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Analysis for the propagation of plane harmonic thermoelastic waves in an infinite homo-
geneous orthotropic plate of finite thickness in the generalized theory of thermoelasticity
with two thermal relaxation times is studied. The frequency equations corresponding to
the extensional (symmetric) and flexural (antisymmetric) thermoelastic modes of vibra-
tion are obtained and discussed. Special cases of the frequency equations are also dis-
cussed. Numerical solution of the frequency equations for orthotropic plate is carried
out, and the dispersion curves for the first six modes are presented for a representative
orthotropic plate. The three motions, namely, longitudinal, transverse, and thermal, of
the medium are found dispersive and coupled with each other due to the thermal and
anisotropic effects. The phase velocity of the waves gets modified due to the thermal and
anisotropic effects and is also influenced by the thermal relaxation time. Relevant results
of previous investigations are deduced as special cases.

1. Introduction

The use of elastic waves to measure elastic properties as well as flaws of solid specimens
has received interest, for example, in the use of elastic waves in nondestructive evaluation
of concrete structures, in the use of laser-generated ultrasonic waves in the determina-
tion of anisotropic elastic constants of composite materials, and in the recovery of the
bonding properties and/or thickness of bonded structures. The growing applications of
new composite materials, especially in thermal environment, have encouraged the stud-
ies of impact and wave propagation in the composite materials and have become very
important. The theory to include the effect of temperature change, known as the the-
ory of thermoelasticity, is well established [5, 19, 20]. Classical theory of dynamic ther-
moelasticity that takes into account the coupling effects between temperature and strain
fields involves the infinite thermal wave speed, that is, it implies an immediate response
to a temperature gradient and leads to a parabolic differential equation for the evolu-
tion of the temperature. In contrast, when relaxation effects are taken into account in the
constitutive equation describing the heat flux, as, for instance, in the Maxwell-Cattaneo
equation, one has a hyperbolic equation which implies a finite speed for heat transport.
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Hyperbolic heat transport has been receiving increasing attention both for theoretical
motivations (analysis of thermal waves and second sound in dielectric solids, finite speed
of heat transport, etc.) and for the analysis of some practical problems involving a fast
supply of thermal energy (e.g., by a laser pulse or a chemical explosion, etc.). The usual
theory of thermal conduction, based on the Fourier law, implies an immediate response
to a temperature gradient and leads to a parabolic differential equation for the evolu-
tion of the temperature. In contrast, when relaxation effects are taken into account in the
constitutive equation describing the heat flux, heat conduction equation becomes a hy-
perbolic equation, which implies a finite speed for heat transport. Waves’ types occurring
in bounded anisotropic media are very complicated, and in thermoelasticity, the prob-
lem becomes even more complicated because solutions to both the heat conduction and
thermoelasticity problems for anisotropy are required. These solutions are also to satisfy
the thermal and mechanical boundary and interface conditions. The literature dedicated
to such theories (hyperbolic thermoelastic models) is quite large and its detailed review
can be found in Chandrasekharaiah [8, 9].

Lord and Shulman [14] and Green and Lindsay [11], extended the coupled theory of
thermoelasticity by introducing the thermal relaxation time in the constitutive equations.
This new theory, which eliminates the paradox of infinite velocity of heat propagation,
is called generalized theory of thermoelasticity. This generalized thermoelasticity theory
that admits finite speed for the propagation of thermoelastic disturbances has received
much attention in recent years. The LS model introduces a single time constant to dictate
the relaxation of thermal propagation as well as the rate of change of strain rate and the
rate of change of heat generation. In the GL theory, on the other hand, the thermal and
thermomechanical relaxations are governed by two different time constants.

The propagation of thermoelastic waves in a plate under plane stress by using gener-
alized theories of thermoelasticity has been studied by Massalas [15]. Here, we mention
that several authors (see [3, 2, 16, 17, 21, 22, 23]) have considered the propagation of
generalized thermoelastic waves in plates of isotropic media. Propagation of generalized
thermoelastic vibrations in infinite plates in the context of generalized thermoelasticity is
studied [25].

