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The object of this paper is to give new expressions for the wave field produced when a
time harmonic point source is diffracted by a wedge with Dirichlet or Neumann bound-
ary conditions on its faces. The representation of the total field is expressed in terms of
quadratures of elementary functions, rather than Bessel functions, which is usual in the
literature. An analogous expression is given for the three-dimensional free-space Green’s
function.

1. Introduction

The wave field produced when a line or point source is diffracted by an ideal wedge was
first given by Macdonald [5] following Poincaré [7] in terms of a Fourier-Bessel series
some time ago. Since that time, no substantial simplification has been carried out—see
Bowman et al. [1]. By using this Fourier-Bessel series, it is possible by means of an integral
representation given by Lamb [4] and various results due to Macdonald [6] to produce a
new representation that avoids Bessel functions completely and only involves elementary
trigonometric expressions. To the author’s knowledge, these results are new, although
it is surprising that such results have not appeared before since the approach is quite
elementary. The new representation offers a more compact representation for the total
wave field that is easy to compute. A new representation is also given for a harmonic
point source, that is, the three-dimensional free-space Green’s function for the reduced
wave equation.

2. Formulation of the boundary value problem

We will assume a harmonic point wave source u0e−iwt, where w is the angular frequency
located at cylindrical polar coordinates Q(r0,θ0,z0), where the field at any other point
P(r,θ,z) is given by

u0(r,θ,z)= eikR

R
, (2.1)
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Figure 2.1. The z-axis lies along the edge of the wedge. The radial distances r and r0 lie in a plane
perpendicular to the z-axis. The distance R = {r2 + r2

0 − 2rr0 cos(θ − θ0) + (z− z0)2}1/2 lies between
the point P in the plane z = z and Q in the plane z = z0.

where k = 2π/λ (λ is the wave length) and R= {r2 + r2
0 − 2rr0 cos(θ− θ0) + (z− z0)2}1/2 is

the distance between the source point Q and any other point P. A solid wedge is assumed
to occupy the region (r ≥ 0, 0 ≤ θ ≤ α, −∞ < z <∞) and the source point lies in the
complementary region, thus 0 < r0, α < θ0 < 2π, and −∞ < z0 <∞; see Figure 2.1.

The unique solution uD of the Dirichlet (u = 0 on θ = 0, θ = α) and uN of the Neu-
mann (∂u/∂θ = 0 on θ = 0, θ = α) boundary value problem that satisfies the reduced wave
equation, the radiation, and edge condition, is well known, and is given by Bowman et al.
[1] as

uD/N = 2π
α

∞∑
n=0

∈n
sin
cos

{
vnθ0

}sin
cos

{
vnθ
}
In
(
r,z;r0z0

)
, (2.2)

where

In
(
r,z;r0,z0

)=
∫∞
−∞

Jvn
(
hr<
)
H(1)

vn

(
hr>
)
e−|z−z0|

√
(h2−k2) hdh√(

h2− k2
) , (2.3)

and r> = r0, r< = r when r0 > r; and r> = r, r< = r0 when r > r0, with vn = nπ/α, ∈0= 1/2,
and ∈n= 1, n≥ 1; and the square root is defined by

√(
h2− k2

)= √∣∣h2− k2
∣∣, h2 > k2,

=−i
√∣∣k2−h2

∣∣, h2 < k2.
(2.4)

Although Bowman et al. [1] state that In cannot be simplified, we show that it can be
expressed in terms of elementary functions as follows.

We can write (2.3) as

In =
∫∞

0
Jvn
(
hr<
)
H(1)

vn

(
hr>
)
e−|z−z0|

√
(h2−k2) hdh√(

h2− k2
)

−
∫∞

0
Jvn
(−hr<

)
H(1)

vn

(−hr>
)
e−|z−z0|

√
(h2−k2) hdh√(

h2− k2
) .

(2.5)
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And by using the fact that H(1)
v (zeiπ)=−e−ivπH(2)

v (z) and Jv(zeiπ)= evπiJv(z), we get

In =
∫∞

0
Jvn
(
hr<
)= {H(1)

vn

(
hr>
)

+H(2)
vn

(
hr<
)}
e−|z−z0|

√
(h2−k2) hdh√(

h2− k2
)

= 2
∫∞

0
Jvn
(
hr<
)
Jvn
(
hr>
)
e−|z−z0|

√
(h2−k2) hdh√(

h2− k2
) .

(2.6)

But Lamb [4] has shown that for the root determination (2.4),

e−|z−z0|
√

(h2−k2)√(
h2− k2

) =
∫∞

0
J0(ht)

eik
√

(t2+|z−z0|2)√(
t2 +

∣∣z− z0
∣∣2) t dt. (2.7)

Substituting (2.7) into (2.6) and interchanging the order of integration (permissible since
the double integral is uniformly convergent before and after the interchange of order of
integration), we get

In = 2
∫∞

0

teik
√

(t2+|z−z0|2)√(
t2 +

∣∣z− z0
∣∣2)

(∫∞
0
hJvn

(
hr0
)
Jvn(hr)J0(ht)dh

)
dt. (2.8)

The integral in the brackets of the last expression has been evaluated by Macdonald [6] as

W =
∫∞

0
hJvn

(
hr0
)
Jvn(hr)J0(ht)dh

= i

√
2
π

sinvnπ
rr0π

Q1/2
vn−1/2(µ)(µ)

(
µ2− 1

)−1/4
, |t| > ∣∣r + r0

∣∣, µ > 1

= 1√
2π

1
rr0

(
1−µ2)−1/4

P1/2
vn−1/2

(−µ),
∣∣r+r0

∣∣> |t|>∣∣r− r0
∣∣, −1 < µ < 1

= 0,
∣∣r− r0

∣∣ > |t|,

(2.9)

where −µ= (r2 + r2
0 − t2)/2rr0.

