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The generalized resolvents for a certain class of perturbed symmetric operators with equal
and finite deficiency indices are investigated. Using the Weinstein-Aronszajn formula, we
give a classification of the spectrum.

1. Introduction

The present paper is concerned with the study of spectral properties for a certain class
of linear symmetric operator T , defined in the Hilbert space H of the form T = A +
B, where A is a closed linear symmetric operator, with nondensely defined domain in
general, D(A)⊂H , and B is a finite-rank operator of the form

B f =
n∑
k=1

ak
(
f , yk

)
yk, (1.1)

where y1, y2, . . . , yn is a linearly independant system in H , a1,a2, . . . ,an ∈ R. We remark
that the operator T can be considered as a perturbation of the operator A by the finite-
rank operator B.

The case when A is a first-order or second-order differential operator in the spaces
L2(0,2π), L2(0,∞) or in the Hilbert space of vector-valued functions, and B is a one-
dimensional perturbation (n = 1), has been studied by many authors (see, e.g., [9, 20,
24]).

In particular, certain integrodifferential equations of the above type occur in quantum
mechanical scattering theory [8].

In this paper, the generalized resolvents of perturbed symmetric operator T with equal
and finite deficiency indices are investigated. Using the Weinstein-Aronszajn formula
(see, e.g., [18]), we give a classification of the spectrum. Finally, the obtained results are
applied to the study of two classes of first-order and second-order differential operators.

We note that the spectral theory of perturbed symmetric and selfadjoint operators
have been investigated using various methods by many authors [3, 4, 5, 6, 11, 12, 13, 14,
15, 16, 17, 21, 22].
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2. Preliminaries

Let A be a closed symmetric operator with nondensely defined domain in a separable
Hilbert space H with equal deficiency indices (m,m), and m<∞. We denote by ρ(A) the
resolvent set of the operator A, the resolvent operator Rλ(A) of A is defined as Rλ(A) =
(A− λI)−1. The complement of ρ(A) in the complex plane is called the spectrum of A
and denoted by σ(A). There is a decomposition of the spectrum σ(A) into three disjoint
subsets, at least one of which is not empty [1, 2, 10]:

σ(A)= Pσ(A)∪Cσ(A)∪PCσ(A), (2.1)

Pσ(A) is called the point spectrum, Cσ(A) the continuous spectrum, and PCσ(A) the
point-continuous spectrum. We denote the essential spectrum of the operator A by σe(A)
= Cσ(A)∪PCσ(A).

For arbitrary λ∈ C, we denote Pλ =Nλ∩ (D(A)⊕Nλ), where Nλ =HΘ(A− λI)D(A)
is the deficiency subspace of the operator A [1, 2].

It is known [23] that Pλ = {0} if and only if D(A) = H , and if D(A) �= H , then the
subset

Gλ =
{

[ϕ,ψ]∈Nλ×Nλ : ϕ−ψ ∈D(A)
}

(2.2)

is a graph of the isometric operator Xλ with domain Pλ and values in Pλ.
We denote by � the set of linear operators F defined from Ni to N−i, such that ‖F‖ ≤

1. For each analytic operator-valued function F(λ) in C+, with C+ = {λ : Imλ > 0}, and
values in �, we introduce the set ΩF(∞) consisting of elements h∈Ni such that

lim
λ→∞,λ∈C+

ε

|λ|[‖h‖−∥∥F(λ)h
∥∥] <∞, (2.3)

where C+
ε = {λ∈ C+ : ε < argλ < π− ε}, 0 < ε < π/2.

It is known [27] that ΩF(∞) is a vector space and for each h∈ΩF(∞),

lim
λ→∞,λ∈C+

ε

F(λ)h= F0(∞)h (2.4)

exists in the sense of the strong topology, and F0(∞) is an isometric operator.
According to the theory of Štraus [28], the generalized resolvents of A are given by the

formula

Rλ(A)= Rλ =
(
AF(λ)− λI

)−1
, Rλ = R∗λ , λ∈ C+, (2.5)

where AF(λ) is an extension of A which is determined by the function F(λ), whose values
are operators from the deficiency subspace Ni to the deficiency subspace N−i such that
‖F(λ)‖ ≤ 1 and F(λ) satisfy the condition

F0(∞)ψ = Xiψ, for ψ = 0 only, (2.6)
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then AF(λ) is a restriction on H of a selfadjoint operator defined in a certain extended
Hilbert space and is called quasiselfadjoint extension of the operator A [28] defined on
D(AF(λ))=D(A) + (F(λ)− I)Ni by

AF(λ)
(
f +F(λ)ϕ−ϕ)= A f + iF(λ)ϕ+ iϕ, f ∈D(A), ϕ∈Ni. (2.7)

For selfadjoint extensions with exit in the space in which acts the considered operators,
see, for example, [12, 21] and the references therein.

