JACOBI-WEIGHTED ORTHOGONAL POLYNOMIALS ON TRIANGULAR DOMAINS

A. RABABAH AND M. ALQUDAH

Received 25 March 2004 and in revised form 20 March 2005

We construct Jacobi-weighted orthogonal polynomials $\mathcal{P}_{n,r}^{(\alpha,\beta,\gamma)}(u,v,w)$, $\alpha,\beta,\gamma > -1$, α + $\beta + \gamma = 0$, on the triangular domain *T*. We show that these polynomials $\mathcal{P}_{n,r}^{(\alpha,\beta,\gamma)}(u,$ *v*,*w*) over the triangular domain *T* satisfy the following properties: $\mathcal{P}_{n,r}^{(\alpha,\beta,\gamma)}(u,v,w) \in \mathcal{L}_n$, $n \ge 1, r = 0, 1, \ldots, n$, and $\mathcal{P}_{n,r}^{(\alpha,\beta,\gamma)}(u,v,w) \perp \mathcal{P}_{n,s}^{(\alpha,\beta,\gamma)}(u,v,w)$ for $r \ne s$. Hence, $\mathcal{P}_{n,r}^{(\alpha,\beta,\gamma)}(u,v,w)$, $n = 0, 1, 2, \ldots, r = 0, 1, \ldots, n$, form an orthogonal system over the triangular domain *T* with respect to the Jacobi weight function. These Jacobi-weighted orthogonal polynomials on triangular domains are given in Bernstein basis form and thus preserve many properties of the Bernstein polynomial basis.

1. Introduction

Recent years have seen a great deal in the field of orthogonal polynomials, a subject closely related to many important branches of analysis. Among these orthogonal polynomials, the Jacobi orthogonal polynomials are the most important. However, the cases of two or more variables of orthogonal polynomials on triangular domains have been studied by few researchers; although the main definitions and some simple properties were considered many years ago, see $[1, 3, 12, 14]$ $[1, 3, 12, 14]$ $[1, 3, 12, 14]$ $[1, 3, 12, 14]$ $[1, 3, 12, 14]$ $[1, 3, 12, 14]$ $[1, 3, 12, 14]$.

Orthogonal polynomials with Jacobi weight function $w^{(\alpha,\beta,\gamma)}(u,v,w) = u^{\alpha}v^{\beta}(1-w)^{\gamma}$, $\alpha, \beta, \gamma > -1$ on triangular domain *T* are defined in [\[11\]](#page-11-3). These polynomials $P_{n,r}^{(\alpha,\beta,\gamma)}(u,v,w)$ are orthogonal to each polynomial of degree less than or equal to *n* − 1, with respect to the defined weight function $w^{(\alpha,\beta,\gamma)}(u,v,w)$ on T. However, $P_{n,r}^{(\alpha,\beta,\gamma)}(u,v,w)$, $P_{n,s}^{(\alpha,\beta,\gamma)}(u,$ v, w), $r \neq s$, are not orthogonal with respect to the weight function $w^{(\alpha,\beta,\gamma)}(u, v, w)$ on *T*.

In [\[5\]](#page-11-4), orthogonal polynomials with respect to the weight function $w(u, v, w) = 1$ on a triangular domain *T* are defined. These polynomials $P_{n,r}(u,v,w)$ are orthogonal to each polynomial of degree less than or equal to *n* − 1 and also orthogonal to each polynomial $P_{n,s}(u,v,w), r \neq s.$

In this paper, we construct orthogonal polynomials $\mathcal{P}_{n,r}^{(\alpha,\beta,\gamma)}(u,v,w)$ with respect to the Jacobi weight function $w^{(\alpha,\beta,\gamma)}(u,v,w) = u^{\alpha}v^{\beta}(1-w)^{\gamma}, \alpha,\beta,\gamma > -1, \alpha + \beta + \gamma = 0$, on triangular domain *T*. These Jacobi-weighted orthogonal polynomials on triangular domains

Copyright © 2005 Hindawi Publishing Corporation Journal of Applied Mathematics 2005:3 (2005) 205–217 DOI: [10.1155/JAM.2005.205](http://dx.doi.org/10.1155/S1110757X05403101)

are given in the Bernstein basis form, and thus preserve many geometric properties of the Bernstein polynomial basis. We show that these polynomials $\mathcal{P}_{n,r}^{(\alpha,\beta,\gamma)}(u,v,w)$ over the triangular domain *T* satisfy the following properties: $\mathcal{P}_{n,r}^{(\alpha,\beta,\gamma)}(u,v,w) \in \mathcal{L}_n$, $n \ge 1$, $r =$ $0, 1, \ldots, n$, and for $r \neq s$ we proved that $\mathcal{P}_{n,r}^{(\alpha,\beta,\gamma)}(u,v,w) \perp \mathcal{P}_{n,s}^{(\alpha,\beta,\gamma)}(u,v,w)$. And hence, these bivariate polynomials $\mathcal{P}_{n,r}^{(\alpha,\beta,\gamma)}(u,v,w)$, $r = 0,1,...,n$, and $n = 0,1,2,...$, form an orthogonal system over the triangular domain *T* with respect to the weight function $w^{(\alpha,\beta,\gamma)}(u,$ *v*,*w*), $\alpha, \beta, \gamma > -1$, $\alpha + \beta + \gamma = 0$.

