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A generalization of the Bernoulli polynomials and, consequently, of the
Bernoulli numbers, is defined starting from suitable generating func-
tions. Furthermore, the differential equations of these new classes of
polynomials are derived by means of the factorization method intro-
duced by Infeld and Hull (1951).

1. Introduction

The Bernoulli polynomials have important applications in number the-
ory and classical analysis. They appear in the integral representation of
differentiable periodic functions since they are employed for approxi-
mating such functions in terms of polynomials. They are also used for
representing the remainder term of the composite Euler-MacLaurin
quadrature rule (see [15]).

The Bernoulli numbers [3, 13] appear in number theory, and in many
mathematical expressions, such as

(i) the Taylor expansion in a neighborhood of the origin of the cir-
cular and hyperbolic tangent and cotangent functions;

(ii) the sums of powers of natural numbers;
(iii) the residual term of the Euler-MacLaurin quadrature rule.

The Bernoulli polynomials Bn(x) are usually defined (see, e.g., [7,
page xxix]) by means of the generating function

G(x,t) :=
text

et − 1
=

∞∑
n=0

Bn(x)
tn

n!
, |t| < 2π, (1.1)

Copyright c© 2003 Hindawi Publishing Corporation
Journal of Applied Mathematics 2003:3 (2003) 155–163
2000 Mathematics Subject Classification: 33C99, 34A35
URL: http://dx.doi.org/10.1155/S1110757X03204101

http://dx.doi.org/10.1155/S1110757X03204101


156 A generalization of the Bernoulli polynomials

and the Bernoulli numbers Bn := Bn(0) by the corresponding equation

t

et − 1
=

∞∑
n=0

Bn
tn

n!
. (1.2)

The Bn are rational numbers. We have, in particular, B0 = 1, B1 = −1/2,
B2 = 1/6, and B2k+1 = 0, for k = 1,2, . . .,

B0(x) = 1, B1(x) = x− 1
2
, B2(x) = x2 −x +

1
6
. (1.3)

The following properties are well known:

Bn(0) = Bn(1) = Bn, n �= 1,

Bn(x) =
n∑

k=0

(
n

k

)
Bkx

n−k, B′
n(x) = nBn−1(x).

(1.4)

The Bernoulli polynomials are easily computed by recursion since

n−1∑
k=0

(
n

k

)
Bk(x) = nxn−1, n = 2,3, . . . . (1.5)

Some generalized forms of the Bernoulli polynomials and numbers
already appeared in literature. We recall, for example, the generalized
Bernoulli polynomials Bα

n(x) recalled in the book of Gatteschi [6] defined
by the generating function

tαext(
et − 1

)α =
∞∑
n=0

Bα
n(x)

tn

n!
, |t| < 2π, (1.6)

by means of which, Tricomi and Erdélyi [16] gave an asymptotic expan-
sion of the ratio of two gamma functions.

Another generalized forms can be found in [5, 11], starting from the
generating functions

(iz)αe(x−1/2)z

22αΓ(α+ 1)Jα(iz/2)
=

∞∑
n=0

Bn,α(x)
zn

n!
, |z| < 2

∣∣j1∣∣, (1.7)



P. Natalini and A. Bernardini 157

where Jα is the Bessel function of the first kind of order α and j1 = j1(α)
is the first zero of Jα, or

(ht)α(1+wt)x/w[
(1+wt)h/w − 1

]α =
∞∑
n=0

Bα
n;h,w(x)

tn

n!
, |t| <

∣∣∣∣ 1
w

∣∣∣∣, (1.8)

respectively.
In this paper, we introduce a countable set of polynomials B

[m−1]
n (x)

generalizing the Bernoulli ones, which can be recovered assuming m = 1.
To this aim, we consider a class of Appell polynomials [2], defined by us-
ing a generating function linked to the so-called Mittag-Leffler function

E1,m+1(t) :=
tm

et −∑m−1
h=0 th/h!

, (1.9)

considered in the general form by Agarwal [1] (see also [12]).
Furthermore, exploiting the factorization method introduced in [10]

and recalled in [8], we derive the differential equation satisfied by these
polynomials. It is worth noting that the differential equation for Appell-
type polynomials was derived in [14], and more recently recovered in
[9] by exploiting the factorization method. It is easily checked that our
differential equation matches with the general form of the above men-
tioned articles [9, 14]. In particular, when m = 1, the differential equation
of the classical Bernoulli polynomials is derived again.

