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We consider a mathematical model which describes the quasistatic con-
tact between two deformable bodies. The bodies are assumed to have a
viscoelastic behavior that we model with Kelvin-Voigt constitutive law.
The contact is frictionless and is modeled with the classical Signorini
condition with zero-gap function. We derive a variational formulation
of the problem and prove the existence of a unique weak solution to the
model by using arguments of evolution equations with maximal mono-
tone operators. We also prove that the solution converges to the solution
of the corresponding elastic problem, as the viscosity tensors converge
to zero. We then consider a fully discrete approximation of the problem,
based on the augmented Lagrangian approach, and present numerical
results of two-dimensional test problems.

1. Introduction

The phenomena of contact between deformable bodies or between
deformable and rigid bodies abound in industry and everyday life. A
few simple examples are the contact of brake pads with wheels, tires
on roads, and pistons with skirts. Common industrial processes, such
as metal forming and metal extrusion, involve contact evolutions. Be-
cause of the importance of contact process in structural and mechan-
ical systems, considerable effort has been put into modeling, analysis,
and numerical simulations. Literature in this field is extensive; books,
proceedings, and reviewsdealing with models involving friction, adhe-
sion, or wear of the contact surfaces include [13, 15, 24, 25, 28, 30, 31,
34, 35]. For the sake of simplicity and in order to keep this section in a
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reasonable length, we refer in what follows mainly to results and papers
concerning frictionless contact problems and, with very few exceptions,
we avoid references to frictional models.

The Signorini problem was formulated in [32] as a model of unilat-
eral frictionless contact between an elastic body and a rigid foundation.
Mathematical analysis of this problem was first provided in [11, 12] and
its numerical approximation was described in detail in [24]. Results con-
cerning the frictionless Signorini contact problem between two elastic
bodies have been obtained in [16, 17, 18, 19]; there, the authors pro-
vided existence and uniqueness results of the weak solutions, considered
a finite-element model for solving the contact problems, and discussed
some solution algorithms.

The first existence result for weak solutions of the quasistatic contact
problem with Coulomb’s friction and Signorini’s condition for an elas-
tic material has been obtained recently in [3]. The proof was based on a
sequence of approximations using normal compliance. First, the approx-
imate problems with normal compliance were discretized in time and a
priori estimates on their solutions were obtained. Passing to the time
discretization limit yielded a solution for the quasistatic problem with
normal compliance. Using then a regularity result, based on the shifting
technique, the existence to a limit function which solves the quasistatic
Signorini frictional problem was obtained. The uniqueness of the solu-
tion was left open. Unlike [3], in this paper we deal with frictionless
contact between two viscoelastic bodies. We use a different method and
establish a unique solution to the model.

In all the references in the previous two paragraphs, it was assumed
that the deformable bodies were linearly elastic. However, a number of
recent publications is dedicated to the modeling, analysis, and numer-
ical approximation of contact problems involving viscoelastic and vis-
coplastic materials. Thus, the variational analysis of the frictionless Sig-
norini problem was provided in [33] in the case of rate-type viscoplas-
tic materials and the numerical analysis of this problem was studied in
[7]. These results were extended to the frictionless Signorini problem be-
tween two viscoplastic bodies in [14, 29], respectively. A survey of fric-
tionless contact problems with viscoplastic materials, including numer-
ical experiments for test problems in one, two, and three dimensions,
may be found in [10, 15]. Existence results in the study of the Signorini
frictionless contact problem have been obtained in [20, 22] in the case of
dynamic processes for viscoelastic materials with singular memory and,
more recently in [5], in the case of quasistatic process for Kelvin-Voigt
materials.

Dynamic frictional contact problems with linearly Kelvin-Voigt vis-
coelastic materials have been considered in [21, 23]. In [21], the contact
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is modeled with the Signorini condition with zero gap and friction is de-
scribed with Tresca’s law. The existence of a weak solution to the model
is obtained in two steps: first, the contact condition is penalized and the
solvability of the penalized problems is proved by using the Galerkin
approximation; then, compactness and lower semicontinuity arguments
are employed to prove that the approximate solutions converge to an ele-
ment which is shown to be a weak solution to the frictional contact prob-
lem. Notice that this result holds, in particular, when the friction bound
vanishes, that is, for the Signorini frictionless contact problem; and from
this point of view, it represents a dynamic version of the existence and
uniqueness result obtained in [5] for the quasistatic model. For the prob-
lem studied in [23], the contact is modeled with unilateral conditions
in velocities associated to a version of Coulomb’s law of dry friction in
which the coefficient of friction may depend on the solution. Again, the
solvability of the model is proved using penalization and regularization
methods. In both papers [21, 23], regularity results of the solution are
obtained by using a shift technique.

The aim of this paper is to provide variational analysis and numeri-
cal simulations in the study of the frictionless contact between two vis-
coelastic bodies. Since we here consider quasistatic processes for Kelvin-
Voigt viscoelastic materials and the Signorini contact condition, this
paper may be considered as a continuation of [5], where the contact
between a viscoelastic body and a rigid foundation is investigated. We
use arguments similar to those used in [5] in order to prove the well-
posedness of the problem, but with a different choice of the spaces and
operators since the physical settings, in [5] and here, are different. The
other trait of novelty of the present paper consists in the fact that here we
obtain an approach to elasticity result, present a fully discrete scheme of
the problem, and provide numerical simulations.

The rest of the paper is organized as follows. In Section 2, we state
the mechanical problem, list the assumptions on the data, and derive the
variational formulation to the model. In Section 3, we provide the exis-
tence of a unique weak solution to the mechanical problem. The proof is
based on an abstract result on evolution equations with maximal mono-
tone operators and arguments from convex analysis. In Section 4, we in-
vestigate the behavior of the solution when the viscosity operator con-
verges to zero. In Section 5, we consider a fully discrete approximation of
the problem, based on the finite-difference scheme for the time variable,
and the finite-element method for the spatial variable; and in Section 6,
we present numerical results in the study of two-dimensional test prob-
lems. We conclude the paper in Section 7, where some open problems
are described.
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2. Problem statement and variational formulation

We consider two viscoelastic bodies which occupy the bounded domains
Ω1 and Ω2 of R

d (d = 1,2,3 in applications). We put a superscript m to
indicate that a quantity or subset is related to the domain Ωm, m = 1,2.
Everywhere in the sequel, S

d represents the space of second-order sym-
metric tensors on R

d, the indices i, j, k, and l run between 1 and d, and
the summation convention over a repeated index is adopted. Moreover,
an index that follows a comma indicates a partial derivative with respect
to the corresponding component of the spatial variable and a dot above
indicates the derivative with respect to the time variable.