The construction of bivariate orthogonal polynomials on the square is straightforward. We consider the tensor product of the set of orthogonal polynomials over the square

$$
G = \{(x, y) : -1 \le x \le 1, -1 \le y \le 1\}.
$$
\n(1.1)

Let ${P_n^{(\alpha_1,\beta_1)}(x)}$ be the Jacobi polynomials over $[-1,1]$ with respect to the weight function $w_1(x) = (1-x)^{\alpha_1}(1+x)^{\beta_1}$. And let $\{Q_m^{(\alpha_2,\beta_2)}(\gamma)\}$ be the Jacobi polynomials over [−1,1] with respect to the weight function $w_2(y) = (1 - y)^{\alpha_2}(1 + y)^{\beta_2}$. We define the bivariate polynomials ${R_{nm}(x, y)}$ on *G* formed by the tensor products of the Jacobi polynomials by

$$
R_{nm}(x, y) := P_{n-m}^{(\alpha_1, \beta_1)}(x) Q_m^{(\alpha_2, \beta_2)}(y), \quad n = 0, 1, 2, \dots, m = 0, 1, \dots, n. \tag{1.2}
$$

Then ${R_{nm}(x, y)}$ are orthogonal on the square G with respect to the weight function $w(x, y) = w_1^{(\alpha_1, \beta_1)}(x) w_2^{(\alpha_2, \beta_2)}(y)$. However, the construction of orthogonal polynomials over a triangular domain is not straightforward like the tensor product over the square *G*.

For $m \geq 1$, we define the space \mathcal{L}_m of polynomials of degree *m* that are orthogonal to all polynomials of degree less than *m* over a triangular domain *T*, that is,

$$
\mathcal{L}_m = \{ p \in \Pi_m : \ p \perp \Pi_{m-1} \},\tag{1.3}
$$

and Π*ⁿ* is the space of all polynomials of degree *n* over the triangular domain *T*.

This paper is organized as follows: in [Section 2,](#page-1-0) we define and discuss the relation between the univariate Bernstein and Jacobi polynomials. In Sections [3](#page-2-0) and [4,](#page-3-0) the barycentric coordinates and the generalized Bernstein polynomials over triangular domain are introduced. Properties of the orthogonal polynomials over triangular domain are given is [Section 5.](#page-4-0) The construction of the Jacobi-weighted orthogonal polynomials over triangular domain with its Bernstein representation are analyzed in Sections [6](#page-5-0) and [7.](#page-8-0)

2. Univariate Bernstein and Jacobi polynomials

The Bernstein polynomials $b_i^n(u)$, $u \in [0,1]$, $i = 0,1,...,n$, are defined by

$$
b_i^n(u) = \begin{cases} \binom{n}{i} u^i (1-u)^{n-i}, & i = 0, 1, ..., n, \\ 0 & \text{else,} \end{cases}
$$
 (2.1)

where the binomial coefficients are given by

$$
\binom{n}{i} = \begin{cases} \frac{n!}{i!(n-i)!} & \text{if } 0 \le i \le n, \\ 0 & \text{else.} \end{cases} \tag{2.2}
$$

The Jacobi polynomials $P_n^{(\alpha,\beta)}(x)$ of degree *n* are the orthogonal polynomials, except for a constant factor, on $[-1,1]$ with respect to the weight function

$$
w(x) = (1 - x)^{\alpha} (1 + x)^{\beta}, \quad \alpha, \beta > -1.
$$
 (2.3)

In this paper, it is appropriate to take $u \in [0,1]$ for both Bernstein and Jacobi polynomials. The following two lemmas will be needed in the construction of the orthogonal bivariate polynomials and the proof of the main results.

LEMMA 2.1 (see [\[10\]](#page-11-5)). *The Jacobi polynomial* $P_r^{(\alpha,\beta)}(u)$ *of degree r has the following Bernstein representation*

$$
P_r^{(\alpha,\beta)}(u) = \sum_{i=0}^r (-1)^{r-i} \frac{\binom{r+\alpha}{i}\binom{r+\beta}{r-i}}{\binom{r}{i}} b_i^r(u), \quad r = 0, 1, \tag{2.4}
$$

The Pochhammer symbol is more appropriate, but the combinatorial notation gives more compact and readable formulas, these have also been used by Szegö [[13\]](#page-11-6).

LEMMA 2.2 (see [\[10\]](#page-11-5)). *The Jacobi polynomials* $P_0^{(\alpha,\beta)}(u),\ldots,P_n^{(\alpha,\beta)}(u)$ *of degree less than or equal to n can be expressed in terms of the Bernstein basis of fixed degree n by the following formula:*

$$
P_r^{(\alpha,\beta)}(u) = \sum_{i=0}^n \mu_{i,r}^n b_i^n(u), \quad r = 0, 1, \dots, n,
$$
 (2.5)

where for $i = 0, \ldots, n$,

$$
\mu_{i,r}^n = \binom{n}{i}^{-1} \sum_{k=\max(0,i+r-n)}^{\min(i,r)} (-1)^{r-k} \binom{n-r}{i-k} \binom{r+\alpha}{k} \binom{r+\beta}{r-k}.
$$
 (2.6)