We denote by ℵ the set of analytic operator functions F(λ) in C+ with values in �
satisfying the condition (2.6).

Remark 2.1. To each selfadjoint extension of the operator A corresponds a certain con-
stant operator function F(λ)=V , where V is an isometric operator defined from Ni over
N−i satisfying the condition Vψ = Xiψ for ψ = 0 only, and reciprocally.

We denote by Å a selfadjoint extension of A and we introduce the operator

Ůλλ0 =
(
Å− λ0I

)(
Å− λI)−1

, Imλ > 0. (2.8)

We note that (see [19])

Ůλλ0Nλ0
=Nλ, (Imλ)

(
Imλ0

) �= 0. (2.9)

We denote by

ϕ(1)
i ,ϕ(2)

i , . . . ,ϕ(m)
i (2.10)

a basis of N−i. From (2.9), ϕ(k)
λ = Ůλiϕ

(k)
i , k = 1,2, . . . ,m form a basis for Nλ. In particular,

the vectors

ϕ(k)
−i = Ůϕ(k)

i , k = 1,2, . . . ,m, (2.11)

where Ů = Ů−ii is the Cayley transform [1, 2] of Å, form an orthogonal basis of Ni.
To get a convenient formula of the generalized resolvents of A, we will need the fol-

lowing notation:

Φλµ = (λ−µ)
[(
ϕ(k)
λ ,ϕ(s)

µ

)]m
k,s=1, C(λ)=Φ−1

λi Φλ(−i), (2.12)

where E is the identity matrix of order m, Ω(λ) is an analytic matrix function in C+

corresponding, in the bases (2.10) and (2.11), to the operator function F(λ)∈ ℵ and ϕλ =
(ϕ(1)

λ , . . . ,ϕ(m)
λ )t, ( f ,ϕλ)

t = (( f ,ϕ(1)
λ

), . . . , ( f ,ϕ(m)
λ

)), t denotes the transpose, and (ϕλ,g) is
defined analogously.
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In what follows, we denote by Φ the set of matrices Ω(λ), λ ∈ C+, associated in the
bases (2.10) and (2.11) to the operator functions F(λ)∈ ℵ.

According to the notation used in [7], the generalized resolvents of A are given by

Rλ(A) f = Rλ f = R̊λ f +
(
f ,ϕλ

)t[
E−Ω(λ)

][
C(λ)Ω(λ)−E]−1

Φ−1
λi ϕλ,

Rλ = R∗λ , λ∈ C+,
(2.13)

where R̊λ is the resolvent of Å and Ω(λ)∈Φ.

Remark 2.2. The formula (2.13) defines a resolvent of a selfadjoint extension of A if and
only if Ω(λ) is a unitary constant matrix.

3. Resolvent and spectrum of a symmetric perturbed operator

Let T = A+B be defined on D(T)=D(A), where A is a linear closed symmetric operator
in H and B is a finite-rank operator.

Lemma 3.1. For λ∈ ρ(A)∩ ρ(T), the resolvent Rλ(T) of the operator T is given by

Rλ(T)= Rλ(A)−Rλ(A)
[
I +BRλ(A)

]−1
BRλ(A). (3.1)

Proof. For λ∈ ρ(A)∩ ρ(T), the operator

Rλ(A)
[
I +BRλ(A)

]−1 = Rλ(T) (3.2)

exists and is bounded. Then, we get

(T − λI)[Rλ(A)−Rλ(A)
(
I +BRλ(A)

)−1
BRλ(A)

]

= (A− λI +B)
[
Rλ(A)−Rλ(A)

(
I +BRλ(A)

)−1
BRλ(A)

]

= I +BRλ(A)− (I +BRλ(A)
)(
I +BRλ(A)

)−1
BRλ(A)= I

(3.3)

as required. �

Remark 3.2. If ‖BRλ(A)‖ < 1, then from (3.1), we obtain

Rλ(T)= Rλ(A)
(
I +BRλ(A)

)−1 = Rλ(A)
∞∑
k=0

(−1)k
[
BRλ(A)

]k
. (3.4)

Now, the aim is to give a convenient expression of (I +BRλ(A))−1 in a more specific
case.