For each domain Ωm, the boundary Γm is assumed to be Lipschitz
continuous and is partitioned into three disjoint measurable parts Γm1 ,
Γm2 , and Γm3 , with measΓm1 > 0. Let νm = (νmi ) be the outward normal to
Γm. We are interested in the quasistatic process of evolution of the bod-
ies on the time interval [0,T], with T > 0. The bodies are assumed to be
clamped on Γm1 × (0,T) while the volume forces of densities ϕm

1 and the
surface tractions ϕm

2 act on Ωm × (0,T) and Γm2 × (0,T), respectively. The
two bodies can enter in contact along the common part Γ1

3 = Γ2
3 = Γ3. The

contact is frictionless and is modelled with Signorini condition in a form
with a zero-gap function. We assume that the process is quasistatic and
we use the Kelvin-Voigt constitutive law to describe the material’s be-
havior. With these assumptions, the mechanical problem we study here
may be formulated as follows.

Problem 2.1. Form = 1,2, find a displacement field um = (umi ) : Ωm × [0,T]
→ R

d and a stress field σm = (σmij ) : Ωm × [0,T]→ S
d such that

σm =Amε(u̇) +Gmε(u) in Ωm × (0,T), (2.1)

Divσm +ϕm
1 = 0 in Ωm × (0,T), (2.2)

um = 0 on Γm1 × (0,T), (2.3)

σmνm = ϕm
2 on Γm2 × (0,T), (2.4)

u1
ν +u

2
ν ≤ 0, σ1

ν = σ
2
ν ≤ 0, on Γ3 × (0,T), (2.5)(

u1
ν +u

2
ν

)
σ1
ν = 0, σm

τ = 0, on Γ3 × (0,T), (2.6)

um(0) = um
0 in Ωm. (2.7)

Here (2.1) represents the constitutive law in which Am is a fourth-
order tensor, Gm is a nonlinear constitutive function, and

ε
(
um) = (

εij
(
um)) =

(
1
2

(
umi,j +u

m
j,i

))
(2.8)
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represents the small strain tensor. Equation (2.2) is the equilibrium equa-
tion in which Divσm = (σmij,j) denotes the divergence of the tensor-valued
function σm, and conditions (2.3) and (2.4) are the displacement and
traction boundary conditions, respectively. Conditions (2.5) and (2.6)
represent the frictionless Signorini conditions in which umν , σmν , and σm

τ

are the normal displacement, the normal, and the tangential stress, re-
spectively, given by

umν = umi ν
m
i , σmi = σmij ν

m
i ν

m
j ,

σm
τ =

(
σmτi

)
=
(
σmij ν

m
j −σmν νmi

)
.

(2.9)

Finally, (2.7) represents the initial condition in which um
0 is the given

initial displacement.
Everywhere in this paper, we denote by “·” the inner product on the

spaces R
d and S

d and by | · | the Euclidean norms on these spaces. For
every element v ∈H1(Ωm)d, we keep the notation v for the trace γv of v
on Γm. We introduce the following spaces:

Qm =
{
τ =

(
τij

) | τij = τji ∈ L2(Ωm), 1 ≤ i, j ≤ d},
Hm

1 =
{

u =
(
ui
) | ε(u) ∈Qm},

Qm
1 =

{
τ =

(
τij

) | Divτ ∈ L2(Ωm)d},
V m =

{
v =

(
vi
) | vi ∈H1(Ωm)d, v = 0 on Γm1 , 1 ≤ i ≤ d

}
.

(2.10)

These are real Hilbert spaces endowed with their canonical inner prod-
ucts denoted by (·, ·)X and the associate norms ‖ · ‖X , where X is one of
these previous spaces. Since measΓm1 > 0, Korn’s inequality holds (see,
e.g., [26, page 79]) and therefore

∥∥ε(v)∥∥Qm ≥ cK‖v‖H1(Ωm)d ∀v ∈ Vm, m = 1,2. (2.11)

Here cK denotes a positive constant which depends on Ωm and Γm1 .
In the study of the mechanical problem (2.1)–(2.7), we make the fol-

lowing assumptions for m = 1,2. The viscosity tensor Am = (am
ijkl

) : Ωm ×
S
d → S

d satisfies the usual properties of symmetry and ellipticity, that is,

amijkl ∈ L∞(Ωm),
Amσ · τ = σ ·Amτ ∀σ,τ ∈ S

d, a.e. in Ωm,

∃cAm > 0 such that Amτ · τ ≥ cAm |τ |2 ∀τ ∈ S
d, a.e. in Ωm.

(2.12)
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The elasticity operator Gm : Ωm × S
d → S

d satisfies the following assump-
tions:

∃Lm > 0 such that
∣∣Gm(x,ε1

)−Gm(x,ε2
)∣∣ ≤ Lm∣∣ε1 − ε2

∣∣
∀ε1,ε2 ∈ S

d, a.e. on Ωm,

x 
−→ G(x,ε) is Lebesgue measurable on Qm ∀ε ∈ S
d,

x 
−→ Gm(x,0) belongs to Qm.

(2.13)

For the body forces and surface tractions, we assume that

ϕm
1 ∈W1,1

(
0,T ;L2(Ωm)d), ϕm

2 ∈W1,1
(

0,T ;L2(Γm2 )d
)
. (2.14)

In order to simplify the notations, we define the product spaces

H1 =H1
1 ×H2

1 , V = V 1 ×V 2,

Q =Q1 ×Q2, Q1 =Q1
1 ×Q2

1

(2.15)

and we introduce the notation

ε(v) =
(
ε
(
v1),ε(v2)) ∀v =

(
v1,v2) ∈ V,

Aτ =
(A1τ1,A2τ2) ∀τ =

(
τ1,τ2) ∈Q,

Gτ =
(G1τ1,G2τ2) ∀τ =

(
τ1,τ2) ∈Q,

u0 =
(
u1

0,u
2
0

)
.

