u(t), u^{\prime}(t)\right) \in S_{K}, \quad \text { on }[0, T[. \tag{3.70}
\end{equation*}
$$

In fact, suppose that there is a number $t^{*} \in\left[0, T\left[\right.\right.$ such that $\left(u(t), u^{\prime}(t)\right) \in S_{K}$ on $[0, T[$ and $\left(u\left(t^{*}\right), u^{\prime}\left(t^{*}\right)\right) \notin S_{K}$, then it follows that

$$
\begin{equation*}
Q^{2}\left(E\left(u\left(t^{*}\right)\right), E_{1}\left(u\left(t^{*}\right)\right), K\right) \geq K^{2} . \tag{3.71}
\end{equation*}
$$

Note that $Q^{2}\left(I_{0}, I_{1}, K\right)$ is the increasing function with respect to I_{0} and I_{1}. Hence, we see from (3.48), the energy identity (3.4), and Lemma 3.6 that

$$
\begin{equation*}
I_{1}^{2}+C I_{0}^{2}+C_{1}\left(I_{0}\right) K^{3}+C_{2}\left(I_{0}\right) K^{\alpha \theta_{0}+2} \geq \min \left\{1, m_{0}\right\} K^{2} \tag{3.72}
\end{equation*}
$$

But, then, since

$$
\begin{equation*}
\lim _{I_{0} \rightarrow 0} Q^{2}\left(I_{0}, I_{1}, K\right)=\frac{I_{1}^{2}}{\min \left\{1, m_{0}\right\}}, \tag{3.73}
\end{equation*}
$$

we may take I_{1} so that

$$
\begin{equation*}
\frac{2 I_{1}^{2}}{\min \left\{1, m_{0}\right\}}<K^{2} \tag{3.74}
\end{equation*}
$$

with sufficiently small I_{0}. This contradicts (3.72).
Now, since we can repeat the continuation procedure indefinitely, we conclude that $u(t)$ can be continued globally on $\left[0,+\infty\left[\right.\right.$ and $\left(u(t), u^{\prime}(t)\right) \in S_{0}$, for all $t \geq 0$.

The uniqueness follows from a similar argument as in [1].

References

[1] M. Aassila, Global existence of solutions to a wave equation with damping and source terms, Differential Integral Equations 14 (2001), no. 11, 1301-1314.
[2] E. Cabanillas, J. Bernui, and Z. Huaringa, Existencia Global y Decaimiento, de la Energía de una Ecuación de Kirchhoff con Disipación Localizada, Pesquimat Rev de la F.C.M 6 (2003), no. 1, 21-31.
[3] , Global Existence and Decay Estimates to a quasilinear wave equation with locally distributed Damping, Pesquimat, Rev de la F.C.M - UNMSM V N 2 (2003).
[4] F. Conrad and B. Rao, Decay of solutions of the wave equation in a star-shaped domain with nonlinear boundary feedback, Asymptotic Anal. 7 (1993), no. 3, 159-177.
[5] V. Komornik, Exact Controllability and Stabilization, the Multiplier Method, RAM: Research in Applied Mathematics, Masson, Paris, 1994.
[6] S. Kouémou-Patcheu, Global existence and exponential decay estimates for a damped quasilinear equation, Comm. Partial Differential Equations 22 (1997), no. 11-12, 2007-2024.
[7] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris, 1969.
[8] , Contrôlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués. Tome 1. Contrôlabilité Exacte. [Exact Controllability, Perturbations and Stabilization of Distributed Systems. Vol. 1. Exact Controllability], Recherches en Mathématiques Appliquées [Research in Applied Mathematics], vol. 8, Masson, Paris, 1988.
[9] M. Nakao, Decay of solutions of the wave equation with a local degenerate dissipation, Israel J. Math. 95 (1996), 25-42.
[10] E. Zuazua, Exponential decay for the semilinear wave equation with locally distributed damping, Comm. Partial Differential Equations 15 (1990), no. 2, 205-235.
E. Cabanillas Lapa: Instituto de Investigación, Facultad de Ciencias Matemáticas, Universidad Nacional Mayor de San Marcos, Lima, Peru

E-mail address: cleugenio@yahoo.com
Z. Huaringa Segura: Instituto de Investigación, Facultad de Ciencias Matemáticas, Universidad Nacional Mayor de San Marcos, Lima, Peru

E-mail address: zachariashs@yahoo.es
F. Leon Barboza: Instituto de Investigación, Facultad de Ciencias Matemáticas, Universidad Nacional Mayor de San Marcos, Lima, Peru

E-mail address: fleonb2004@yahoo.es

Special Issue on

Boundary Value Problems on Time Scales

Call for Papers

The study of dynamic equations on a time scale goes back to its founder Stefan Hilger (1988), and is a new area of still fairly theoretical exploration in mathematics. Motivating the subject is the notion that dynamic equations on time scales can build bridges between continuous and discrete mathematics; moreover, it often revels the reasons for the discrepancies between two theories.

In recent years, the study of dynamic equations has led to several important applications, for example, in the study of insect population models, neural network, heat transfer, and epidemic models. This special issue will contain new researches and survey articles on Boundary Value Problems on Time Scales. In particular, it will focus on the following topics:

- Existence, uniqueness, and multiplicity of solutions
- Comparison principles
- Variational methods
- Mathematical models
- Biological and medical applications
- Numerical and simulation applications

Before submission authors should carefully read over the journal's Author Guidelines, which are located at http://www .hindawi.com/journals/ade/guidelines.html. Authors should follow the Advances in Difference Equations manuscript format described at the journal site http://www.hindawi .com/journals/ade/. Articles published in this Special Issue shall be subject to a reduced Article Processing Charge of $€ 200$ per article. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

Manuscript Due	April 1, 2009
First Round of Reviews	July 1, 2009
Publication Date	October 1, 2009

Lead Guest Editor

Alberto Cabada, Departamento de Análise Matemática, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; alberto.cabada@usc.es

Guest Editor

Victoria Otero-Espinar, Departamento de Análise Matemática, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; mvictoria.otero@usc.es