So, we study in detail the case when B is a finite-rank operator. Then,

B f =
n∑
k=1

ak
(
f , yk

)
yk, f ∈H , (3.5)

where a1, a2, . . . ,an ∈R; {y1, y2, . . . , yn} is a linearly independent system in H . If we put

(
I +BRλ(A)

)−1
BRλ(A) f = y, (3.6)
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we have

y = BRλ(A) f −BRλ(A)y, (3.7)

then, y ∈ ImB, so that

y =
n∑
k=1

ck yk. (3.8)

From (3.7) and (3.8), we get

n∑
k=1

ck yk = BRλ(A) f −
n∑
k=1

ckBRλ(A)yk, (3.9)

with

ck + ak
n∑
j=1

cj
(
Rλ(A)yj , yk

)= ak(Rλ(A) f , yk
)
. (3.10)

The determinant ∆(λ) of the system (3.10) is given by

∆(λ)= det
{[
δk j + ak

(
Rλ(A)yj , yk

)]n
k, j=1

}
, (3.11)

where δk j is the Kronecker symbol. If we suppose that ∆(λ) �= 0, the solution of (3.10) is
given by

ck = ck(λ; f )=
(
f ,∆k(λ)

)
∆(λ)

, k = 1,2, . . . ,n, (3.12)

where ∆k(λ) is the determinant obtained from ∆(λ) by replacing the kth column by
[ajRλ(A)yj]nj=1. So, from (3.1), we have

Rλ(T) f = Rλ(A) f −
n∑
k=1

(
f ,∆k(λ)

)
∆(λ)

Rλ(A)yk. (3.13)

This completes the proof of the following theorem.

Theorem 3.3. Let λ ∈ ρ(A) such that ∆(λ) �= 0. Then, λ ∈ ρ(T) and the resolvent of the
operator T is given by (3.13).

Remark 3.4. From (3.13), we note that the resolvent Rλ(T) is a perturbation of Rλ(A) by
a finite-rank operator.
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Remark 3.5. For the particular case n= 1 and a1 = 1, the formula (3.13) was established
in [9].

Remark 3.6. If λ∈ ρ(A) such that ∆(λ)= 0, then λ is an eigenvalue of the operator T .

Proof. We can show that there exists an element

ψ =
n∑
k=1

αk yk (3.14)

such that Rλ(A)ψ is an eigenvector of the operator T , corresponding to the eigenvalue λ.
Consequently, we have

ak

n∑
j=1

αj
(
Rλ(A)yj , yk

)
+αk = 0, k = 1,n. (3.15)

Since the determinant of this system ∆(λ)= 0, it admits a nontrivial solution, which gives
the desired result. �

Theorem 3.7. Let µ be a fixed complex number. Then, the following holds.

(a) If µ∈ ρ(A) and ∆(µ) �= 0, then µ∈ ρ(T).
(b) If µ∈ ρ(A) and ∆(µ)= 0, then µ∈ Pσ(T) and the multiplicity of µ as an eigenvalue

of T is equal to the order of the zero of ∆(λ) at µ.
(c) If µ ∈ Pσ(A) and µ of multiplicity k > 0 and if µ is a pole of ∆(λ) of multiplicity p

(k ≥ p), then
(1) for k > p, it holds that µ∈ Pσ(T) of multiplicity (k− p),
(2) for k = p, it holds that µ∈ ρ(T).

(d) If µ∈ Pσ(A) is neither a zero, nor a pole of ∆(λ), then µ∈ Pσ(T).
(e) If µ ∈ Pσ(A) of multiplicity k and µ is a root of the function ∆(λ) of order p, then

µ∈ Pσ(T) of order (k+ p).
(f) The essential spectra σe(A) and σe(T), respectively of the operators A and T , coincide.