(2.16)

The spaces Q and Q1 are real Hilbert spaces endowed with the canonical
inner products denoted by (·, ·)Q and (·, ·)Q1 . The associate norms will be
denoted by ‖ · ‖Q and ‖ · ‖Q1 , respectively. Using (2.11) and (2.12), we see
that V is a real Hilbert space with the inner product and the associated
norm

(u,v)V =
(Aε(u),ε(v)

)
Q, ‖u‖V =

√
(u,u)V , ∀u,v ∈ V. (2.17)

We assume that the initial displacement verifies

u0 =
(
u1

0,u
2
0

) ∈U, (2.18)

where U denotes the set of admissible displacement fields given by

U =
{

v =
(
v1,v2) ∈ V | v1

ν +v
2
ν ≤ 0 on Γ3

}
. (2.19)
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We also define the mapping f : [0,T]→ V by

(
f(t),v

)
V =

(
ϕ1

1(t),v
1)

L2(Ω1)d +
(
ϕ2

1(t),v
2)

L2(Ω2)d

+
(
ϕ1

2(t), γv2)
L2(Γ1

2)
d +

(
ϕ2

2(t), γv2)
L2(Γ2

2)
d ∀v ∈ V, t ∈ [0,T],

(2.20)

and we note that conditions (2.14) imply that

f ∈W1,1(0,T ;V ). (2.21)

Using the standard arguments, it can be shown that if the couple of
functions (u,σ) (where u = (u1,u2) and σ = (σ1,σ2)) is a regular solution
of the mechanical Problem 2.1, then

u(t) ∈U, (
σ(t),ε(v)− ε

(
u(t)

))
Q ≥ (

f(t),v−u(t)
)
V ∀v ∈U, t ∈ (0,T).

(2.22)

This inequality leads us to consider the following variational problem.

Problem 2.2. Find a displacement field u=(u1,u2) : [0,T]→ V and a stress
field σ = (σ1,σ2) : [0,T]→Q1 such that

σ(t) =Aε
(
u̇(t)

)
+Gε(u(t)

)
a.e. t ∈ (0,T), (2.23)

u(t) ∈U, (
σ(t),ε(v)− ε

(
u(t)

))
Q ≥ (

f(t),v−u(t)
)
V

∀v ∈U, a.e. t ∈ (0,T),
(2.24)

u(0) = u0. (2.25)

We remark that Problem 2.2 is formally equivalent to the mechanical
problem (2.1)–(2.7). Indeed, if (u,σ) represents a regular solution of the
variational Problem 2.2, then, using the arguments of [9], it follows that
(u,σ) satisfies Problem 2.1. For this reason, we may consider Problem 2.2
as the variational formulation of the mechanical problem (2.1)–(2.7).

3. An existence and uniqueness result

The main result of this section concerns the existence and uniqueness of
the solution of Problem 2.2. The proof is essentially based on the follow-
ing theorem which is recalled here for the convenience of the reader.

Theorem 3.1. Let X be a real Hilbert space and let A : D(A) ⊂ X→ 2X be a
multivalued operator such that the operator A +ωI is maximal monotone for
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some real ω. Then, for every f ∈W1,1(0,T ;X) and u0 ∈D(A), there exists a
unique function u ∈W1,∞(0,T ;X) which satisfies

u̇(t) +Au(t) � f(t) a.e. t ∈ (0,T),

u(0) = u0.
(3.1)

Here and below D(A), 2X , and I denote, respectively, the domain of
the multivalued operator A, the set of the subsets of X, and the identity
map on X. The proof of this theorem can be found in [6, page 32].

Now we use Theorem 3.1 to obtain the following existence and uni-
queness result.

Theorem 3.2. Under assumptions (2.12), (2.13), (2.14), and (2.18), there ex-
ists a unique solution (u,σ) to Problem 2.2, which satisfies

u ∈W1,∞(0,T ;V ), σ ∈ L∞(0,T ;Q1
)
. (3.2)

Proof. By Riesz representation theorem, we define an operator B : V → V
by

(Bu,v)V =
(Gε(u),ε(v))Q ∀u,v ∈ V. (3.3)

From (2.12) and (2.13), we have

∥∥Bu1 −Bu2
∥∥
V ≤ LG

mA

∥∥u1 −u2
∥∥
V ∀u1,u2 ∈ V, (3.4)

where mA = inf(cA1 , cA2), which proves that B is a Lipschitz continuous
operator. So, the operator B+ (LG/mA)I : V → V is a monotone Lipschitz
continuous operator. We now introduce the indicator function ψU of the
set U and its subdifferential ∂ψU : V → 2V . Since the set U is a nonempty,
closed, and convex part of the space, the subdifferential ∂ψU is a maximal
monotone operator on V and, moreover, D(∂ψU) =U.

We can now say that the sum ∂ψU +B + (LG/mA)I : U ⊆ V → 2V is a
maximal monotone operator. Keeping in mind assumptions (2.21) and
(2.18), we can apply Theorem 3.1 with X = V , A = ∂ψU + B, and ω =
LG/mA. We deduce that there exists a unique element u ∈W1,∞(0,T ;V )
such that

u̇(t) + ∂ψU
(
u(t)

)
+Bu(t) � f(t) a.e. t ∈ (0,T), (3.5)

u(0) = u0. (3.6)



M. Barboteu et al. 583

Form (3.3), (3.5), and (2.17), we obtain

u(t) ∈U,(Aε
(
u̇(t)

)
,ε(v)− ε

(
u(t)

))
Q +

(Gε(u(t)
)
,ε(v)− ε

(
u(t)

))
Q

≥ (
f(t),v−u(t)

)
V ∀v ∈U, a.e. t ∈ (0,T).

(3.7)

Now let σ denote the function defined by (2.23). From (3.7) and (3.6),
it follows that the couple of functions (u,σ) solves Problem 2.2. More-
over, from the regularity u∈W1,∞(0,T ;V ) and assumptions (2.12) and
(2.13), we obtain σ ∈ L∞(0,T ;Q). It now follows from (2.24) and (2.20)
that

Divσm +ϕm
1 = 0 in Ωm × (0,T), (3.8)

and, keeping in mind (2.14), we obtain σ ∈ L∞(0,T ;Q1), which concludes
the existence part of the proof.

The uniqueness part results from the uniqueness of the element u ∈
W1,∞(0,T ;V ) which solves (3.5) and (3.6), guaranteed by Theorem 3.1.

�

We conclude by Theorem 3.2 that, under assumptions (2.12), (2.13),
(2.14), and (2.18), the mechanical problem (2.1)–(2.7) has a unique weak
solution, which solves Problem 2.2.