The thermoelastic wave propagation in transversely isotropic and homogeneous aniso-
tropic heat-conducting elastic materials is investigated in [6, 7], respectively. This theory
extended to anisotropic heat conducting elastic materials in [4, 10] treated the problem
in a more systematic manner. They derived governing field equations of generalized ther-
moelastic media and proved that these equations are unique. A thermoelastic problem is
studied in [24], considering equations for anisotropic heat conducting solids with ther-
mal relaxation time. Hawwa and Nayfeh [12] studied the general problem of thermoelas-
tic waves in anisotropic periodically laminated composites. In [26, 27], wave propagation
in plates of general anisotropic media for generalized thermoelasticity is studied.

In this paper, the problem of plane harmonic thermoelastic waves in an infinite homo-
geneous orthotropic plate of finite thickness in the generalized theory of thermoelasticity
with two thermal relaxation times is studied. The results obtained theoretically have been
verified numerically and represented graphically for a representative orthotropic plate.
Longitudinal, transverse, and thermal motions of the medium are found coupled with
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each other and are dispersive. It is also shown that phase velocity of the waves is influ-
enced by the thermal relaxation times. Special cases have also been discussed.

2. Formulation

Consider a set of Cartesian coordinate system xi = (x1,x2,x3) in such a manner that the
x3 axis is normal to the layering. The basic field equations of generalized thermoelasticity
for an infinite generally anisotropic thermoelastic medium at uniform temperature T0 in
the absence of body forces and heat sources [23] are

σi j, j = ρü,i Ki jT,i j − ρCe
(
Ṫ + τ0T̈

)= T0βi j u̇i, j , (2.1)

where

σi j = ci jklekl −βi j
(
T + τ1Ṫ

)
,

βi j = ci jklαkl, i, j,k, l = 1,2,3,
(2.2)

ρ is the density, t is the time, ui is the displacement in the xi direction, Kij are the thermal
conductivities, Ce and τ0 are, respectively, the specific heat at constant strain and thermal
relaxation time, σi j and ei j are the stress and strain tensor, respectively, βi j are thermal
moduli, αi j is the thermal expansion tensor, T is the temperature, and the fourth-order
tensor of the elasticity Cijkl satisfies the (Green) symmetry conditions:

ci jkl = ckli j = ci jlk = cjikl, αi j = αji, βi j = βji. (2.3)

The parameters τ1 and τ0 are the thermal-mechanical relaxation time and the thermal
relaxation time of the GL theory, and they satisfy the inequality τ1 ≥ τ0 ≥ 0. Comma
notation is used for spatial derivatives, and superposed dot represents differentiation with
respect to time.

We have the strain-displacement relation

ei j =
(
ui, j +uj,i

)
2

. (2.4)

The stresses, temperature gradient, displacements, and the temperature components at
the surface of the plate are

S
(
x3
)= (σ13,σ23,σ33,

∂T

∂x3

)
, D

(
x3
)= (u1,u2,u3,T

)
, (2.5)

and the bar means the amplitudes of the displacement; temperature, stress, and the tem-
perature gradient are functions of x3 only.

The boundary conditions on the plate surfaces are

S(−d)= 0, (2.6)

S(d)= 0, (2.7)

where 0 is a zero vector.
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When specializing (2.1), (2.2), and (2.3) for orthotropic media in generalized ther-
moelasticity, the governing equations are