3. Barycentric coordinates

Consider a base triangle in the plane with the vertices $\mathbf{p}_k = (x_k, y_k)$, $k = 1, 2, 3$. Then every point **p** inside the triangle *T* can be written using the barycentric coordinates (u, v, w) , where $u + v + w = 1$, $u, v, w \ge 0$ as $\mathbf{p} = u\mathbf{p}_1 + v\mathbf{p}_2 + w\mathbf{p}_3$. The barycentric coordinates are the ratio of areas of subtriangles of the base triangle as follows:

$$
u = \frac{\text{area } (\mathbf{p}, \mathbf{p}_2, \mathbf{p}_3)}{\text{area } (\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3)}, \qquad v = \frac{\text{area } (\mathbf{p}_1, \mathbf{p}, \mathbf{p}_3)}{\text{area } (\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3)}, \qquad w = \frac{\text{area } (\mathbf{p}_1, \mathbf{p}_2, \mathbf{p})}{\text{area } (\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3)}, \qquad (3.1)
$$

where $area(\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3) \neq 0$, which means that $\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3$ are not collinear.

4. Generalized Bernstein polynomials

Let *T* be a triangular domain defined by

$$
T = \{(u, v, w) : u, v, w \ge 0, u + v + w = 1\}.
$$
\n(4.1)

Let the notation $\alpha = (i, j, k)$ denote triples of nonnegative integers, where $|\alpha| = i + j + j$ *k*· The generalized Bernstein polynomials of degree *n* on the triangular domain *T* are defined by the formula

$$
b_{\alpha}^{n}(u,v,w) = {n \choose \alpha} u^{i}v^{j}w^{k}, \quad |\alpha| = n,
$$
\n(4.2)

where

$$
\binom{n}{\alpha} = \frac{n!}{i!j!k!}.\tag{4.3}
$$

Note that the generalized Bernstein polynomials are nonnegative over *T*, and form a partition of unity, that is,

$$
1 = (u + v + w)^n = \sum_{\substack{0 \le i,j,k \le n \\ i+j+k=n}} \frac{n!}{i!j!k!} u^i v^j w^k.
$$
 (4.4)

The sum involves a total of $(1/2)(n+1)(n+2)$ linearly independent polynomials. These polynomials define the Bernstein basis for the space Π*ⁿ* over the triangular domain *T*.

Any polynomial $P(u, v, w)$ of degree *n* can be written in the Bernstein form

$$
P(u, v, w) = \sum_{|\alpha| = n} d_{\alpha} b_{\alpha}^{n}(u, v, w),
$$
\n(4.5)

with Bézier coefficients d_{α} . We can also use the degree elevation algorithm for the Bern-stein representation [\(4.5\)](#page-3-1). This is obtained by multiplying both sides by $1 = u + v + w$, and writing

$$
P(u, v, w) = \sum_{|\alpha| = n+1} d_{\alpha}^{(1)} b_{\alpha}^{n+1}(u, v, w).
$$
 (4.6)

The new coefficients $d_{\alpha}^{(1)}$ are defined by, see [\[4,](#page-11-7) [7\]](#page-11-8),

$$
d_{ijk}^{(1)} = \frac{1}{n+1} \left(id_{i-1,j,k} + j d_{i,j-1,k} + k d_{i,j,k-1} \right), \quad i+j+k = n+1. \tag{4.7}
$$

The Bernstein polynomials $b_{\alpha}^{n}(u, v, w)$, $|\alpha| = n$, on *T* satisfy, see [\[5,](#page-11-4) [9\]](#page-11-9),

$$
\iint_{T} b_{\alpha}^{n}(u, v, w) dA = \frac{\Delta}{(n+1)(n+2)},
$$
\n(4.8)

where ∆ is double the area of *T*.

Let $P(u, v, w)$ and $Q(u, v, w)$ be two bivariate polynomials over *T*, then we define their inner product over *T* by

$$
\langle P, Q \rangle = \frac{1}{\Delta} \iint_{T} PQ \, dA. \tag{4.9}
$$

We say that *P* and *Q* are orthogonal if $\langle P, Q \rangle = 0$.

5. Orthogonal polynomials on triangular domain

A basis of linearly independent and mutually orthogonal polynomials in the barycentric coordinates (u, v, w) are constructed over *T*. These polynomials are represented in the following triangular table

$$
P_{0,0}^{(\alpha,\beta,\gamma)}(u,v,w)
$$
\n
$$
P_{1,0}^{(\alpha,\beta,\gamma)}(u,v,w), \qquad P_{1,1}^{(\alpha,\beta,\gamma)}(u,v,w)
$$
\n
$$
P_{2,0}^{(\alpha,\beta,\gamma)}(u,v,w), \qquad P_{2,1}^{(\alpha,\beta,\gamma)}(u,v,w), \qquad P_{2,2}^{(\alpha,\beta,\gamma)}(u,v,w)
$$
\n
$$
\vdots
$$
\n
$$
P_{n,0}^{(\alpha,\beta,\gamma)}(u,v,w), \qquad P_{n,1}^{(\alpha,\beta,\gamma)}(u,v,w), \qquad P_{n,2}^{(\alpha,\beta,\gamma)}(u,v,w), \dots, P_{n,n}^{(\alpha,\beta,\gamma)}(u,v,w).
$$
\n(5.1)

The *k*th row of this triangle table contains $k + 1$ polynomials. Thus, for a basis of linearly independent polynomials of total degree *n*, there are $(1/2)(n+1)(n+2)$ polynomials.