4. Approach to elasticity

In this section, we investigate the behavior of the solution to Problem 2.2
when the coefficient of viscosity converges to zero. To this end, we re-
strict ourselves to the linear case. Thus, the function Gm = (gmijkl) : Ωm ×
S
d → S

d will represent below a fourth-order tensor field which satisfies
the following assumptions, for m = 1,2:

gmijkl ∈ L∞(Ωm),
Gmσ · τ = σ · Gmτ ∀σ,τ ∈ S

d, a.e. in Ωm,

∃cGm > 0 such that Gmτ · τ ≥ cGm |τ |2 ∀τ ∈ S
d, a.e. in Ωm.

(4.1)

Let θ > 0. We replace in (2.23) the viscosity operators Am by θAm and
use in what follows the notation θA = (θA1,θA2). We assume every-
where in this section that, (2.12), (2.14), (2.18), and (4.1) hold and we
consider the following variational problem.
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Problem 4.1. Find a displacement field uθ=(u1
θ,u

2
θ) :[0,T]→V and a stress

field σθ = (σ1
θ,σ

2
θ) : [0,T]→Q1 such that

σθ(t) = θAε
(
u̇θ(t)

)
+Gε(uθ(t)

)
a.e. t ∈ (0,T), (4.2)

uθ(t) ∈U,
(
σθ(t),ε(v)− ε

(
uθ(t)

))
Q ≥ (

f(t),v−uθ(t)
)
V

∀v ∈U, a.e. t ∈ (0,T),
(4.3)

uθ(0) = u0. (4.4)

Using Theorem 3.2, it follows that the variational Problem 4.1 has a
unique solution (uθ,σθ) with regularity uθ ∈ W1,∞(0,T ;V ) and σθ ∈
L∞(0,T ;Q1).

We now introduce the following variational problem.

Problem 4.2. Find a displacement field u = (u1,u2) : [0,T] → V and a
stress field σ = (σ1,σ2) : [0,T]→Q1 such that, for all t ∈ [0,T],

σ(t) = Gε(u(t)
)
, (4.5)

u(t) ∈U, (
σ(t),ε(v)− ε

(
u(t)

))
Q ≥ (

f(t),v−u(t)
)
V ∀v ∈U. (4.6)

Clearly Problem 4.2 represents the variational formulation of the Sig-
norini frictionless contact problem between two deformable bodies when
the viscoelastic constitutive law (4.2) is replaced by the elastic constitu-
tive law (4.5). Keeping in mind assumptions (2.12), (2.13), (2.14), (2.18),
(4.1) and using arguments on elliptic variational inequalities, we deduce
that the variational Problem 4.2 has a unique solution (u,σ) which has
the regularity u ∈W1,1(0,T ;V ) and σ ∈W1,1(0,T ;Q1).

We consider the following additional assumptions:

u(0) = u0, (4.7)

f ∈W1,2(0,T ;V ), uθ ∈W2,2(0,T ;V ). (4.8)

Our main result in this section is the following.

Theorem 4.3. Assume that (2.12), (2.14), (2.18), and (4.1) hold. Then

uθ −→ u in L2(0,T ;V ) as θ −→ 0. (4.9)
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Moreover, if (4.7) holds, then

max
s∈[0,T]

∥∥uθ(s)−u(s)
∥∥
V −→ 0 as θ −→ 0, (4.10)

and, if (4.8) holds, then

σθ −→ σ in L2(0,T ;Q1
)

as θ −→ 0. (4.11)

We conclude by these results that the weak solution of the Signorini
frictionless contact problem between two elastic bodies may be ap-
proached by the weak solution of the Signorini frictionless contact prob-
lem between two viscoelastic bodies, as the coefficient of viscosity is
small enough. Notice that the convergence (4.9) holds under the basic
regularity of the solution, the convergence (4.10) holds under a compat-
ibility condition between the initial and boundary data, and, finally, the
convergence (4.11) holds under additional regularity of the data and the
solution. In addition to the mathematical interest in the convergences
(4.9), (4.10), and (4.11), they are of importance from the mechanical
point of view, as they indicate that the frictionless elasticity may be con-
sidered as a limit case of frictionless viscoelasticity.

Proof. Let θ > 0. We substitute (4.2) into (4.3) and (4.5) into (4.6), respec-
tively, to obtain

θ
(Aε

(
u̇θ(s)

)
+Gε(uθ(s)

)
,ε(v)− ε

(
uθ(s)

))
Q ≥ (

f(s),v−uθ(s)
)
V ,(Gε(u(s)

)
,ε(v)− ε

(
u(s)

))
Q ≥ (

f(s),v−u(s)
)
V ,

(4.12)

for all v ∈U, a.e. s ∈ (0,T). Taking v = u(s) and v = uθ(s) in the first and
the second inequalities, respectively, and adding the resulted relations,
we deduce that

θ
(Aε

(
u̇θ(s)

)−Aε
(
u̇(s)

)
,ε
(
uθ(s)

)− ε
(
u(s)

))
Q

+
(Gε(uθ(s)

)−Gε(u(s)
)
,ε
(
uθ(s)

)− ε
(
u(s)

))
Q

≤ θ(Aε
(
u̇(s)

)
,ε
(
u(s)

)− ε
(
uθ(s)

))
Q a.e. s ∈ (0,T).

(4.13)

Using (2.17) and the inequality

ab ≤ θ

2α
a2 +

α

2θ
b2 ∀a,b,α > 0, (4.14)
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we find that

θ
(
u̇θ(s)− u̇(s),uθ(s)−u(s)

)
V

+
(Gε(uθ(s)

)−Gε(u(s)
)
,ε
(
uθ(s)

)− ε
(
u(s)

))
Q

≤ θ
(

θ

2mG

∥∥Aε
(
u̇(s)

)∥∥2
Q +

mG
2θ

∥∥ε(uθ(s)
)− ε

(
u(s)

)∥∥2
Q

)

a.e. on (0,T),

(4.15)

where mG = inf(cG1 , cG2).
Let t ∈ [0,T]. Integrating the previous inequality on [0, t] and using

(2.12), (4.1), and (4.4), it follows that

θ
∥∥uθ(t)−u(t)

∥∥2
V +C1

∫ t

0

∥∥uθ(s)−u(s)
∥∥2
V ds

≤ C2θ
2
∫ t

0

∥∥u̇(s)
∥∥2
V ds+C3θ

∥∥u0 −u(0)
∥∥2
V ,

(4.16)

which implies that

∥∥uθ(t)−u(t)
∥∥2
V ≤ C2θ

∫ t

0

∥∥u̇(s)
∥∥2
V ds+C3

∥∥u0 −u(0)
∥∥2
V . (4.17)

Here and below, Cp (p = 1,2, . . .) represent positive constants which may
depend on the problem data but do not depend on time nor on θ.

