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We deal with the exact determination of eigenfrequencies of a beam with
intermediate elastic constraints and generally restrained ends. It is the
purpose of this paper to use the calculus of variations to obtain the equa-
tions of motion and the natural boundary conditions, and particularly
those at the intermediate constraints. Numerical values for the first five
natural frequencies are presented in a tabular form for a wide range of
values of the restraint parameters. Several particular cases are presented
and some of these cases have been compared with those available in the
literature.

1. Introduction

Several investigators have studied the influence of rotational and/or
translational restraints at the ends of vibrating beams [2, 3, 4, 5, 6, 8,
9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20]. Rao and Mirza [22] have derived
exact frequency and normal mode shape expressions for uniform beams
with ends elastically restrained against rotation and translation. Nallim
and Grossi [21] studied the dynamical behaviour of beams with com-
plicating effects such as nonuniform cross sections, presence of an arbi-
trarily placed concentrated mass and an axial force, and ends elastically
restrained against rotation and translation.

In contrast to the body of information described, there is only a lim-
ited amount of information for beams elastically restrained at interme-
diate points. Rutemberg [24] presented eigenfrequencies for a uniform
cantilever beam with a rotational restraint at some position. Lau [13]
extended Rutemberg’s results including an additional spring to against
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Figure 2.1. Vibrating system under study.

translation. Arenas and Grossi [1] presented exact and approximate fre-
quencies of a uniform beam, with one end spring-hinged and a rotational
restraint in a variable position.

The present paper is concerned with the general problem of free vi-
brations of a uniform beam with intermediate constraints and ends elas-
tically restrained against rotation and translation.

Exact expressions for frequencies are presented. The generally re-
strained beam analysed includes the classical end conditions: clamped,
simply supported, sliding, and free as simply particular cases. It also
includes the cases with ends and/or intermediate points elastically re-
strained, previously analysed by other investigators and available in the
literature. Some of these particular cases are discussed.

The eigenvalues have been calculated numerically by applying a
bracketing method strategy to the corresponding frequency equation.
Results for the first five eigenfrequencies for some typical cases are pre-
sented. A comparison with published results is included. A great num-
ber of problems were solved; and since this number of cases is prohibi-
tively large, results are presented for only a few cases.

2. Variational derivation of the boundary and eigenvalue problem

We consider the uniform beam of length l, shown in Figure 2.1, which
has elastically restrained ends and is constrained at an intermediate
point with variable position. It has been assumed that the ends and the
intermediate points are elastically restrained against rotation and trans-
lation. The rotational restraints are characterised by the spring constants
r1, r2, and rc and the translational restraints by the spring constants t1, t2,
and tc. Adopting the adequate values of the parameters ri and ti, i = 1,2,
all the possible combinations of classical end conditions (i.e., clamped,
pinned, sliding, and free) can be generated. On the other hand, adopting
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the adequate values of the parameters rc and tc, different constraints can
be generated and also the case of a two-span beam.

It is the purpose of this paper to use the calculus of variations to ob-
tain the equations of motion and the natural boundary conditions, par-
ticularly, those at the intermediate constraints.

In order to analyse the transverse planar displacements of the system
under study, we suppose that the vertical position of the beam at any
time t is described by the function u = u(x,t), x ∈ [0, l].

It is well known that at time t, the kinetic energy of the beam, the
potential energy due to elastic deformation of the beam, and the springs
are given by (see [7, 25])

T =
1
2

∫ l

0
ρA

(
∂u(x,t)

∂t

)2

dx,

U =
1
2

{∫ l

0
EI

(
∂2u(x,t)

∂x2

)2

dx + r1

(
∂u(0, t)
∂x

)2

+ t1u(0, t)2

+ rc

(
∂u(c, t)
∂x

)2

+ tcu(c, t)2 + r2

(
∂u(l, t)
∂x

)2

+ t2u(l, t)2

}
,

(2.1)

where ρ is the mass per unit length, A the cross-sectional area, and EI
the flexural rigidity of the beam.