(
c11u1,11 + c66u1,22 + c55u1,33

)
+
(
c12 + c66

)
u2,12 +

(
c13 + c55

)
u3,13−β1

(
T + τ1Ṫ

)
,1 = ρü1,(

c12 + c66
)
u1,12 +

(
c66u2,11 + c22u2,22 + c44u2,33

)
+
(
c23 + c44

)
u3,23−β2

(
T + τ1Ṫ

)
,2 = ρü2,(

c13 + c55
)
u1,13 +

(
c23 + c44

)
u2,23 + c55u3,11 + c44u3,22 + c33u3,33−β3

(
T + τ1Ṫ

)
,3 = ρü3,(

K11T,11 +K22T,22 +K33T,33
)− ρCe

(
Ṫ + τ0T̈

)= T0
[
β1u̇1,1 +β2u̇2,2 +β3u̇3,3

]
,

(2.8)

where

β1 = c11α1 + c12α2 + c13α3,

β2 = c12α1 + c22α2 + c23α3,

β3 = c13α1 + c32α2 + c33α3.

(2.9)

3. Solution

Having identified the plane of incidence to be the x1 − x3 plane, then the solution for
displacements and temperature for an angle of incidence θ is proposed:

(
uj ,T

)= (Uj ,U4
)

exp
[
iξ
(

sinθx1 +αx3− ct
)]

, i=√−1, j = 1,2,3, (3.1)

where ξ is the wave number, c is the phase velocity (= ω/ξ), ω is the circular frequency,
α is still an unknown parameter, Uj and U4 are the constants related to the amplitudes
of displacement u1,, u2, u3, and the temperature T . Although solution (3.1) is explicitly
independent of x2, an implicit dependence is contained in the transformation, and the
transverse displacement component u2 is nonvanishing in (3.1).

Substituting (3.1) in (2.8) leads to the coupled equations, the choice of solutions leads
to four coupled equations:

Mmn(α)Un = 0, m,n= 1,2,3,4, (3.2)

where

M11 = F11 + c2α
2, M13 = F13α, M14 = F14,

M22 = F22 + c6α
2, M24 = F24,

M33 = F33 + c1α
2, M34 = F34α,

M41 = F41, M43 = F43α, M44 = F44 +Kα2,

(3.3)

where

F11 = sin2 θ− ζ2, F13 = c7 sinθ, F14 = sinθ,

F22 = c3 sin2 θ− ζ2, F33 = c2 sin2 θ− ζ2, F34 = β3α,

F41 = ε1τgω
∗
1 ζ

2 sinθ, F43 = ε1τgω
∗
1 ζ

2β1α, F44 = sin2 θ− τω∗1 ζ
2,

(3.4)



K. L. Verma and N. Hasebe 73

and

c1 = c33

c11
, c2 = c55

c11
, c3 = c66

c11
, c6 = c44

c11
, c7 = c13 + c55

c11
,

β3 =
β3

β1
, K = K3

K1
, ε1 = T0β

2
1

ρCec11
, ω∗1 =

CeC11

K1
,

ζ2 = c2ρ

c11
, τ = iω−1 + τ0, τg = iω−1 + τ1.

(3.5)

The system of (3.2) has a nontrivial solution if the determinant of the coefficients of U1,
U2, U3, and U4 vanishes, which yields an algebraic equation relating α to c. We obtain a
polynomial equation in α, which can be written as

α6 +A1α
4 +A2α

2 +A3 = 0, (3.6)

c3 + c6α
2− ζ2 = 0, (3.7)

where

A1 =
[
P(−K) +∆1F44− c2F34F43

]
∆

,

A2 =
[
Q(−K) +PF44 +

(
F13F34− c1F14

)
F41 +

(
F13F14−F11F34

)
F43
]

∆
,

A3 =
(
RF44−F14F33F41

)
∆

,

(3.8)

where

P = (c1c6F11− c6F
2
13 + c5F13F23− c2

5F33

− c2F
2
23− 2c1c5F12 + c5F21F23 + c2c6F33

)
,

Q = (F11F
2
23−F2

13F22 + c6F11F33 + c1F11F22

− c1F
2
12 + 2F12F13F23 + 2c5F12F33 + c2F22F33

)
,

R= (F11F22−F2
12

)
F33,

∆=−K(c2c6− c2
5

)
c1,

∆1 =
(
c2c6− c2

5

)
c1.