We will show in this paper that the differential equation satisfied by
the B[m−1]

n (x) polynomials is of order n, so that all the considered families
of polynomials can be viewed as solutions of differential operators of
infinite order.

This is a quite general situation since the Appell-type polynomials,
satisfying a differential operator of finite order, can be considered as an
exceptional case (see [4]).

2. A new class of generalized Bernoulli polynomials

The generalized Bernoulli polynomials B
[m−1]
n (x), m ≥ 1, are defined by

means of the generating function, defined in a suitable neighborhood of
t = 0

G[m−1](x,t) :=
tmext

et −∑m−1
h=0 th/h!

=
∞∑
n=0

B
[m−1]
n (x)

tn

n!
. (2.1)

For m = 1, we obtain, from (2.1), the generating function G(0)(x,t) =
text/(et − 1) of classical Bernoulli polynomials B(0)

n (x).
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Since G[m−1](x,t) =A(t)ext, the generalized Bernoulli polynomials be-
long to the class of Appell polynomials.

It is possible to define the generalized Bernoulli numbers assuming

B
[m−1]
n = B

[m−1]
n (0). (2.2)

From (2.1), we have

ext =
∞∑

h=m

th−m

h!

∞∑
n=0

B
[m−1]
n (x)

tn

n!
. (2.3)

Since ext =
∑∞

n=0x
n(tn/n!), (2.3) becomes

∞∑
n=0

xn t
n

n!
=

∞∑
j=0

j!
(j +m)!

tj

j!

∞∑
n=0

B
[m−1]
n (x)

tn

n!
(2.4)

and therefore

∞∑
n=0

xn t
n

n!
=

∞∑
n=0

n∑
h=0

(
n

h

)
h!

(h+m)!
B
[m−1]
n−h (x)

tn

n!
. (2.5)

By comparing the coefficients of (2.5), we obtain

xn =
n∑

h=0

(
n

h

)
h!

(h+m)!
B
[m−1]
n−h (x). (2.6)

Inverting (2.6), it is possible to find explicit expressions for the poly-
nomials B[m−1]

n (x). The first ones are given by

B
[m−1]
0 (x) =m!, B

[m−1]
1 (x) =m!

(
x − 1

m+ 1

)
,

B
[m−1]
2 (x) =m!

(
x2 − 2

m+ 1
x+

2
(m+ 1)2(m+ 2)

)
,

(2.7)

and, consequently, the first generalized Bernoulli numbers are

B
[m−1]
0 =m!, B

[m−1]
1 = − m!

m+ 1
, B

[m−1]
2 =

2m!
(m+ 1)2(m+ 2)

. (2.8)
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3. Differential equation for generalized Bernoulli polynomials

In this section, we prove the following theorem.

Theorem 3.1. The generalized Bernoulli polynomials B[m−1]
n (x) satisfy the dif-

ferential equation

B
[m−1]
n

n!
y(n) +

B
[m−1]
n−1

(n− 1)!
y(n−1) + · · ·+ B

[m−1]
2

2!
y′′

+ (m− 1)!
(

1
m+ 1

−x

)
y′ +n(m− 1)!y = 0.

(3.1)

In order to prove (3.1), we first derive a recurrence relation for
B
[m−1]
n (x).

Lemma 3.2. For any integral n ≥ 1, the following linear homogeneous recur-
rence relation for the generalized Bernoulli polynomials holds true:

B
[m−1]
n (x) =

(
x − 1

m+ 1

)
B
[m−1]
n−1 (x)− 1

n(m− 1)!

n−2∑
k=0

(
n

k

)
B
[m−1]
n−k B

[m−1]
k (x).

(3.2)

This relation, starting from n = 1, and taking into account the ini-
tial value B

[m−1]
0 (x) =m!, allows a recursive formula for the generalized

Bernoulli polynomials.

Proof. Differentiation of both sides of (2.1), with respect to t, yields

∂

∂t
G[m−1](x,t)=

mtm−1
(
et−∑m−1

h=0 th/h!
)
−tm
(
et −∑m−1

h=1 th−1/(h− 1)!
)

(
et −∑m−1

h=0 th/h!
)2

ext

+
xtm

et −∑m−1
h=0 th/h!

ext

=


m

t

tm

et −∑m−1
h=0 th/h!

− tm

et −∑m−1
h=0 th/h!