The convergence result (4.9) now follows from (4.16). Moreover, if
(4.7) holds, the convergence (4.10) follows from (4.17).

Assume in the sequel that (4.8) holds; in this case σθ ∈W1,2(0,T ;Q)
and, moreover (4.2) and (4.3) hold for all t ∈ [0,T]. Using (4.2), (4.5),
(2.12), (4.1), and (2.17), we have

∥∥σθ(s)−σ(s)
∥∥
Q ≤ C4

(
θ
∥∥u̇θ(s)

∥∥
V +

∥∥uθ(s)−u(s)
∥∥
V

)
∀s ∈ [0,T],

(4.18)

which implies that

∥∥σθ −σ
∥∥2
L2(0,T ;Q) ≤ C5

(
θ2

∫T

0

∥∥u̇θ(s)
∥∥2
V ds+

∫T

0

∥∥uθ(s)−u(s)
∥∥2
V ds

)
.

(4.19)

From (4.3), it follows that
(
σθ(s+h)−σθ(s),ε

(
uθ(s+h)

)− ε
(
uθ(s)

))
Q

≤ (
f(s+h)− f(s),uθ(s+h)−uθ(s)

)
V ,

(4.20)
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for all s, h such that s,s + h ∈ [0,T]. We deduce from the previous in-
equality that

(
σ̇θ(s),ε

(
u̇θ(s)

))
Q ≤ (

ḟ(s), u̇θ(s)
)
V a.e. s ∈ (0,T). (4.21)

Keeping in mind the regularity σθ ∈W1,2(0,T ;Q), we derive (4.2) with
respect to the time and plug the result in the previous inequality to ob-
tain

θ
(Aε

(
üθ(s)

)
,ε
(
u̇θ(s)

))
Q +

(Gε(u̇θ(s)
)
,ε
(
u̇θ(s)

))
Q

≤ (
ḟ(s), u̇θ(s)

)
V a.e. s ∈ (0,T).

(4.22)

Let again t be fixed on [0,T]. Integrating the previous inequality on [0, t]
and keeping in mind (4.1) and (4.14), we have

∥∥u̇θ(t)
∥∥2
V +

C6

θ

∫ t

0

∥∥u̇θ(s)
∥∥2
V ds ≤ C7

(
1
θ
+
∥∥u̇θ(0)

∥∥2
V

)
, (4.23)

where C7 depends on ‖ḟ‖L2(0,T ;V ). We multiply this inequality by e(C6/θ)t

and integrate the result on [0,T] to obtain

∫T

0

d

dt

(
e(C6/θ)t

∫ t

0

∥∥u̇θ(s)
∥∥2
V ds

)
dt ≤ C7

(
1
θ
+
∥∥u̇θ(0)

∥∥2
V

)∫T

0
e(C6/θ)tdt,

(4.24)

which implies that

e(C6/θ)T
∫T

0

∥∥u̇θ(s)
∥∥2
V ds ≤

C7

C6

(
1+ θ

∥∥u̇θ(0)
∥∥2
V

)(
e(C6/θ)T − 1

)
. (4.25)

We conclude that

∫T

0

∥∥u̇θ(t)
∥∥2
V dt ≤ C8

(
1+ θ

∥∥u̇θ(0)
∥∥2
V

)
, (4.26)

where C8 = C7/C6.
Let h > 0 be such that t + h,t − h ∈ [0,T]. We take successively v =

uθ(t + h) and v = uθ(t − h) in (4.3) and pass to the limit as h→ 0 in the
corresponding inequalities to obtain

(
σθ(t),ε

(
u̇θ(t)

))
Q =

(
f(t), u̇θ(t)

)
V . (4.27)
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Next, passing to the limit as t→ 0 in the previous equality and using the
regularity uθ ∈W1,2(0,T ;V ) yield

(
σθ(0),ε

(
u̇θ(0)

))
Q =

(
f(0), u̇θ(0)

)
V . (4.28)

Now, we write (4.2) at t = 0, plug the result on the previous equality, and
use (2.12), (2.17) and (4.4) to find that

θ
∥∥u̇θ(0)

∥∥
V ≤ C9. (4.29)

We multiply (4.26) by θ2 and use (4.29) to obtain

θ2
∫T

0

∥∥u̇θ(t)
∥∥2
V dt ≤ C8θ

2 +C8C9θ. (4.30)

Keeping in mind (3.8), we have

Divσm
θ +ϕm

1 = 0 in Ωm × (0,T), (4.31)

and, using (4.6), we deduce that

Divσm +ϕm
1 = 0 in Ωm × (0,T), (4.32)

for m = 1,2. Therefore, we obtain

∥∥σθ(t)−σ(t)
∥∥
Q1

=
∥∥σθ(t)−σ(t)

∥∥
Q ∀t ∈ [0,T], (4.33)

and, using (4.19) and (4.30), we find that

∥∥σθ −σ
∥∥2
L2(0,T ;Q1)

≤ C5

(
C8θ

2 +C8C9θ +
∫T

0

∥∥uθ(t)−u(t)
∥∥2
V dt

)
. (4.34)

The convergence result (4.11) is now a consequence of (4.9) and (4.34).
�

5. Numerical solution

In this section, we introduce our numerical algorithm, which is based on
the Euler-Newton method. To this end, we use a hybrid formulation of
the contact problem, based on the augmented Lagrangian approach.

We start with a fully discrete approach of the problem. Let V h be a
finite-element subspace of V and define the discrete set of admissible
displacements, Uh = U ∩ V h. We denote by Ph : V → Uh the projection
operator and, in addition to the finite-dimensional discretization, we
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consider a time partition
⋃N
n=1[tn−1, tn] of the interval [0,T] such that 0 =

t0 < t1 < · · · < tN = T . Here, for simplicity, we take tn = n/N, n = 0, . . . ,N,
that is, the partition is equidistant. We note the pointwise values u(tn)
by uh

n and we recursively define the incremental velocity by the formula

vhn =
uh
n −uh

n−1

α∆t
− (1−α)

α
vhn−1 if α �= 0,

vhn−1 =
uh
n −uh

n−1

∆t
if α = 0,

(5.1)

for n = 1,2, . . . ,N. Here ∆t = T/(N + 1) and α is a parameter introduced
in order to adjust the finite-differences scheme. The discretization me-
thod based on formula (5.1) is called “α-method.” Notice that for α = 0
or 1, the method is the well-known explicit or implicit Euler method, re-
spectively. Moreover, while α = 1/2, the method is the trapezes method.
In order to eliminate instabilities, in what follows we restrict ourselves
to the case α �= 0.