Analogous to [\[5\]](#page-11-4), a simple closed-form representation of degree-ordered system of orthogonal polynomials is constructed on a triangular domain *T*. Since the Bernstein polynomials are stable, see [\[6\]](#page-11-10), it is convenient to write these polynomials in Bernstein form.

Let $f(u, v, w)$ be an integrable function over *T*, and consider the operator

$$
S_n(f) = (n+1)(n+2) \sum_{|\alpha|=n} \langle f, b^n_{\alpha} \rangle b^n_{\alpha}.
$$
 (5.2)

For $n \geq m$,

$$
\lambda_{m,n} = \frac{(n+2)!n!}{(n+m+2)!(n-m)!} \tag{5.3}
$$

is an eigenvalue of the operator S_n , and \mathcal{L}_m is the corresponding eigenspace, see [\[2\]](#page-11-11).

The following three lemmas will be needed in the proof of the main results.

 Δ *L*emma 5.1 (see [\[5\]](#page-11-4)). Let $P = \sum_{|\alpha| = n} c_{\alpha} b_{\alpha}^{n} \in \mathcal{L}_m$ and let $Q = \sum_{|\alpha| = n} d_{\alpha} b_{\alpha}^{n} \in \Pi_n$ with $m \leq n$. *Then,*

$$
\langle P, Q \rangle = \frac{(n!)^2}{(n+m+2)!(n-m)!} \sum_{|\alpha|=n} c_{\alpha} d_{\alpha}.
$$
 (5.4)

LEMMA 5.2 (see [\[5,](#page-11-4) [8\]](#page-11-12)). *Let* $P = \sum_{|\alpha|=n} c_{\alpha} b_{\alpha}^n \in \Pi_n$. *Then,*

$$
P \in \mathcal{L}_n \Longleftrightarrow \sum_{|\alpha|=n} c_{\alpha} d_{\alpha} = 0 \quad \forall Q = \sum_{|\alpha|=n} d_{\alpha} b_{\alpha}^n \in \Pi_{n-1}.
$$
 (5.5)

Consider the polynomials

$$
q_{n,r}(w) = \sum_{j=0}^{n-r} (-1)^j {n+r+1 \choose j} b_j^{n-r}(w).
$$
 (5.6)

The polynomial $q_{n,r}(w)$ is a scalar multiple of $P_{n-r}^{(0,2r+1)}(1-2w)$, and we have the following lemma

LEMMA 5.3 (see [\[5\]](#page-11-4)). *For* $r = 0, ..., n$ *and* $i = 0, ..., n - r - 1$, $q_{n,r}(w)$ *is orthogonal to* (1 − $(w)^{2r+i+1}$ *on* [0, 1]*, and hence*

$$
\int_0^1 q_{n,r}(w)P(w)(1-w)^{2r+1}dw = 0
$$
\n(5.7)

for every polynomial $P(w)$ *of degree less than or equal to* $n - r - 1$ *.*

6. Jacobi-weighted orthogonal polynomials

For $n = 0, 1, 2, \ldots$ and $r = 0, 1, \ldots, n$, we define the bivariate polynomials

$$
\mathcal{P}_{n,r}^{(\alpha,\beta,\gamma)}(u,v,w) = \sum_{i=0}^{r} c(i,\alpha,\beta) b_i^r(u,v) \sum_{j=0}^{n-r} (-1)^j {n+r+1 \choose j} b_j^{n-r}(w,u+v), \tag{6.1}
$$

where $\alpha, \beta, \gamma > -1$, $\alpha + \beta + \gamma = 0$,

$$
c(i, \alpha, \beta) = (-1)^{r-i} \frac{\binom{r+\alpha}{i}\binom{r+\beta}{r-i}}{\binom{r}{i}}, \quad i = 0, 1, \dots, r,
$$

$$
b_i^r(u, v) = \binom{r}{i} u^i v^{r-i}, \quad i = 0, 1, \dots, r.
$$

(6.2)

In this section, we show that the polynomials $\mathcal{P}_{n,r}^{(\alpha,\beta,\gamma)}(u,v,w) \in \mathcal{L}_n$, $n \ge 1$, $r = 0,1,...,n$, and $\mathcal{P}_{n,r}^{(\alpha,\beta,\gamma)} \perp \mathcal{P}_{n,s}^{(\alpha,\beta,\gamma)}$ for $r \neq s$. Thus, choosing $\mathcal{P}_{0,0}^{(\alpha,\beta,\gamma)} = 1$, then the polynomials $\mathcal{P}_{n,r}^{(\alpha,\beta,\gamma)}(u, \gamma)$ *v*,*w*) for $0 \le r \le n$ and $n = 0, 1, 2, \ldots$ form a degree-ordered orthogonal sequence over *T*. We first rewrite these polynomials in the Jacobi polynomials form

$$
\mathcal{P}_{n,r}^{(\alpha,\beta,\gamma)}(u,v,w) = \sum_{i=0}^{r} (-1)^{r-i} \frac{\binom{r+\alpha}{i} \binom{r+\beta}{r-i}}{\binom{r}{i}} b_i^r(u,v) \times \sum_{j=0}^{n-r} (-1)^j \binom{n+r+1}{j} b_j^{n-r}(w,u+v) \n= \sum_{i=0}^{r} (-1)^{r-i} \frac{\binom{r+\alpha}{i} \binom{r+\beta}{r-i}}{\binom{r}{i}} \frac{b_i^r(u,v)}{(u+v)^r} (1-w)^r \times \sum_{j=0}^{n-r} (-1)^j \binom{n+r+1}{j} b_j^{n-r}(w,1-w).
$$
\n(6.3)