(3.9)

Notice that roots of (3.7) corresponding to the SH motion give a purely transverse wave,
which is not affected by the temperature. This wave propagates without dispersion or
damping.
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Equation (3.6) corresponds to the sagittal plane waves, and for the motion in this
plane, each αl, l = 1,2, . . . ,6 the displacements, temperature, stress, and temperature gra-
dient amplitudes are

q3(l) =
[
F44
(
F11 + c2α

2
l

)−F14F41−
(
c2α

4
l +F11α

2
l

)
K
]

[
F14F43αl −F13F44 +KF13α

2
l

]
αl

, (3.10)

Θl =
[
F13F41−

(
F11 + c2α

2
l

)
F43
]

[
F14F43−F13

(
F44−Kα2

l

)] , (3.11)

r33(l) =
[
iξ
{(
c7− c2

)
sinθ + c1αlq3(l)

}
+ iξ−1β3c

−1
11

(
1− cτ1

)
Θl
]
, (3.12)

r13(l) = iξ
[
c2
(
αl + q3(l) sinθ

)]
, (3.13)

Ωl = ιξαlΘl . (3.14)

For the SH-type wave, one now has

r23(8) =−r23(7) = c6α7. (3.15)

As (3.10) admits solutions for α, having the properties α2l =−α2l−1, l = 1,2,3, incor-
porating this property into (3.10) and (3.11), we have

q3(2l) =−q3(2l−1), Θ2l =Θ2l−1. (3.16)

4. Dispersion relation

If the roots of bicubic equation (3.6) are denoted by α2
1, α2

2, and α2
3, then solutions of

u1, u3, and T are then being obtainable as linear combinations of six linear independent
solutions corresponding to αl, l = 1,2, . . . ,6, with property α2l−1 = −αl, l = 1,2,3. The
equations of motion and heat conduction may be used to establish the formal solution
for the displacement and temperature as

(
u1,u3,T

)= 6∑
l=1

(
1,q3(l),Θl

)
Al exp

(
ιξαlx3

)
exp

[
ιξ
(
x1 sin(θ)− ct

)]
. (4.1)

As (3.6) admits solutions for α, having the properties α2l−1 =−αl, l = 1,2,3, we therefore
have (u1,u3,T)= (u1,u3,T)exp[ιξ(x1 sin(θ)− ct)], where

u1 =
3∑
l=1

(
U (2l−1)E+

l +U (2l)E−l
)
,

u3 =
3∑
l=1

q3(l)
(
U (2l−1)E+

l −U (2l)E−l
)
,

T =
3∑
l=1

Θl
(
U (2l−1)E+

l +U (2l)E−l
)
,

(4.2)
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where

E+
l = eiξαld, E−1

l = e−iξαld, l = 1,2,3, (4.3)

and U (i), i = 1,2, . . . ,6, are disposal constants. The disposal constants for U (i), are not
independent as they are linked through the equations of motion and heat conduction.
Here, q3(l) are the displacements ratios, and Θl the temperature of displacement ratios
defined in (3.10) and (3.11).

Combining (4.1), (4.2), (3.10), and (3.11) with the stress-strain and temperature rela-
tions, and using superposition, we write stresses and temperature gradient as

(
σ33,σ13,T′

)= (σ33,σ13,T′
)

exp
[
ιξ
(
x1 +αx2− ct

)]
, (4.4)

with

σ33 =
3∑
l=1

r33(l)
(
U (2l−1)E+

l +U (2l)E−l
)
,

σ13 =
3∑
l=1

r13(l)
(
U (2l−1)E+

l +U (2l)E−l
)
,

T′ =
3∑
l=1

Ωl
(
U (2l−1)E+

l +U (2l)E−l
)
,

(4.5)

where r33(l), r13(l), and Ωl, l = 1,2,3, . . . ,6, are defined in (3.12), (3.13), and (3.14).
As (3.10) admits solutions for α, having the properties α2l−1 =−αl, incorporating this

property into (3.10), (3.11), (3.12), (3.13), and (3.14) and inspecting the resulting rela-
tions, we conclude the further restrictions

r33(2l) = r33(2l−1),

r13(2l) =−r13(2l−1),

Ω2l =−Ω2l−1, l = 1,3,5.