Under these considerations and taking into account (2.23), (2.24), and
(2.25), a fully discrete approximation of Problem 2.2 is presented as
follows.

Problem 5.1. Find {uh
n}n=0,...,N ⊂ Uh such that uh

0 = Phu0 and, for n = 1,
2, . . . ,N,

(Aε
(
vhn

)
,ε
(
wh)− ε

(
uh
n

))
Q +

(Gε(uh
n

)
,ε
(
wh)− ε

(
uh
n

))
Q

≥ (
f
(
tn
)
,wh −uh

n

)
V ∀wh ∈Uh.

(5.2)

To present the solution algorithm, we assume in the sequel that the
viscosity and the elasticity operators Am : Ωm × S

d → S
d and Gm : Ωm ×

S
d → S

d are linear, symmetric, and positively defined, that is, they satisfy
conditions (2.12) and (4.1), respectively. We need these assumptions in
order to obtain the equivalence between Problem 5.1 and a minimization
problem. Moreover, for a virtual displacement field wh ∈ V h, we use in
the sequel the notation θhn(w

h) ∈ V h for the incremental virtual velocity
defined by

θhn
(
wh) = wh −uh

n−1

α∆t
− (1−α)

α
vhn−1 for n = 1,2, . . . ,N. (5.3)

Notice that from (5.1) and (5.3), it follows that θhn(u
h
n) = vhn, for n = 1,

2, . . . ,N.
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For n = 1,2, . . . ,N, we define the energy function Φh
n : V h → R by

Φh
n

(
wh) = 1

2

∫
Ω
Aε

(
θhn

(
wh)) · ε(wh)dx

+
1
2

∫
Ω
Gε(wh) · ε(wh)dx − (

f
(
tn
)
,wh)

V ∀wh ∈ V h.

(5.4)

Keeping in mind this notation, it is straightforward to see that Problem
5.1 is equivalent to the following problem.

Problem 5.2. Find {uh
n}n=0,...,N ⊂ Uh such that uh

0 = Phu0 and, for n = 1,
2, . . . ,N,

Φh
n

(
uh
n

) ≤Φh
n

(
wh) ∀wh ∈Uh. (5.5)

In order to relax the contact boundary condition on Γ3, we introduce
the indicator function ψR+ : R →]−∞,+∞] of the set R

+ and we denote

Kh(wh) =
∫
Γ3

ψR+
(
dhν

(
wh))da ∀wh ∈ V h. (5.6)

Here dhν represents the positive normal distance defined by dhν(w
h) =

−(wh1
ν +wh2

ν ) for all wh ∈ V h. We can now restate Problem 5.2 to obtain
the following problem without constraints.

Problem 5.3. Find {uh
n}n=0,...,N ⊂ V h such that uh

0 = Phu0 and, for n = 1,
2, . . . ,N,

Φh
n

(
uh
n

)
+Kh(uh

n

) ≤Φh
n

(
wh)+Kh(wh) ∀wh ∈ V h. (5.7)

We now use an augmented Lagrangian approach. To this end, addi-
tional immaterial nodes for the Lagrange multipliers have to be consid-
ered. The construction of these nodes depends on the contact element
we use for the geometrical discretisation of the interface Γ3. We define

Hh
c =

{
γh : Γ3 −→ R, γh|CEhs

= constant ∀s = 1, . . . ,Nc
3

}
, (5.8)

where Nc
3 represents the number of contact elements of the family

(CEh
s )s. Notice that Hh

c is a finite-dimensional subspace of the space
L2(Γ3) and will be endowed with its canonical inner product denoted
by (·, ·)Hh

c
. A smooth minimisation problem equivalent to Problem 5.3 is

the following.
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Problem 5.4. Find {uh
n}n=0,...,N ⊂ V h and {λhn}n=0,...,N ⊂Hh

c such that uh
0 =

Phu0 and, for n = 1,2, . . . ,N,

Φh
n

(
uh
n

)
+Lh(uh

n,λ
h
n

) ≤Φh
n

(
wh)+Lh(wh,γh

) ∀wh ∈ V h, γh ∈Hh
c .
(5.9)

Here Lh(uh
n,λ

h
n), λ

h
n, and γh denote the regularization of the friction-

less functional term Kh(uh
n), the Lagrange multipliers, and a virtual vari-

able, which represent the frictionless contact forces, respectively. The
augmented Lagrangian functional Lh we use in this paper is given by

Lh(wh,γh
)

=
∫
Γ3

(
dhν

(
wh)γh + r

2
∣∣dhν(wh)∣∣2 − 1

2r
dist2

R−
{
γh + rdhν

(
wh)})da

∀wh ∈ V h, γh ∈Hh
c ,
(5.10)

where r is a positive penalty coefficient and

distR−(β) =




0 if β > 0,

−β if β ≤ 0.
(5.11)

For more details about the Lagrangian method, we refer the reader to
[1, 8].

The final step consists now into turning Problem 5.4 into an equiva-
lent form, using, respectively, the differentialsDΦh

n andDLh of the func-
tions Φh

n and Lh. This equivalent form is the following problem.

Problem 5.5. Find {uh
n}n=0,...,N ⊂ V h and {λhn}n=0,...,N ⊂Hh

c such that uh
0 =

Phu0 and, for n = 1,2, . . . ,N,

(
DΦh

n

(
uh
n

)
,wh)

V h +
(
DLh(uh

n,λ
h
n

)
,
(
wh,γh

))
V h×Hh

c
= 0

∀wh ∈ V h, γh ∈Hh
c .

(5.12)

We here use (·, ·)V h×Hh
c

to denote the canonical inner product on the
product Hilbert space V h ×Hh

c . The Lagrangian approach presented
above shows that, at each time increment, Problem 5.5 is governed by
the system of nonlinear equations
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A
(
vhn

)
+G

(
uh
n

)
+F(uh

n,λ
h
n

)
= 0. (5.13)

Here the term A(vhn) + G(uh
n) represent the gradient of the functional

Φh
n in the direction uh

n, vhn being given by (5.1), and the term F(uh
n,λ

h
n)

denotes the gradient of the functional Lh in the direction (uh
n,λ

h
n). We

remark that the volume and surface efforts are contained in the term
G(uh

n). Moreover, for simplicity, in (5.13) and below we do not indicate
the dependence of the operators A and G on h and n, nor the dependence
of the operator F on h.