− 1
(m− 1)!

t2m−1(
et −∑m−1

h=0 th/h!
)2


ext

+xG[m−1](x,t)
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=
m

t
G[m−1](x,t) + (x− 1)G[m−1](x,t)

− tm−1

(m− 1)!
(
et −∑m−1

h=0 th/h!
)

× tm

et −∑m−1
h=0 th/h!

ext

=
1

(m− 1)!t

(
m!− tm

et −∑m−1
h=0 th/h!

)

×G[m−1](x,t) + (x− 1)G[m−1](x,t)

=
1

(m− 1)!t

(
m!−

∞∑
n=0

B
[m−1]
n

tn

n!

)

×G[m−1](x,t) + (x− 1)G[m−1](x,t),

(3.3)

and consequently

(m− 1)!t
∂

∂t
G[m−1](x,t) =m!G[m−1](x,t)−

∞∑
n=0

B
[m−1]
n

tn

n!
G[m−1](x,t)

+ (m− 1)!t(x − 1)G[m−1](x,t).

(3.4)

Recalling (2.1), the left-hand side of (3.4) becomes

(m− 1)!t
∂

∂t
G[m−1](x,t) = (m− 1)!

∞∑
n=1

B
[m−1]
n (x)

tn

(n− 1)!

= (m− 1)!
∞∑
n=0

nB
[m−1]
n (x)

tn

n!
.

(3.5)

Furthermore, introducing B
[m−1]
−1 (x) := 0 (but in principle B

[m−1]
−1 (x) could

be chosen as an arbitrary constant), the following equation is obtained:

(m− 1)!t(x − 1)G[m−1](x,t) = (m− 1)!
∞∑
n=0

(x− 1)B[m−1]
n (x)

tn+1

n!

= (m− 1)!
∞∑
n=0

n(x − 1)B[m−1]
n−1 (x)

tn

n!
,

(3.6)
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and moreover

∞∑
n=0

B
[m−1]
n

tn

n!
G[m−1](x,t) =

∞∑
n=0

B
[m−1]
n

tn

n!

∞∑
h=0

th

h!
B
[m−1]
h (x)

=
∞∑
n=0

[
n∑

k=0

(
n

k

)
B
[m−1]
n−k B

[m−1]
k

(x)

]
tn

n!
.

(3.7)

Substitution of (3.5), (3.6), and (3.7) into (3.4) yields

(m− 1)!
∞∑
n=0

nB
[m−1]
n (x)

tn

n!
=m!

∞∑
n=0

B
[m−1]
n (x)

tn

n!

−
∞∑
n=0

[
n∑

k=0

(
n

k

)
B
[m−1]
n−k B

[m−1]
k (x)

]
tn

n!

+ (m− 1)!
∞∑
n=0

n(x − 1)B[m−1]
n−1 (x)

tn

n!
.

(3.8)

Then the conclusion immediately follows by the identity principle of
power series, equating coefficients in the left- and right-hand side of the
last equation (3.8). �

Proof of Theorem 3.1. We now use this recurrence relation to find the op-
erator E+

n such that

E+
nB

[m−1]
n (x) = B

[m−1]
n+1 (x), n = 0,1, . . . . (3.9)

It is easy to see that, for k = 0,1, . . . ,n− 1,

dn−k

dxn−k B
[m−1]
n (x) =

n!
k!
B
[m−1]
k

(x). (3.10)

By means of (3.10), the recurrence relation can be written as

B
[m−1]
n+1 (x) =

[(
x − 1

m+ 1

)
− 1
(m− 1)!

n−1∑
k=0

B
[m−1]
n+1−k

(n+ 1− k)!
Dn−k

x

]
B
[m−1]
n (x),

(3.11)

and therefore

E+
n =
(
x − 1

m+ 1

)
− 1
(m− 1)!

n−1∑
k=0

B
[m−1]
n+1−k

(n+ 1− k)!
Dn−k

x . (3.12)



162 A generalization of the Bernoulli polynomials

We are now in a position to determine the differential equation for
B
[m−1]
n (x). Applying both operators E−

n+1 = (1/(n + 1))Dx and E+
n to

B
[m−1]
n (x), we have

(
E−
n+1E

+
n

)
B
[m−1]
n (x) = B

[m−1]
n (x). (3.13)

That is,

1
n+ 1

Dx

[(
x− 1

m+ 1

)
− 1
(m− 1)!

n−1∑
k=0

B
[m−1]
n+1−k

(n+ 1− k)!
Dn−k

x

]
B
[m−1]
n (x)

= B
[m−1]
n (x).

(3.14)

This leads to the differential equation with B
[m−1]
n (x) as a polynomial

solution. �
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