Since

$$
\frac{b_i^r(u,v)}{(u+v)^r} = b_i^r\left(\frac{u}{1-w}\right),\tag{6.4}
$$

and using [Lemma 2.1,](#page-2-1) we get

$$
\mathcal{P}_{n,r}^{(\alpha,\beta,\gamma)}(u,v,w) = P_r^{(\alpha,\beta)}\left(\frac{u}{1-w}\right)(1-w)^r q_{n,r}(w), \quad r = 0,\ldots,n,\tag{6.5}
$$

where $P_r^{(\alpha,\beta)}(t)$ is the univariate Jacobi polynomial of degree *r* and $q_{n,r}(w)$ is defined in [\(5.6\)](#page-5-1).

First, we show that the polynomials $\mathcal{P}_{n,r}^{(\alpha,\beta,\gamma)}(u,v,w)$, $r = 0,...,n$, are orthogonal to all polynomials of degree less than *n* over the triangular domain *T*.

THEOREM 6.1. *For each* $n = 1, 2, \ldots$, $r = 0, 1, \ldots, n$, and the weight function $w^{(\alpha,\beta,\gamma)}(u,v)$, $w) = u^{\alpha}v^{\beta}(1-w)^{\gamma}$ such that $\alpha, \beta, \gamma > -1$, $\alpha + \beta + \gamma = 0$, $\mathcal{P}_{n,r}^{(\alpha,\beta,\gamma)}(u,v,w) \in \mathcal{L}_n$ holds.

Proof. For each $m = 0, \ldots, n - 1$, and $s = 0, \ldots, m$, we construct the set of bivariate polynomials

$$
Q_{s,m}^{(\alpha,\beta)}(u,v,w) = P_s^{(\alpha,\beta)}\left(\frac{u}{1-w}\right)(1-w)^m w^{n-m-1}, \quad m = 0,\ldots,n-1, \ s = 0,\ldots,m. \tag{6.6}
$$

The span of these polynomials includes the set of Bernstein polynomials

$$
b_j^m \left(\frac{u}{1-w} \right) (1-w)^m w^{n-m-1} = b_j^m (u, v) w^{n-m-1}, \quad m = 0, \dots, n-1, \ j = 0, \dots, m,
$$
 (6.7)

which span the space Π_{n-1} . Thus, it is sufficient to show that for each $m = 0, \ldots, n-1$, $s = 0, \ldots, m$, we have

$$
I := \iint_T \mathcal{P}_{n,r}^{(\alpha,\beta,\gamma)}(u,v,w) Q_{s,m}^{(\alpha,\beta)}(u,v,w) w^{(\alpha,\beta,\gamma)}(u,v,w) dA = 0.
$$
 (6.8)

This is simplified to

$$
I = \Delta \int_0^1 \int_0^{1-w} P_r^{(\alpha,\beta)} \left(\frac{u}{1-w} \right) q_{n,r}(w) P_s^{(\alpha,\beta)} \left(\frac{u}{1-w} \right) w^{n-m-1} u^{\alpha} v^{\beta} (1-w)^{\gamma+r+m} du \, dw. \tag{6.9}
$$

By making the substitution $t = u/(1 - w)$, we get

$$
w^{(\alpha,\beta,\gamma)}(u,v,w) = u^{\alpha}v^{\beta}(1-w)^{\gamma} = t^{\alpha}(1-t)^{\beta}(1-w)^{\alpha+\beta+\gamma}.
$$
 (6.10)

And thus, we have

$$
I = \Delta \int_0^1 \int_0^1 P_r^{(\alpha,\beta)}(t) q_{n,r}(w) P_s^{(\alpha,\beta)}(t) (1 - w)^{\alpha + \beta + \gamma + r + m + 1} w^{n - m - 1} t^{\alpha} (1 - t)^{\beta} dt dw
$$

\n
$$
= \Delta \int_0^1 P_r^{(\alpha,\beta)}(t) P_s^{(\alpha,\beta)}(t) t^{\alpha} (1 - t)^{\beta} dt \int_0^1 q_{n,r}(w) (1 - w)^{\alpha + \beta + \gamma + r + m + 1} w^{n - m - 1} dw.
$$
\n(6.11)

If $m < r$, then we have $s < r$, and the first integral is zero by the orthogonality property of the Jacobi polynomials. If $r \le m \le n - 1$, we have by [Lemma 5.3](#page-5-2) the second integral equal to zero. And thus the theorem follows.

Note that taking $w^{(\alpha,\beta,\gamma)}(u,v,w) = u^{\alpha}v^{\beta}(1-w)^{\gamma}$ enables us to separate the integrand in the proof of [Theorem 6.1.](#page-2-1) Also note that taking $\alpha + \beta + \gamma = 0$ enables us to use [Lemma 5.3](#page-5-2) in the proof of [Theorem 6.1.](#page-2-1)

In the following theorem, we show that $\mathcal{P}_{n,r}^{(\alpha,\beta,\gamma)}(u,v,w)$ is orthogonal to each polynomial of degree *n*. And thus the bivariate polynomials $\mathcal{P}_{n,r}^{(\alpha,\beta,\gamma)}(u,v,w)$, $r = 0,1,...,n$, and $n = 0, 1, 2, \ldots$ form an orthogonal system over the triangular domain *T* with respect to the weight function $w^{(\alpha,\beta,\gamma)}(u,v,w)$, $\alpha,\beta,\gamma > -1$.