Proof. It is sufficient to evaluate the function

C(λ)= det
{
I +BRλ(A)

}
. (3.16)

To this end, let y ∈ ImB. Then,

BRλ(A)y =
n∑
k=1

ak
(
y,R∗λ (A)yk

)
yk, (3.17)

it is clear thatC(λ)= ∆(λ), and the function ∆(λ) is meromorphic in ρ(A)∪Pσ(A). From
the formula of Weinstein and Aronszajn [18], we have

ϑ(λ;T)= ϑ(λ;A) + ϑ(λ;∆), (3.18)
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where

ϑ(λ;A)=




0 if λ∈ ρ(A),

k if λ∈ Pσ(A) and of multiplicity k,

+∞ otherwise,

ϑ(λ;∆)=




k if λ is a zero of ∆(λ) of order k,

−k if λ is a pole of ∆(λ) of order k,

0 for other λ∈Ω,

(3.19)

which gives the desired result. �

4. Generalized resolvents

Now, we suppose that A is a symmetric operator with deficiency indices (m,m), m<∞.

Lemma 4.1. Let λ ∈ C such that Imλ > 0 and ϕλ(A) ∈ Nλ(A). Then, the element ϕλ(T),
defined by the formula

ϕλ(T)=D(λ)ϕλ(A)= ϕλ(A)−
n∑
k=1

(
ϕλ(A), g̊k(λ)

)
∆̊(λ)

Rλ
(
Å
)
yk, (4.1)

is an element of the deficiency subspace Nλ(T), where

D(λ)= I −Rλ
(
Å
)[
I +BRλ

(
Å
)]−1

B = I −Rλ
(
T̊
)
B, g̊k(λ)= (Å− λI)∆̊k(λ), (4.2)

∆̊(λ) and ∆̊k(λ) are defined similarly as ∆(λ) and ∆k(λ) in the formula (3.13) by putting the

operator Å instead of the operator A.

Proof. Since the operators Å and T̊ = Å + B are selfadjoint and λ is nonreal, then λ ∈
ρ(Å)∩ ρ(T̊). In addition, from Theorem 3.3 we have ∆̊(λ) �= 0. Furthermore, for each
f ∈D(A)=D(T), we have

([
T̊ − λI] f ,D(λ)ϕλ(A)

)= (D∗(λ)
[
T̊ − λI] f ,ϕλ(A)

)

= ([I −BRλ(T̊)](T̊ − λI) f ,ϕλ(A)
)

= ((Å− λI) f ,ϕλ(A)
)

= 0,

(4.3)

and the equality

ϕλ(T)= ϕλ(A)−
n∑
k=1

(
ϕλ(A), g̊k(λ)

)
∆̊(λ)

Rλ
(
Å
)
yk (4.4)

results from (3.13). �

Remark 4.2. We note that if ϕλ(A) �= 0, then ϕλ(T) �= 0.
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Proof. If we suppose the contrary, we obtainRλ(T̊)Bϕλ(A)= ϕλ(A), which gives Åϕλ(A)=
λϕλ(A). This leads to a contradiction, since a selfadjoint operator can not have nonreal
eigenvalues. �

Remark 4.3. IfD(A) is dense inH , then ϕλ(A) and ϕλ(T) are, respectively, eigenfunctions
of the operators A∗ and T∗, corresponding to the eigenvalues λ.

Let ϕ(k)
i (T) = D(i)ϕ(k)

λ (A), k = 1,2, . . . ,m, defined by the formula (4.1). If ϕ(1)
i (A),

ϕ(2)
i (A), . . . ,ϕ(m)

i (A) is a basis of the deficiency subspace Ni(A) of the operator A, then

ϕ(1)
i (T),ϕ(2)

i (T), . . . ,ϕ(m)
i (T) is a basis of the deficiency subspace Ni(T) of the operator T .

Putting

Ůλλ0 (T̊)= (T̊ − λ0I
)
Rλ
(
T̊
)
, ϕ(k)

λ (T)= Ůλi
(
T̊
)
ϕ(k)
i (T), k = 1,2, . . . ,m,

ϕλ(T)= (ϕ(1)
λ (T), . . . ,ϕ(m)

λ (T)
)t

, Φλµ(T)= (λ−µ)
[(
ϕ(k)
λ (T),ϕ

( j)
µ (T)

)]m
k, j=1,

(4.5)

C(λ) = Φ−1
λi (T)Φλ(−i)(T) denotes the characteristic matrix of the operator T , and ω(λ)

the corresponding matrix of order m×m, in the bases ϕ(1)
i (T), ϕ(2)

i (T), . . . ,ϕ(m)
i (T) and

ϕ(1)
−i (T), ϕ(2)

−i (T), . . . ,ϕ(m)
−i (T).

