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The aim of the present analysis is to apply the Adomian decomposition method for the
solution of a fractional differential equation as an alternative method of Laplace trans-
form.

1. Introduction

Large classes of linear and nonlinear differential equations, both ordinary as well as par-
tial, can be solved by the Adomian decomposition method [3, 4, 6]. This method is much
more simpler in computation and quicker in convergence than any other method avail-
able in the open literature.

The application of the fractional differential equation in physical problems is available
in the book of Bracewell [11]. Recently, the solution of the fractional differential equation
has been obtained through the Adomian decomposition method by the researchers in
[7, 14].

In this paper, we solve a differential equation containing a fractional derivative of or-
der half along with an ordinary first-order derivative using the Adomian decomposition
method. Then the solution obtained by this method is verified with that of the trans-
formed ordinary differential equation derived from the original fractional differential
equation.

For the sake of convenience, we first of all give definitions of fractional integral and
fractional derivative introduced by Riemann-Liouville as discussed in [18, 20, 21].

Definition 1.1 (fractional integral). Let q > 0 denote a real number. Assuming f (x) to
be a function of class C(n) (the class of functions with continuous nth derivatives), the
fractional integral of a function f of order −q is given by

d−q f (x)
dx−q

= 1
Γ(q)

∫ x

0

f (t)dt
(x− t)1−q , (1.1)

d−q f (x)/dx−q is also denoted by
x
I
0
q f [7].
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Definition 1.2 (fractional derivative). Let q > 0 denote a real number and n the smallest
integer exceeding q such that n− q > 0 (n= 0 if q < 0). Assuming f (x) to be a function of
class C(n) (the class of functions with continuous nth derivatives), the fractional derivative
of a function f of order q is given by

dq f (x)
dxq

= dn

dxn

(
d−(n−q) f (x)
dx−(n−q)

)
= 1

Γ(n− q)
dn

dxn

∫ x

0

f (t)dt
(x− t)1−n+q , (1.2)

dq f (x)/dxq is also denoted by
x
I
0
−q f [7].

Definition 1.3 (Mittag-Leffler function). A two-parameter function of the Mittag-Leffler
type is defined by the series expansion [2, 21]

Eα,β(z)=
∞∑
k=0

zk

Γ(αk+β)
(α > 0, β > 0). (1.3)

1.1. The decomposition method. We consider an equation in the form

Lu+Ru+Nu= g, (1.4)

where L is an easily or trivially invertible linear operator, R is the remaining linear part,
and N represents a nonlinear operator.

The general solution of the given equation is decomposed into the sum

u=
∞∑
n=0

un, (1.5)

where u0 is the solution of the linear part.
Our approach will be to write any nonlinear term in terms of the Adomian An poly-

nomials. It has been derived by Adomian that Nu =∑∞
n=0An, where the An are special

polynomials obtained for the particular nonlinearity Nu = f (u) and generated by Ado-
mian [3, 4, 5]. These An polynomials depend, of course, on the particular nonlinearity.

The An are given as

A0 = f
(
u0
)
,

A1 = u1

(
d

du0

)
f
(
u0
)
,

A2 = u2

(
d

du0

)
f
(
u0
)

+
(
u2

1

2!

)(
d2

du2
0

)
f
(
u0
)
,

A3 = u3

(
d

du0

)
f
(
u0
)

+u1u2

(
d2

du2
0

)
f
(
u0
)

+
(
u3

1

3!

)(
d3

du3
0

)
f
(
u0
)
,

...

(1.6)
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and can be found from the formula (for n≥ 1)

An =
n∑

ν=1

c(ν,n) f (ν)(u0
)
, (1.7)

where the c(ν,n) are products (or sums of products) of ν components of u whose sub-
scripts sum to n, divided by the factorial of the number of repeated subscripts [5].

Therefore, the general solution becomes

u= u0−L−1R
∞∑
n=0

un−L−1Nu= u0−L−1R
∞∑
n=0

un−L−1
∞∑
n=0

An, (1.8)

where u0 = φ+L−1g and Lφ= 0.
To identify the terms in

∑∞
n=1un, it has been derived by Adomian that

un+1 =−L−1Run−L−1An, n≥ 0. (1.9)

From (1.9), we can write u1 = −L−1Ru0 − L−1A0. Thus u1 can be calculated in terms of
the known u0.

Now,

u2 =−L−1Ru1−L−1A1,

u3 =−L−1Ru2−L−1A2,
(1.10)

and so on.
Hence all the terms of u are now calculated and the general solution is obtained as

u=
∞∑
n=0

un. (1.11)

Recently, the Adomian decomposition method was reviewed and a mathematical model
of Adomian polynomials was introduced in [1].

2. Solution of an extraordinary differential equation

A relationship involving one or more derivatives of an unknown function f with respect
to its independent variable x is known as an ordinary differential equation. Similar rela-
tionship involving at least one differintegral of noninteger order may be termed as an ex-
traordinary differential equation. Such an equation is solved when an explicit expression
for f is exhibited. As with ordinary differential equations, the solutions of extraordinary
differential equations often involve integrals and contain arbitrary constants as discussed
in [20]. These types of equations are also known as fractional differential equations. The
application of extraordinary differential equation is now available in many physical and
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technical areas [21]. It can be mentioned here that the simplified fractional-order differ-
ential equation appearing in applied problems is of the form

dαy(t)
dtα

+Ay(t)= f (t) (t > 0),

y(k)(0)= 0 (k = 0,1, . . . ,n− 1),

(2.1)

where n− 1 < α≤ n. For 0 < α≤ 2, this equation is called the relaxation-oscillation equa-
tion [21]. Moreover, the Bagley-Torvik equation [10]

A
d2y(t)
dt2

+B
d3/2y(t)
dt3/2

+Cy(t)= f (t) (t > 0),

y(0)= 0, y′(0)= 0

(2.2)

(where A �= 0 and B,C ∈ R) arises in the modelling of the motion of a rigid plate im-
mersed in a Newtonian fluid [21]. Another equation in the form of

A
d2y(t)
dt2

+B
d1/2y(t)
dt1/2

+Cy(t)= f (t), (t > 0)

y(0)= 0, y′(0)= 0

(2.3)

(where A �= 0 and B,C ∈ R) introduced by Caputo [12] arises in the modelling of the
motion of a single degree-of-freedom oscillator with damping system [22].