(4.6)

The dispersion relation associated with the plate is now derived from (4.4) by applying
traction-free and thermally insulated boundaries boundary conditions (2.6) and (2.7) at
the upper and lower faces x3 =±d of the plate, thus

3∑
l=1

r33(l)
(
U (2l−1)eiξαld +U (2l)e−iξαld

)= 0,

3∑
l=1

r33(l)
(
U (2l−1)e−iξαld +U (2l)eiξαld

)= 0,

3∑
l=1

r13(l)
(
U (2l−1)eiξαld −U (2l)e−iξαld

)= 0,
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3∑
l=1

r13(l)
(
U (2l−1)e−iξαld −U (2l)eiξαld

)= 0,

3∑
l=1

Ω(l)
(
U (2l−1)eiξαld −U (2l)e−iξαld

)= 0,

3∑
l=1

Ω(l)
(
U (2l−1)e−iξαld −U (2l)eiξαld

)= 0.

(4.7)

On further simplifying equations (4.7), we have

3∑
l=1

r33(l)
(
Ũ+

l Cl + iŨ−
l Sl
)= 0,

3∑
l=1

r33(l)
(
Ũ+

l Cl − iŨ−
l Sl
)= 0,

3∑
l=1

r13(l)
(
Ũ−

l Cl + iŨ+
l Sl
)= 0,

3∑
l=1

r13(l)
(
Ũ−

l Cl − iŨ+
l Sl
)= 0,

3∑
l=1

Ωl
(
Ũ−

l Cl + iŨ+
l Sl
)= 0,

3∑
l=1

Ωl
(
Ũ−

l Cl − iŨ−
l Sl
)= 0.

(4.8)

The symmetry of the plate allows us to simplify the system of six homogeneous equations
in six unknowns into two systems of three equations in three unknowns, which on em-
ploying straightforward algebraic manipulations yield the following relations associated
with the plate:

3∑
l=1

r33(l)Ũ
+
l Cl = 0, (4.9)

3∑
l=1

r13(l)Ũ
+
l Sl = 0, (4.10)

3∑
l=1

ΩlŨ
+
l Sl = 0, (4.11)

and

3∑
l=1

r33(l)Ũ
−
l Sl = 0, (4.12)

3∑
l=1

r13(l)Ũ
−
l Cl = 0, (4.13)

3∑
l=1

ΩlŨ
−
l Cl = 0, (4.14)
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within which

Cl = cos
(
ξαld

)
, Sl = sin

(
ξαld

)
,

Ũ+
l =U (2l−1) +U (2l), Ũ−

l =U (2l−1)−U (2l).
(4.15)

The condition that the systems of (4.9), (4.10), and (4.11), and (4.12), (4.13), and (4.14)
admit a nontrivial solution gives rise to the dispersion relations associated with exten-
sional and flexural waves, respectively.

5. Flexural waves

The dispersion relation associated with flexural waves equation is obtained by taking
U (2l−1) =U (2l), thus, u1, u3, and T have the form

u1 = 2
3∑
l=1

U (2l)Cl, u3 = 2i
3∑
l=1

q3(l)U
(2l)Sl, T = 2

3∑
l=1

ΘlU
(2l)Cl, (5.1)

and therefore require that the system of (4.12), (4.13), and (4.14) admit a nontrivial so-
lution provided that the determinant of coefficients associated with these equations van-
ishes, which after a little and straightforward algebraic manipulation, may cast in the
form

r33(1)G1Γ1 + r33(2)G2Γ2 + r33(3)G3Γ3 = 0, (5.2)

where

G1 = r13(2)Θ3− r13(3)Θ2, G2 = r13(3)Θ1− r13(1)Θ3,

G3 = r13(1)Θ2− r13(2)Θ1,

Γl = tan
(
γαl
)
, γ = ξd = ω

c
.