Theorem 4.4. The set of all generalized resolvents of the operator T is given by

Rλ(T) f = Rλ
(
T̊
)
f +
(
f ,ϕλ(T)

)t[
E−ω(λ)

][
C(λ)ω(λ)−E]−1

Φ−1
λi (T)ϕλ(T), ∀ f ∈H ,

(4.6)

where

Rλ
(
T̊
)
f = Rλ

(
Å
)
f −

n∑
k=1

(
f , ∆̊k(λ)

)
∆̊(λ)

Rλ
(
Å
)
yk. (4.7)

Proof. The proof results from Lemma 4.1 and formula (2.13). �

We denote, respectively, by Aω and Tω the quasiselfadjoint extensions of operators A
and T corresponding to the operator function F(λ)∈�, defined by the matrix ω(λ).

Remark 4.5. To selfadjoint extensions of these operators correspond the constant unitary
matrices ω = [ωij].

Theorem 4.6. Suppose that y1, y2, . . . , yn∈ImA, µ is an eigenvalue of the quasiselfadjoint

extension Aω of the operator A, µ∈ Pσ(Aω). If µ∈ ρ(Å) and ∆̊(µ) �= 0, then µ is an eigen-
value of the operator Tω =Aω +B and the corresponding eigenfunction ϕµ(Tω) is given by

ϕµ
(
Tω
)=D(µ)ϕµ

(
Aω
)= ϕµ(Aω)−

n∑
k=1

(
ϕµ
(
Aω
)
, g̊k(µ)

)
∆̊(µ)

Rµ
(
Å
)
yk, (4.8)

where ϕµ(Aω) is the eigenfunction of the operator Aω, corresponding to the eigenvalue µ.
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Proof. Since y1, y2, . . . , yn ∈ ImA, then Bϕµ(A)∈ ImA. We also have

ϕµ
(
Tω
)=D(µ)ϕµ

(
Aω
)= ϕµ(Aω)−Rµ(T̊)Bϕµ(A)= ϕµ

(
Aω
)−ψµ, (4.9)

where

ψµ = Rµ
(
T̊
)
Bϕµ(A)∈D(A). (4.10)

Then,

Tωϕµ
(
Tω
)= Tω(ϕµ(Aω)−ψµ)

= (Aω +B
)
ϕµ
(
Aω
)−TωRµ(T̊)Bϕµ(A)

= µϕµ
(
Aω
)

+Bϕµ
(
Aω
)−Bϕµ(Aω)+µRµ

(
T̊
)
Bϕµ(A)

= µϕµ
(
Tω
)
.

(4.11)

�

5. Applications

5.1. Perturbed first-order differential operator. Consider in L2(0,2π) the operator T =
A+B, where A is defined by Ay = iy′ with domain D(A)=H1

0 (0,2π) and B is given by

(By)(x)=
n∑
k=1

ak
(
y, yk

)
yk(x), (5.1)

where y1, y2, . . . , yn ∈ L2(0,2π) and ak ∈R, for all k = 1,n. From [1, 2], the operator A is
regular symmetric of deficiency indices (1,1) and each selfadjoint extension of A has a
discrete spectrum.

Theorem 5.1. The generalized resolvent Rλ(Tθ) of T , corresponding to the function ω(λ)=
θ(λ), is an integral operator with kernel

K(x, t)=
[

1[x,2π](x) +
1

θ(λ)e2πλi + 1

]
eiλ(t−x) +

n∑
k=1

θk(λ,x)φk(λ, t), (5.2)

where 1[x,2π](x) is the characteristic function of the interval [x,2π],

φk(λ, t)= (∆θk(λ)
)
(t), θk(λ,x)=

(
Rλ
(
Aθ
)
yk
)
(x)

∆θ(λ)
, (5.3)

where Rλ(Aθ), associated to the function θ(λ), is given by

(
Rλ
(
Aθ
)
y
)
(x)=

∫ x
0
y(t)eiλ(t−x)dt− 1

θ(λ)e2πti + 1

∫ 2π

0
y(t)eλi(t−x)dt (5.4)

with

∆θ(λ)= {δkj + ak
(
Rλ
(
Aθ
)
yj , yk

)}
, (5.5)

and ∆θk is the determinant obtained from ∆θ(λ) replacing the kth column by [akRλ(Aθ)yk]n1 .
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Proof. The proof results from [26] and Theorem 3.3. �

Corollary 5.2. Let Tθ be a selfadjoint extension of T corresponding to the function θ,
|θ| = 1.