THEOREM 6.2. For $r \neq s$, $\mathcal{P}_{n,r}^{(\alpha,\beta,\gamma)}(u,v,w) \perp \mathcal{P}_{n,s}^{(\alpha,\beta,\gamma)}(u,v,w)$ with respect to the weight func*tion* $w^{(\alpha,\beta,\gamma)}(u,v,w) = u^{\alpha}v^{\beta}(1-w)^{\gamma}$ *such that* $\alpha,\beta,\gamma > -1$ *.*

Proof. For $r \neq s$, we have

$$
I := \iint_{T} \mathcal{P}_{n,r}^{(\alpha,\beta,\gamma)}(u,v,w) \mathcal{P}_{n,s}^{(\alpha,\beta,\gamma)}(u,v,w) w^{(\alpha,\beta,\gamma)}(u,v,w) dA
$$

=
$$
\Delta \int_{0}^{1} \int_{0}^{1-w} P_{r}^{(\alpha,\beta)} \left(\frac{u}{1-w}\right) P_{s}^{(\alpha,\beta)} \left(\frac{u}{1-w}\right) (1-w)^{r+s} q_{n,r}(w) q_{n,s}(w) w^{(\alpha,\beta,\gamma)}(u,v,w) du dw.
$$
(6.12)

By making the substitution $t = u/(1 - w)$, we get $w^{(\alpha,\beta,\gamma)}(u,v,w) = t^{\alpha}(1-t)^{\beta}(1-w)^{\alpha+\beta+\gamma}$. And thus, we have

$$
I = \Delta \int_0^1 P_r^{(\alpha,\beta)}(t) P_s^{(\alpha,\beta)}(t) t^{\alpha} (1-t)^{\beta} dt \int_0^1 q_{n,r}(w) q_{n,s}(w) (1-w)^{\alpha+\beta+\gamma+r+s+1} dw, \qquad (6.13)
$$

where the first integral equals zero by the orthogonality property of the Jacobi polynomials for $r \neq s$, and thus the theorem follows.

7. Orthogonal polynomials in Bernstein basis

The Bernstein-Bézier form of curves and surfaces exhibits some interesting geometric properties, see [\[4,](#page-11-7) [7\]](#page-11-8). So, we write the orthogonal polynomials $\mathcal{P}_{n,r}^{(\alpha,\beta,\gamma)}(u,v,w)$, $r = 0,1$, \ldots , *n* and $n = 0, 1, 2, \ldots$ in the following Bernstein-Bézier form:

$$
\mathcal{P}_{n,r}^{(\alpha,\beta,\gamma)}(u,v,w) = \sum_{|\alpha|=n} a_{\alpha}^{n,r} b_{\alpha}^{n}(u,v,w).
$$
 (7.1)

We are interested in finding a closed form for the computation of the Bernstein coefficients $a_{\alpha}^{n,r}$. These are given explicitly in the following theorem.

Theorem 7.1. *The Bernstein coefficients an*,*^r α of [\(7.1\)](#page-8-1) are given explicitly by*

$$
a_{ijk}^{n,r} = \begin{cases} (-1)^k \frac{\binom{n+r+1}{k}\binom{n-r}{k}}{n} \mu_{i,r}^{n-k}, & 0 \le k \le n-r, \\ 0, & k > n-r, \end{cases}
$$
(7.2)

where $\mu_{i,r}^{n-k}$ are given in [\(2.6\)](#page-2-2).

Proof. From [\(6.1\)](#page-5-3), it is clear that $\mathcal{P}_{n,r}^{(\alpha,\beta,\gamma)}(u,v,w)$ has degree $\leq n-r$ in the variable *w*, and thus

$$
a_{ijk}^{n,r} = 0 \quad \text{for } k > n-r. \tag{7.3}
$$

For $0 \le k \le n - r$, the remaining coefficients are determined by equating [\(6.1\)](#page-5-3) and [\(7.1\)](#page-8-1) as follows:

$$
\sum_{i+j=n-k} a_{ijk}^{n,r} b_{ijk}^n (u, v, w) = (-1)^k {n+r+1 \choose k} b_k^{n-r} (w, u+v)
$$

$$
\times \sum_{i=0}^r (-1)^{r-i} \frac{{r+\alpha \choose i}{r+\beta \choose r-i}}{r \choose i} b_i^r (u, v).
$$
(7.4)

Comparing powers of *w* on both sides, we have

$$
\sum_{i=0}^{n-k} a_{ijk}^{n,r} \frac{n!}{i!j!k!} u^i v^j = (-1)^k {n+r+1 \choose k} {n-r \choose k} (u+v)^{n-r-k} \times \sum_{i=0}^r (-1)^{r-i} \frac{{r+\alpha \choose i} {r+\beta \choose r-i}}{{r \choose i}} b_i^r(u,v).
$$
\n(7.5)