But the associated Legendre functions P1/2
vn−1/2(−µ) and Q1/2

vn−1/2(µ) can be represented
in terms of elementary functions by explicit evaluation of the integrals given in Hobson
[3, (90), page 244 and (91), page 245]:

(
1−µ2)1/4

P1/2
vn−1/2(−µ)=

√
π

2
cos
(
vn cos−1(−µ)

)
, −1 < µ < 1,

(
µ2− 1

)1/4
Q1/2

vn−1/2(µ)= i

√
2
π
e−vn cosh−1(µ), µ > 1.

(2.10)

Thus

W =




− 2
π

sinvnπ
πrr0

e−vn cosh−1 µ(
µ2− 1

)1/2 , |t| > ∣∣r + r0
∣∣, µ > 1,

1
2rr0

cos
(
vn cos−1(−µ)

)
(
1−µ2

)1/2 ,
∣∣r + r0

∣∣ > |t| > ∣∣r− r0
∣∣,

0,
∣∣r− r0

∣∣ > |t|.
(2.11)
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Hence, substituting (2.11) into (2.8) gives

In = 1
rr0

∫ |r+r0|

|r−r0|
cos
(
vn cos−1µ

)
teik
√

(t2+|z−z0|2)dt(
1−µ2

)1/2
√(

t2 +
∣∣z− z0

∣∣2)

− 4sinvnπ
π2rr0

∫∞
|r+r0|

e−vn cosh−1 µ(
µ2− 1

)1/2

eik
√

(t2+|z−z0|2)√(
t2 +

∣∣z− z0
∣∣2) t dt.

(2.12)

Thus we have reduced the evaluation of (2.3) to that of (2.12) which can be seen to be
more suitable for rapid numerical computation since it does not involve Bessel functions.

3. Free-space Green’s function

It is well known from Duffy [2, (5.1.67), page 285] that

eikR

R
=
∑

n=−∞
gn
(
r,z;r0,z0

)
cosn

(
θ− θ0

)
, (3.1)

where gn(r,z;r0,z0)= ∫∞0 hJn(rh)Jn(r0h)e−|z−z0|
√

(h2−k2)(dh/
√

(h2− k2).By using Lambs ex-
pression (2.7) with the root determination (2.4), we get

gn
(
r,z;r0,z0

)=
∫∞

0

teik
√

(t2+|z−z0|2)√(
t2 +

∣∣z− z0
∣∣)2

(∫∞
0
hJn(rh)Jn

(
r0h
)
J0(ht)dh

)
dt. (3.2)

Now by using (2.9), and remembering that n is an integer, we get

gn
(
r,z;r0,z0

)= 1
2πrr0

∫ |r+r0|

|r−r0|
eik
√

(t2−|z−z0|2)√(
t2 +

∣∣z− z0
∣∣)2

P1/2
n−1/2(−µ)(
1−µ2

)1/4 t dt

= 1
2rr0

∫ |r+r0|

|r−r0|
eik
√

(t2−|z−z0|2)√(
t2 +

∣∣z− z0
∣∣2) cos

(
ncos−1(−µ)

)
(
1−µ2

)1/2 t dt.

(3.3)

So we have the free-space Green’s function representation

eikR

R
= 1

2rr0

∞∑
n=−∞

cosn
(
θ− θ0

)


∫ |r+r0|

|r−r0|
eik
√

(t2−|z−z0|2)√(
t2 +

∣∣z− z0
∣∣2
) cos−1(ncosµ)(

1−µ2
)1/2 t dt


 , (3.4)

which to my knowledge is a new representation.
Finally, in conclusion, we have derived new representations for the harmonic Green’s

function for a wedge with Dirichlet or Neumann boundary conditions on its faces. We
have also derived a new expression for the three-dimensional free-space Green’s function.
It is surprising that neither Lamb nor Macdonald discovered these results since the basis
of the results exists in the two papers by Lamb [4] and Macdonald [6] that were published
consecutively in the same journal.



A. D. Rawlins 89

References

[1] J. J. Bowman, T. B. A. Senior, and P. L. E. Uslenghi, Electromagnetic and Acoustic Scattering by
Simple Shapes, North Holland Publishing, Amsterdam, 1969, Chapter 6.

[2] D. G. Duffy, Green’s Functions with Applications, Studies in Advanced Mathematics, Chapman
& Hall/CRC, Florida, 2001.

[3] E. W. Hobson, The Theory of Spherical and Ellipsoidal Harmonics, Cambridge University Press,
Cambridge, 1931.

[4] H. Lamb, On the theory of waves propagated vertically in the atmosphere, Proc. London Math.
Soc. (2) 7 (1909), 122–141.

[5] H. M. Macdonald, Electric Waves, Cambridge University Press, Cambridge, 1902.
[6] , Note on the evaluation of a certain integral containing Bessel’s functions, Proc. Lon.

Math. Soc. (2) 7 (1909), 142–149.
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