(1) The spectrum of Tθ is simple if and only if the roots of ∆θ(λ) are simple and for
k = 0,±1,±2, . . . ,∆θ(1/2 + k−ϕ0/2π) �= 0, where {1/2 + k−ϕ0/2π} is the spectrum of Aθ ,
and ϕ0 = argθ.

(2) σ(Tθ)= Pσ(Tθ)= E1∪E2, where E1 is the set of points of σ(Aθ)= {1/2 + k−ϕ0/2π,
k = 0,±1,±2, . . .} in which ∆θ(λ) is analytic, E2 is the set of roots of ∆θ(λ).

Proof. The proof results from (5.4), Theorem 3.7, and Lemma 4.1. �

5.2. Perturbed second-order differential operator. Consider in L2(0,∞) the operator
T =A+B, where A is defined by

Ay =−y′′ + x2y (5.6)

with domain D(A) consisting of all variables y which satisfy

(i) y ∈ L2(0,∞),
(ii) y′ is absolutely continuous on all compact subintervals of [0,∞[,

(iii) Ay ∈ L2(0,∞),
(IV) y(0)= y(∞)= limx→∞ y(x)= 0, y′(0)= y′(∞)= 0,

and B is given by

(By)(x)=
n∑
k=1

ak
(
y, yk

)
yk(x), (5.7)

where y1, y2, . . . , yn ∈ L2(0,2π) and ak ∈ IR, for all k = 1,n.
From [1, 2], the operator A is symmetric of deficiency indices (1,1). Let u1, u2 be two

solutions of (5.6), satisfying the initial conditions

u1(0,λ)= 1, u′1(x,λ)
∣∣
x=0 = 0,

u2(0,λ)= 0, u′2(x,λ)
∣∣
x=0 =−1.

(5.8)

There exists a function m(λ) [29] analytic in C\R such that

ψ(x,λ)= u2(x,λ) +m(λ)u1(x,λ)∈ L2(0,∞). (5.9)

Theorem 5.3. The generalized resolvents Rλ(Tθ) of the operator T are defined by

Rλ
(
Tθ
)
y = Rλ

(
Aθ
)
y−

n∑
k=1

(
y,∆θk(λ)

)
∆θ(λ)

Rλ
(
Aθ
)
yk, Imλ > 0, (5.10)
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where

Rλ
(
Aθ
)
y = ψ(x,λ)

∫ x
0
y(s)u1(s,λ)ds+u1(x,λ)

∫∞
x
y(s)ψ(s,λ)ds

− ψ(x,λ)
θ(λ) +m(λ)

∫∞
0
y(s)ψ(s,λ)ds,

(5.11)

∆θ(λ)= det
{
σjk + ak

(
Rλ
(
Aθ
)
yj , yk

)}
, λ∈ C+, (5.12)

with θ(λ) an arbitrary function analytic in C+ and such that Imθ(λ) ≥ 0 or θ(λ) is an
infinite constant.

Proof. First, we show that for λ∈ C+, ∆θ(λ) �= 0 (then, ∆θ �= 0). We know (see [1, 2]) that
for each quasiselfadjoint extension of a symmetric operator, C+ is contained in the set
of regular points of this operator. Then, if λ ∈ C+, we have λ ∈ ρ(Aθ) and λ ∈ ρ(Tθ). If
we suppose that λ∈ C+ and ∆θ(λ)= 0, from Theorem 3.7, we obtain λ∈ Pσ(Tθ), which
is a contradiction. The formula (5.11) results from [25]. Using Theorem 3.3, we end the
proof. �

Corollary 5.4. Let Tθ be a selfadjoint extension associated to θ ∈ IR, let λ1,λ2, . . . be the
roots of ∆θ(λ) in ρ(Aθ) and let z1,z2, . . . be the poles of ∆θ(λ). Then,

Pσ
(
Tθ
)= (Pσ(Aθ)\{zi}∞1

)∪ {λj}∞1 . (5.13)

Proof. The proof results from (b) and (c) of Theorem 3.7. �
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