The left-hand side of the last equation can be written in the form

$$
\sum_{i=0}^{n-k} a_{ijk}^{n,r} \frac{n!}{i!j!k!} u^i v^j = \sum_{i=0}^{n-k} a_{ijk}^{n,r} \frac{n!(n-k)!}{i!j!k!(n-k)!} u^i v^j
$$

$$
= \sum_{i=0}^{n-k} a_{ijk}^{n,r} \frac{n!(n-k)!}{i!(n-k-i)!k!(n-k)!} u^i v^j
$$

$$
= \sum_{i=0}^{n-k} a_{ijk}^{n,r} {n \choose k} b_i^{n-k}(u, v).
$$
(7.6)

Now, we get

$$
\sum_{i=0}^{n-k} a_{ijk}^{n,r} \binom{n}{k} b_i^{n-k} (u, v) = (-1)^k \binom{n+r+1}{k} \binom{n-r}{k} (u+v)^{n-r-k} \times \sum_{i=0}^r (-1)^{r-i} \frac{\binom{r+\alpha}{i} \binom{r+\beta}{r-i}}{\binom{r}{i}} b_i^r (u, v).
$$
\n(7.7)

With some binomial simplifications, and using [Lemma 2.2,](#page-2-3) we get

$$
\sum_{i=0}^{n-k} a_{ijk}^{n,r} \binom{n}{k} b_i^{n-k}(u,v) = (-1)^k \binom{n+r+1}{k} \binom{n-r}{k} \sum_{i=0}^r \mu_{i,r}^{n-k} b_i^{n-k}(u,v),\tag{7.8}
$$

where *µn*−*^k ⁱ*,*^r* are the coefficients resulting from writing Jacobi polynomial of degree *r* in the Bernstein basis of degree $n - k$, as defined by expression [\(2.6\)](#page-2-2). Thus, the required Bernstein-Bézier coefficients are given by

$$
a_{ijk}^{n,r} = \begin{cases} (-1)^k \frac{\binom{n+r+1}{k} \binom{n-r}{k}}{\binom{n}{k}} \mu_{i,r}^{n-k}, & 0 \le k \le n-r, \\ 0, & k > n-r, \end{cases}
$$
(7.9)

which completes the proof of the theorem.

To derive a recurrence relation for the coefficients $a_{ijk}^{n,r}$ of $\mathcal{P}_{n,r}^{(\alpha,\beta,\gamma)}(u,v,w)$, we consider the generalized Bernstein polynomial of degree *n* − 1

$$
b_{ijk}^{n-1}(u,v,w) = \frac{(n-1)!}{i!j!k!}u^iv^jw^k
$$

=
$$
\frac{(n-1)!}{i!j!k!}u^iv^jw^k(u+v+w)
$$

=
$$
\frac{(i+1)n!}{n(i+1)!j!k!}u^{i+1}v^jw^k + \frac{(j+1)n!}{n(i!)(j+1)!k!}u^iv^{j+1}w^k + \frac{(k+1)n!}{n(i!)(j!)(k+1)!}u^iv^jw^{k+1}
$$

=
$$
\frac{(i+1)}{n}b_{i+1,j,k}^n(u,v,w) + \frac{(j+1)}{n}b_{i,j+1,k}^n(u,v,w) + \frac{(k+1)}{n}b_{i,j,k+1}^n(u,v,w).
$$
(7.10)

By construction of $\mathcal{P}_{n,r}^{(\alpha,\beta,\gamma)}(u,v,w)$, we have

$$
\left\langle b_{ijk}^{n-1}(u,v,w), \mathcal{P}_{n,r}^{(\alpha,\beta,\gamma)}(u,v,w) \right\rangle = 0, \quad i+j+k=n-1.
$$
 (7.11)

Thus by [Lemma 5.2,](#page-2-3) we have

$$
(i+1)a_{i+1,j,k}^{n,r} + (j+1)a_{i,j+1,k}^{n,r} + (k+1)a_{i,j,k+1}^{n,r} = 0,
$$
\n(7.12)

and since we know from [Theorem 7.1](#page-2-1) that

$$
a_{i,n-i,0}^{n,r} = \mu_{i,r}^n \quad \text{for } i = 0, 1, \dots, n,
$$
 (7.13)

we can use [\(7.12\)](#page-10-0) to generate $a_{i,j,k}^{n,r}$ recursively on k .

8. Closure

We have constructed Jacobi-weighted orthogonal polynomials $\mathcal{P}_{n,r}^{(\alpha,\beta,\gamma)}(u,v,w)$, $\alpha,\beta,\gamma \geq 0$ -1 , $\alpha + \beta + \gamma = 0$ on the triangular domain *T*. Since the Bernstein polynomials are stable, see [\[6\]](#page-11-10), we write these polynomials in Bernstein basis form. The polynomials $\mathcal{P}_{n,r}^{(\alpha,\beta,\gamma)}(u,v)$ $w \in \mathcal{L}_n, n \ge 1, r = 0, 1, \ldots, n$, and $\mathcal{P}_{n,r}^{(\alpha,\beta,\gamma)}(u,v,w) \perp \mathcal{P}_{n,s}^{(\alpha,\beta,\gamma)}(u,v,w)$ for $r \ne s$. And hence, these bivariate polynomials form an orthogonal system over the triangular domain *T* with respect to the above weight function.