To solve (5.13), at each time increment, the variables (uh
n,λ

h
n) are treat-

ed simultaneously through a Newton method and therefore in what fol-
lows we use xhn to denote the pair (uh

n,λ
h
n). Notice that the left-hand side

of the system (5.13) contains three terms: the viscous term defined by the
operator A, the elastic term given by G, and a nondifferentiable contact
term described by F. In the following, to simplify the notation, we will
omit the spatial discretization index h.

The solution algorithm we use is a combination of the finite-diffe-
rences and the linear iterations methods. The finite-differences is based
on a generalized trapezes α-method that we choose here in order to have
a better control of the stability of the numerical scheme, while the linear
iterations are based on a Newton method. In order to overcome the non-
differentiability involved in the system (5.13), the Newton method has
been extended to a generalized Newton method (GNM) (see [2] for de-
tails).

The algorithm we have used in the viscoelastic case can be developed
in three steps presented as follows.

A prediction step

This step gives the initial displacement and the velocity by the following
formula:

u0
n+1 = un+1 + vn, v0

n+1 = vn. (5.14)

A Newton linearization step

At an iteration i of the Newton method, we have

xi+1
n+1 = xin+1 −

(Di
n+1

α∆t
+Ki

n+1 +Ti
n+1

)−1(
A
(
vin+1

)
+G

(
ui
n+1

)
+F(xin+1

))
,

Ki
n+1 =DG

(
ui
n+1

)
, Di

n+1 =DA
(
vin+1

)
, Ti

n+1 ∈ ∂F
(
ui
n+1,λ

i
n+1

)
,

(5.15)
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where ∆xi = (∆ui,∆λi) with ∆ui = ui+1
n+1 −ui

n+1 and ∆λi = λi+1
n+1 −λin+1. Here

DG and DA represent the differential of the operators G and A, respec-
tively, and ∂F(x) denotes the generalized Jacobian of F at x. This leads
us to solve the resulting linear system

(Di
n+1

α∆t
+Ki

n+1 +Ti
n+1

)
∆xi = −A

(
vin+1

)−G
(
ui
n+1

)−F(xin+1

)
. (5.16)

We solve the linear system of (5.16) by using a conjugate gradient me-
thod with efficient preconditioners to overcome the poor conditioning of
the matrix due to the unilateral contact term. For more details, we refer
the reader to [4, 27].

A correction step

Once the system (5.16) is resolved, we update xi+1
n+1 and vi+1

n+1 by

xi+1
n+1 = xin+1 +∆xi, vi+1

n+1 = vin+1 +
∆ui

α∆t
. (5.17)

Notice that similar arguments can be used in order to study the dis-
crete approximation of the elastic contact Problem 4.2. In this case the
viscosity term A vanishes there and we remark that the system (5.13)
becomes

G
(
uh
n

)
+F(uh

n,λ
h
n

)
= 0. (5.18)

We again use a Newton method to solve the system (5.18) with the un-
knowns (uh

n,λ
h
n) replaced by xhn and, again, for simplicity, we omit the

index h. This leads to a three steps algorithm taking the following form.

A prediction step

The initial displacement is given by

u0
n+1 = un. (5.19)

A Newton linearization step

At an iteration i of the Newton method, we have

(
Ki
n+1 +Ti

n+1

)
∆xi = −G

(
ui
n+1

)−F(xin+1

)
. (5.20)
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A correction step

We now update xi+1
n+1:

xi+1
n+1 = xin+1 +∆xi. (5.21)

To conclude, to solve the elastic problem, we use the same algorithm
as in the viscoelastic case in which we just take the viscosity operator A
as zero.

6. Numerical results

In this section, we illustrate our theoretical results by numerical simula-
tions in the study of two-dimensional test problems. In both examples,
the viscoelastic bodies are supposed to occupy polygonal domains in the
reference configuration and the potential contact surfaces are straight
lines. Based on the numerical simulations presented in this section, we
strongly believe that the Signorini frictionless condition matches with
this particular geometries and it represents a good approximation of the
contact process, at least for contact processes which occur in a short in-
terval of time.

In both examples, we consider Problem 2.1 in the case when the body
forces vanish, that is, ϕm

1 = 0 for m = 1,2. We use a discretization by lin-
ear piecewise functions for the space V h and a uniform partition of the
time interval. We compute the numerical solution both in the viscoelas-
tic and in the elastic cases in order to illustrate the convergence result in
Theorem 4.3. Moreover, we consider linear elastic and linear viscoelastic
materials. The elasticity tensor Gm and the viscosity tensor Am are given
by

(Gmτ
)
αβ =

E

1− ν2

(
τ11 + τ22

)
δαβ +

E

1+ ν
ταβ, 1 ≤ α,β ≤ 2,

(Amτ
)
αβ = µ

(
τ11 + τ22

)
δαβ +ηταβ, 1 ≤ α,β ≤ 2,

(6.1)

where E is the Young modulus, ν is the Poisson ratio of the material, µ, η
are viscosity constants, and m = 1,2. It is straightforward to see that such
kind of tensors satisfy conditions (4.1) and (2.12), respectively.

To visualize the stresses, we use the Tresca criteria which is given in
the case of plane stresses by the formula

|σ|Tr =
1
2

max
i,j, i�=j

∣∣σ i −σj

∣∣, (6.2)
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Figure 6.1. Initial configuration in the first two-dimensional example.

where σ i, i = 1,2 are the principal directions associated to a stress field
σ ∈ S

2.
For computation in the two examples below, we have used the fol-

lowing data: T = 10s, ϕm
1 = 0N/m2, E = 1N/m2, ν = 0.3, u0 = 0m.The

surface tractions and the viscosity coefficients will be specified later.

6.1. First two-dimensional example

We consider the physical setting presented in Figure 6.1. Here, the two
bodies are assumed to be in an oblique position. Notice that in this case,
there exists a nonzero gap between the contact surfaces; however, our
results above can be extended in this case too. The bodies are clamped
on their respective parts Γ1

1 = {0} × (1.5,3) and Γ2
1 = {0} × (3,4.5). The in-

tensity of the surface tractions depends only on the first component of
the point where they are applied and decreases in the X-direction. Such
intensity is given by the formula: −0.00004(10−x)2, where x symbolizes
the first component of the spatial point.

We made computations both for the viscoelastic and elastic case. For
the viscoelastic cases, we successively choose the following viscosity co-
efficients: (µ,η)=(1,0.6), (µ,η)=(0.5,0.3), (µ,η) = (0.25,0.15), and (µ,η) =
(0.15,0.075). Here and below, for simplicity, we do not indicate the units
of the constants µ and η. The deformed configuration of the two bodies
at final time are plotted in Figures 6.2, 6.3, 6.4, 6.5, and 6.6.