(5.3)

6. Extensional waves

The dispersion relation associated with the extensional waves equation is obtained by
taking U (2l−1) =−U (2l), and the determinant of the coefficients of (4.9), (4.10), and (4.11)
yields the dispersion relation associated with extensional waves, namely,

r33(1)G1Γ2Γ3 + r33(2)G2Γ1Γ3 + r33(3)G3Γ1Γ2 = 0, (6.1)

thus, u1, u3, and T have the form

u1 =−2i
3∑
l=1

U (2l)Sl, u3 =−2
3∑
l=1

q3(l)U
(2l)Cl, T =−2i

3∑
l=1

ΘlU
(2l)Sl, (6.2)

G1, G2, G3, and Γl are defined in (5.3).
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7. Special cases

7.1. Classical case. If ε1 = 0, then thermal and elastic fields decoupled from each other
and from (3.6) become the characteristic equation in the uncoupled thermoelasticity.

We have

M41 =M43 = 0, (7.1)

and (3.6) reduces to

(
B1α

4 +B2α
2 +B3

)
M44(α)= 0, (7.2)

where

M44 = 1− τω∗1 ζ
2 +Kα2 = 0, (7.3)

and B1α4 +B2α2 +B3 = 0 is a secular equation corresponding to the purely elastic mate-
rial, which is obtained and discussed in [1, 18].

Equation (7.3) provides

1− τω∗1 ζ
2 +Kα2 = 0, (7.4)

which corresponds to the thermal wave. Clearly it is influenced by the thermal relaxation
time τ0 in the Green-Lindsay theory.

7.2. Coupled thermoelasticity. This case corresponds to no thermal relaxation time,
that is, τ0 = τ1 = 0 and hence τ = τg = i/ω. In case, proceeding on the same lines, we
again arrive at frequency equations of the form that is again in agreement with the corre-
sponding result obtained in [3, 13, 24].

If τ1 = τ0 �= 0, (5.2) and (6.1) become the frequency equations in the LS theory of
generalized thermoelasticity (see [24]).

7.3. Cubic and isotropic materials. Results for materials possessing transverse isotropy,
cubic symmetry, and isotropic case, can be easily obtained from (5.2) and (6.1) by im-
posing the additional conditions on the thermoelastic constants, namely,

c33 = c22, c13 = c12, c55 = c66, c22− c23 = 2c44,

K1 = K2,K3, α1 = α2,α3,

β1 = β2 =
(
c11 + c12

)
α1 + c13α3, β3 = 2c13α1 + c33α3,

(7.5)

and for cubic symmetry,

c11 = c22 = c33, c13 = c12 = c23, c44 = c55 = c66,

K1 = K2=K3, α1=α2=α3=αt, β1=β2=β3=β= (c11 + c12
)
αt.

(7.6)
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Figure 8.1. Dispersion of the first six flexural modes for τ0 = 2.10−7 second and τ1 = 4.10−7 second.
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Figure 8.2. Dispersion of the first six extensional modes for τ0 = 2.10−7 second and τ1 =
4.10−7 second.

Finally, for the isotropic case,

c11 = c22 = c33 = λ+ 2µ, c13 = c12 = c23 = λ, c44 = c55 = c66 = µ,

K1 = K2 = K3, α1 = α2 = α3 = αt, β1 = β2 = β3 = (3λ+ 2µ)αt.
(7.7)

8. Numerical results and discussion

Numerical illustrations of the analytical characteristic equations are presented in the form
of dispersion curves. These curves are obtained by keeping ξ (wave number) real and
letting c be complex. Then the phase velocity is defined as Re(c), and the imaginary part of
c is a measure of the damping of the waves. One can also let c be real and let ξ be complex.
In this case, the wave c corresponding to Re(ξ) and Im(ξ) is a measure of the attenuation
of the wave. To find the solutions of a characteristic equation, Mathcad software is used
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Figure 8.3. Dispersion of the first six flexural modes for τ0 = 2.10−7 second and τ1 = 1.10−6 second.
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Figure 8.4. Dispersion of the first six extensional modes for τ0 = 2.10−7 second and τ1 = 1.10−6

second.