Phenomena in electromagnetics, acoustics, viscoelasticity, electrochemistry, and ma-
terials science are described by differential equations of fractional order (see [8, 9, 13, 15,
16, 17, 19]).

Here we apply the Adomian decomposition method for solving an extraordinary dif-
ferential equation and then compare this solution with that obtained by an alternative
method.

In the present paper, we consider the Adomian decomposition method for solving the
following extraordinary differential equation:

dy

dx
+
d1/2y

dx1/2
− 2y = 0. (2.4)

We suppose that L≡ d/dx.
Therefore, by the Adomian decomposition method, we can write

y = c−L−1
(
d1/2y

dx1/2

)
+ 2L−1y, (2.5)

where c is an arbitrary constant. This implies that

y = c− d−1/2y

dx−1/2
+ 2

d−1y

dx−1
. (2.6)
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In the light of the Adomian decomposition method, we assume y(x)= y0(x) + y1(x) +
y2(x) + ··· to be the solution of (2.4), where

y0(x)= c,

y1(x)= 2
d−1y0(x)
dx−1

− d−1/2y0(x)
dx−1/2

=
(

2x− 2
√
x√
π

)
c,

y2(x)= 2
d−1y1(x)
dx−1

− d−1/2y1(x)
dx−1/2

=
(

2x2− 16
3
x3/2

√
π

+ x
)
c.

(2.7)

Similarly,

y3(x)=
(

4
3
x3− 32

5
x5/2

√
π

+ 3x2− 4
3
x3/2

√
π

)
c,

y4(x)=
(

2
3
x4− 512

105
x7/2

√
π

+ 4x3− 64
15

x5/2

√
π

+
1
2
x2
)
c,

y5(x)=
(

4
15

x5− 512
189

x9/2

√
π

+
5
3
x3− 128

21
x7/2

√
π
− 8

15
x5/2

√
π

+
10
3
x4
)
c,

(2.8)

and so on.
Therefore, the solution of (2.4) is

y(x)= c
(

1 + 3x+
11
2
x2− 2

√
x√
π
− 20

3
x3/2

√
π
− 56

5
x5/2

√
π

+ ···
)
. (2.9)

It can be written as

y(x)= c

3


2

∞∑
k=0

(−1)k2kxk/2

Γ(k/2 + 1)
+

∞∑
k=0

xk/2

Γ(k/2 + 1)


 . (2.10)

As in [2, 21], the explicit formula for E1/2,1(z) is

E1/2,1(z)=
∞∑
k=0

zk

Γ(k/2 + 1)
= ez

2(
1 + erf(z)

)
. (2.11)

That is,

E1/2,1(z)= ez
2
erfc(−z). (2.12)

Therefore, the solution of (2.4) becomes

y(x)= c

3

(
2e4xerfc

(
2
√
x
)

+ exerfc
(−√x)). (2.13)
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3. Verification of the solution

We can convert (2.4) into an ordinary differential equation.
Applying d−1/2/dx−1/2 to both sides of (2.4), we get

d1/2y

dx1/2
+ y− cx−1/2− 2

d−1/2y

dx−1/2
= 0. (3.1)

This implies that

2y− dy

dx
+ y− cx−1/2− 2

d−1/2y

dx−1/2
= 0. (3.2)

After differentiating (3.2), we get

2
dy

dx
− d2y

dx2
+
dy

dx
+
c

2
x−3/2− 2

d1/2y

dx1/2
= 0. (3.3)

This implies that

2
dy

dx
− d2y

dx2
+
dy

dx
+
c

2
x−3/2− 2

(
2y− dy

dx

)
= 0 (3.4)

or

d2y

dx2
− 5

dy

dx
+ 4y = c

2
x−3/2. (3.5)

The solution of (3.5) is

y(x)= c1e
4x + c2e

x +
c

3

[−2e4x − ex + 2e4xerfc
(
2
√
x
)

+ exerfc
(−√x)], (3.6)

where c1, c2, and c are arbitrary constants.
The function y(x) given in (3.6) will be a solution of (2.4) if c1 = 2c/3 and c2 = c/3.
Therefore, the solution becomes

y(x)= 2c
3
e4x +

c

3
ex +

c

3

[−2e4x − ex + 2e4xerfc
(
2
√
x
)

+ exerfc
(−√x)]

= c

3

[
2e4xerfc

(
2
√
x
)

+ exerfc
(−√x)]. (3.7)

Solution (3.7) completely matches solution (2.13) obtained by the Adomian method.

4. Conclusion

It is observed that although the extraordinary differential equation can be converted
into an ordinary differential equation, the way of solving that ordinary differential equa-
tion is quite laborious and requires enough skill. Moreover, an extraordinary differen-
tial equation can also be solved by Laplace transform method. But sometimes it becomes
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cumbersome to have the solution because of finding out its inverse. In order to avoid this,
we can use the Adomian decomposition method, which gives a quite satisfactory result.
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