The Tresca criteria |σ|Tr at the final time for the viscoelastic case (µ,
η) = (0.5,0.3) and for the elastic case are presented in Figure 6.7, on the
left-hand side and right-hand side, respectively. Here, the clear nuances
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Figure 6.2. Deformed configuration of the two viscoelastic bodies
for µ = 1.0ns/m2 and η = 0.6ns/m2.

Figure 6.3. Deformed configuration of the two viscoelastic bodies
for µ = 0.5ns/m2 and η = 0.3ns/m2.

Figure 6.4. Deformed configuration of the two viscoelastic bodies
for µ = 0.25ns/m2 and η = 0.15ns/m2.

Figure 6.5. Deformed configuration of the two viscoelastic bodies
for µ = 0.15ns/m2 and η = 0.075ns/m2.

of gray represent the region where the stresses are more important and
the dark gray represents the region where the stresses are less important.

It follows from these numerical simulations that the viscosity plays an
important role since it attenuates the efforts due to the forces. This exam-
ple illustrates also the fact that the elastic problem may be considered as
a limit case of the viscoelastic one, as proved in Theorem 4.3.
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Figure 6.6. Deformed configuration of the two elastic bodies.

Figure 6.7. Tresca criteria for the stresses in the viscoelastic (0.5,0.3)
and elastic cases.

6.2. Second two-dimensional example

For the second example, the physical setting is shown in Figure 6.8. Here
the bodies are supposed to be imbricated in their reference configuration.
The first body Ω1 is assumed to be clamped on Γ1

1 = {0} × (0,2) ∪ {10} ×
(0,2) of its boundary while the second body Ω2 is clamped on Γ2

1 = {0} ×
(2,3) ∪ {10} × (2,3) of its boundary. No surface forces are acting on the
part Γ2

2 = (0,10) × {3} and a constant force of intensity 2.05 × 10−3 ns/m2

is acting on Γ1
2 = (0,10)× {0} in the negative sense of the Y -axis. The com-

mon contact surface Γ3 is highlighted in bold on Figure 6.8.
As in the previous example, we performed simulations both in the vis-

coelastic and elastic cases. For the viscoelastic case, we successively used
our algorithm with the viscosity coefficients (µ,η) = (1.0,0.4), (µ,η) =
(0.5,0.2), (µ,η) = (0.25,0.1), and (µ,η) = (0.125,0.05). The results at the
end of the simulation are illustrated in Figures 6.9, 6.10, 6.11, 6.12, and
6.13, which represent the deformed configuration of the two bodies at
the final time.
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Figure 6.8. Initial configuration in the second two-dimensional example.

Figure 6.9. Deformed configuration of the two viscoelastic bodies
for µ = 1.0ns/m2 and η = 0.4ns/m2.

Figure 6.10. Deformed configuration of the two viscoelastic bodies
for µ = 0.5ns/m2 and η = 0.2ns/m2.

Figure 6.11. Deformed configuration of the two viscoelastic bodies
for µ = 0.25ns/m2 and η = 0.1ns/m2.
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Figure 6.12. Deformed configuration of the two viscoelastic bodies
for µ = 0.125ns/m2 and η = 0.05ns/m2.

Figure 6.13. Deformed configuration of the two elastic bodies.

Figure 6.14. Tresca criteria for the stresses in the viscoelastic
(0.5,0.2) and elastic cases.
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The Tresca criteria |σ|Tr at the final time T for the viscoelastic case
(µ,η) = (0.5,0.2) and for the elastic case are presented in Figure 6.14, on
the left-hand side and right-hand side, respectively. Again, the clear nu-
ances of gray represent the region where the stresses are more impor-
tant and the dark gray represents the region where the stresses are less
important.

We notice that the numerical simulations presented in Figures 6.9,
6.10, 6.11, 6.12, and 6.13 are in agreement with the theoretical result of
Theorem 4.3 since they show that the elastic case is a limit of the vis-
coelastic case as the viscosity coefficients converge to zero.

7. Conclusions

We presented a model for the quasistatic process of frictionless contact
between two viscoelastic bodies within the linear theory of small dis-
placements. The variational inequality for the contact problem was de-
rived, and then it was coupled with the constitutive law and the initial
condition. For this mathematical problem, we established the existence
of the unique weak solution and we studied its behavior, as the viscosity
tensor converges to zero. Then, we presented a fully discrete scheme for
the numerical approximations of the problem as a basis for a computer
code. Two examples were computed using this code. The computer code
was found to behave well, and the numerical solutions seem accurate
and interesting. We remark that three problems, which are outside of the
aim of this paper, are left open.

The first one concerns the modeling and more precisely the descrip-
tion of the evolutionary contact condition between two deformable bod-
ies. Clearly, the classical Signorini frictionless condition we used here is
quite restrictive since it does not provide an accurate description of the
tangential motion, and therefore it may be of interest to consider more
realistic contact models in the future. However, currently, very few re-
sults on this topic are available. Also, models vary from author to author
and from paper to paper, and there is no doubt that a closer look at the
physics of contacting surfaces is needed.

The second open problem concerns a regularity result. Indeed, in
Theorem 3.2, we obtained the basic regularity of the solution, uθ ∈
W1,∞(0,T ;V ), and we used it in the first two convergence results pre-
sented in Theorem 4.3. However, to obtain the last convergence result in
the above theorem, we need an additional regularity of the solution, uθ ∈
W2,2(0,T ;V ), that we assumed as given. Deriving this regularity from
appropriate regularity assumption imposed on the input data should be
of real interest since the field of regularity of solutions in contact me-
chanics contains very few results, is wide open, and its progress is likely
to be slow.
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The third open problem concerns the numerical algorithm we used.
Although recent progress in the study of convergence and error esti-
mates for the fully discrete scheme used in contact mechanics is impres-
sive (see, e.g., the list of references in [15]), many open problems remain
and, to the best of our knowledge, there exist no theoretical results con-
cerning the convergence of the fully discrete scheme associated with the
augmented Lagrangian approach we used in this paper. However, the
results in the literature strongly suggest that this method converges and
it is very accurate and reliable.

We conclude that the results presented in this paper represent a step
in the study of quasistatic contact problems between two deformable
bodies, which inherently are nonlinear, diverse, and rather complex, and
give rise to new and interesting mathematical models which need to be
solved in the future.
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