to solve it as an analytic function by considering representative orthotropic (fictitious)
material given in [12] with the following properties:

c11 = 128, c12 = 7, c13 = 6, c22 = 72, c23 = 5,

c33 = 32, c44 = 18, c55 = 12.25, c66 = 8 in MPa,

T0 = 300K, ρ= 2000kg/m3,

K1 = 100, K2 = 50, K3 = 25 in W/mK,

β1 = 0.04, β6 = 0.06, β3 = 0.09 in MPa/K,

ε1 = 0.001
(
ε1 = T0β

2
1

ρCec11

)
, τ0 = 2.10−7 second,

(8.1)
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Figure 8.5. Dispersion of the first six flexural modes for τ0 = 2.10−7 second and τ1 = 2.10−6 second.
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Figure 8.6. Dispersion of the first six extensional modes for τ0 = 2.10−7 second and τ1 = 2.10−6

second .

and taking different values of τ1 keeping in mind

τ1 ≥ τ0 ≥ 0. (8.2)

Dispersion curves in the forms of variations of phase velocity (dimensionless) with
wave numbers (dimensionless) are constructed at different values of times, relaxation-
time ratios (τ1/τ0) = 2,5,10, and θ = π/2 for the first six modes of the representative
orthotropic plate. Each figure displays three wave speeds corresponding to quasilongitu-
dinal, quasitransverse, and quasithermal at zero wave number limits. It is obvious that the
largest value corresponds to the quasilongitudinal mode. Higher modes appear in both
cases (flexural and extensional) with ξ increasing. One of these seems to be associated
with the rapid change in the slope of the mode. Lower modes (flexural and extensional)
are found more influenced by the thermal relaxation times at low values of the wave num-
ber. Dispersion curves in Figures 8.1, 8.3, and 8.5 correspond to the flexural wave modes
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(a0, a1, a2, a3, a4, and a5) and Figures 8.2, 8.4, and 8.6 (s0, s1, s2, s3, s4, and s5) cor-
respond to extensional wave modes. The phase velocity of the lowest flexural mode is
observed to increase from zero value at zero wave number limits, whereas in the case of
the lowest extensional mode, it decreases from a value less than that of the corresponding
lowest flexural mode and then tends towards Rayleigh velocity asymptotically with an in-
crease in wave number. The phase velocities of higher modes of propagation, flexural and
extensional, attain quite large values at vanishing wave numbers.

Lowest flexural modes (a0) have nonzero and the lowest extensional modes (s0) have
zero velocity at vanishing wave numbers, but the phase velocity of these modes also be-
come asymptotically close to the surface wave velocity with increasing value of the wave
number. The behavior of higher modes of propagation is observed to be similar to other
cases. The effect of thermal relaxation times is observed to be small.

9. Conclusions

The interaction of generalized thermoelastic waves with two thermal relaxation times
has been investigated for orthotropic media. The horizontally polarized SH wave (3.7)
gets decoupled from the rest of the motion and propagates without dispersion or damp-
ing, and is not affected by thermal variations on the same plate. The other three waves,
namely, quasilongitudinal (QL), quasitransverse (QT), and quasithermal (T-mode), of
the medium are found coupled with each other due to the thermal and anisotropic ef-
fects. The phase velocity of the waves gets modified due to the thermal and anisotropic
effects and is also influenced by the thermal relaxation time. The dispersion character-
istics for flexural and extensional waves modes have been taken into consideration. The
increasing ratios of thermal relaxation times tend to increase the values of phase velocity
of different modes. Within the framework of the generalized theory of thermoelasticity
are dispersion curves similar to those of the elastic waves.
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