The *d*-dimensional unit simplex in barycentric coordinates is defined by

$$
T_d = \left\{ u = (u_0, \dots, u_d) : u_j \ge 0, \sum_{j=0}^d u_j = 1 \right\}.
$$
 (8.1)

The Bernstein basis for polynomials of degree *n* over T_d are defined by

$$
b_{\alpha}^{n}(u) = {n \choose \alpha} u^{\alpha} = \frac{n!}{\alpha_{0}! \cdots \alpha_{d}!} u_{0}^{\alpha_{0}} \cdots u_{d}^{\alpha_{d}}, \quad |\alpha| = n,
$$
 (8.2)

where $\alpha = (\alpha_0, \dots, \alpha_d) \in N_0^{d+1}$ and $|\alpha| = \alpha_0 + \dots + \alpha_d = n$.

The method of construction in this paper can be generalized to the case of multivariate polynomials over a *d*-dimensional simplex in any number of variables *d*.

Acknowledgment

The authors are thankful to the referee for the review, leading to a better presentation of the paper.

References

- [1] S. Cooper and S. Waldron, *The diagonalisation of the multivariate Bernstein operator*, J. Approx. Theory **117** (2002), no. 1, 103–131.
- [2] M.-M. Derriennic, *On multivariate approximation by Bernstein-type polynomials*, J. Approx. Theory **45** (1985), no. 2, 155–166.
- [3] C. F. Dunkl and Y. Xu, *Orthogonal Polynomials of Several Variables*, Encyclopedia of Mathematics and its Applications, vol. 81, Cambridge University Press, Cambridge, 2001.
- [4] G. Farin, *Curves and Surface for Computer Aided Geometric Design*, 3rd ed., Computer Science and Scientific Computing, Academic Press, Massachusetts, 1993.
- [5] R. T. Farouki, T. N. T. Goodman, and T. Sauer, *Construction of orthogonal bases for polynomials in Bernstein form on triangular and simplex domains*, Comput. Aided Geom. Design **20** (2003), no. 4, 209–230.
- [6] R. T. Farouki and V. T. Rajan, *On the numerical condition of polynomials in Bernstein form*, Comput. Aided Geom. Design **4** (1987), no. 3, 191–216.
- [7] J. Hoschek and D. Lasser, *Fundamentals of Computer Aided Geometric Design*, A K Peters, Massachusetts, 1993.
- [8] J. Peters and U. Reif, *Least squares approximation of B´ezier coefficients provides best degree reduction in the L*2*-norm*, J. Approx. Theory **104** (2000), no. 1, 90–97.
- [9] A. Rababah, *Distance for degree raising and reduction of triangular B´ezier surfaces*, J. Comput. Appl. Math. **158** (2003), no. 2, 233–241.
- [10] , *Jacobi-Bernstein basis transformation*, Comput. Methods Appl. Math. **4** (2004), no. 2, 206–214.
- [11] T. Sauer, *The genuine Bernstein-Durrmeyer operator on a simplex*, Results Math. **26** (1994), no. 1–2, 99–130.
- [12] P. K. Suetin, *Orthogonal Polynomials in Two Variables*, Nauka, Moscow, 1999.
- [13] G. Szegö, *Orthogonal Polynomials*, 4th ed., American Mathematical Society, Rhode Island, 1975.

[14] S. Waldron, *A generalised beta integral and the limit of the Bernstein-Durrmeyer operator with Jacobi weights*, J. Approx. Theory **122** (2003), no. 1, 141–150.

A. Rababah: Department of Mathematics and Statistics, Jordan University of Science and Technology, Irbid 22110, Jordan

E-mail address: rababah@just.edu.jo

M. Alqudah: Department of Mathematics and Statistics, Jordan University of Science and Technology, Irbid 22110, Jordan

E-mail address: alqud1ma@cmich.edu

Special Issue on Singular Boundary Value Problems for Ordinary Differential Equations

Call for Papers

The purpose of this special issue is to study singular boundary value problems arising in differential equations and dynamical systems. Survey articles dealing with interactions between different fields, applications, and approaches of boundary value problems and singular problems are welcome.

This Special Issue will focus on any type of singularities that appear in the study of boundary value problems. It includes:

- Theory and methods
- Mathematical Models
- Engineering applications
- Biological applications
- Medical Applications
- Finance applications
- Numerical and simulation applications

Before submission authors should carefully read over the journal's Author Guidelines, which are located at [http://www.hindawi.com/journals/bvp/guidelines.html.](http://www.hindawi.com/journals/bvp/guidelines.html) Authors should follow the Boundary Value Problems manuscript format described at the journal site [http://www](http://www.hindawi.com/journals/bvp/) [.hindawi.com/journals/bvp/.](http://www.hindawi.com/journals/bvp/) Articles published in this Special Issue shall be subject to a reduced Article Processing Charge of ϵ 200 per article. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/> according to the following timetable:

Lead Guest Editor

Juan J. Nieto, Departamento de Análisis Matemático, Facultad de Matemáticas, Universidad de Santiago de

Compostela, Santiago de Compostela 15782, Spain; juanjose.nieto.roig@usc.es

Guest Editor

Donal O'Regan, Department of Mathematics, National University of Ireland, Galway, Ireland; donal.oregan@nuigalway.ie

Hindawi Publishing Corporation http://www.hindawi.com