Hamilton’s principle requires that between times ta and tb, at which
the positions are known, the motion will make the action integral F(u) =∫ tb
ta
Ldt on the space of admissible functions stationary, where the La-

grangian is given by L = T −U (see [26]).
In consequence, the energy functional to be considered is given by

F(u) =
1
2

∫ tb

ta

∫ l

0

(
ρA

(
∂u(x,t)

∂t

)2

−EI
(
∂2u(x,t)

∂x2

)2
)
dxdt

− 1
2

∫ tb

ta
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(
∂u(0, t)
∂x

)2

dt− 1
2

∫ tb

ta

t1u(0, t)2dt− 1
2

∫ tb

ta

rc

(
∂u(c, t)
∂x

)2

dt

− 1
2

∫ tb

ta

tcu(c, t)2dt−1
2

∫ tb

ta

r2

(
∂u(l, t)
∂x

)2

dt− 1
2

∫ tb

ta

t2u(l, t)2dt.

(2.2)

The stationary condition for the functional (2.2) requires that δF(u,v) =
0, for all v ∈ D0, where D0 is the space of admissible directions at u for
the domain D of the functional.
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In order to make the mathematical developments required by the ap-
plication of the techniques of the calculus of variations, we assume that
the domain D is the set of functions

u(x, ·) ∈ C2[ta, tb], u(·, t) ∈ C1[0, l]∩ Ĉ4[0, l], (2.3)

where Ĉ4[0, l] denotes the space of functions with piecewise continuous
derivatives up to order four with only one corner point c. At this point
c, at least the one-sided derivatives, with respect to x of order greater
than one, exist. For instance, ∂2u(x,t)/∂x2 is continuous on [0, l] except
at the point c, where it has the one-sided derivatives ∂2u(c−, t)/∂x2 and
∂2u(c+, t)/∂x2. The same situation occurs for ∂3u(x,t)/∂x3 and ∂4u(x,t)/
∂x4. Consequently, if u(·, t) ∈ C1[0, l] ∩ Ĉ4[0, l], then u(·, t) ∈ C1[0, l] and
also u ∈ C4[0, c] and u ∈ C4[c, l].

In view of all these observations and since Hamilton’s principle re-
quires that between times ta and tb, the positions are known, the domain
of the functional (2.2) is given by

D =
{
u : u(x, ·) ∈ C2[ta, tb], u(·, t) ∈ C1[0, l]∩ Ĉ4[0, l],

u
(
x,ta
)
, u
(
x,tb
)

prescribed
}
.

(2.4)

Since u(·, t) ∈ C1[0, l], there exists continuity of deflection and slope at
the point x = c and this generates the following conditions:

u
(
c−, t
)
= u
(
c+, t
)
= u(c, t),

∂u
(
c−, t
)

∂x
=
∂u
(
c+, t
)

∂x
=
∂u(c, t)
∂x

.
(2.5)

The only admissible directions v at u ∈ D are those for which u+ εv ∈ D
for sufficiently small ε; in consequence, in view of (2.4), v is an admissi-
ble direction at u for D if and only if v ∈ D0, where

D0 =
{
v : v(x, ·) ∈ C2[ta, tb], v(·, t) ∈ C1[0, l]∩ Ĉ4[0, l],

v
(
x,ta
)
= v
(
x,tb
)
= 0, ∀x ∈ (0, l)

}
.

(2.6)

Using the definition of variation of F at u in the direction v

δF(u;v) =
dF(u+ εv)

dε

∣∣∣∣
ε=0

, (2.7)
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we obtain

δF(u;v) =
∫ tb

ta

∫ l

0

(
ρA

∂u

∂t

∂v

∂t
−EI

∂2u

∂x2

∂2v

∂x2

)
dxdt

−
∫ tb

ta

r1
∂u(0, t)
∂x

∂v(0, t)
∂x

dt−
∫ tb

ta

t1u(0, t)v(0, t)dt

−
∫ tb

ta

rc
∂u(c, t)
∂x

∂v(c, t)
∂x

dt−
∫ tb

ta

tcu(c, t)v(c, t)dt

−
∫ tb

ta

r2
∂u(l, t)
∂x

∂v(l, t)
∂x

dt−
∫ tb

ta

t2u(l, t)v(l, t)dt.

(2.8)

Now we consider the integral
∫ tb
ta

∫ l
0 (ρA(∂u/∂t)(∂v/∂t))dxdt. Since u(x, ·),

v(x, ·) ∈ C2[ta, tb], we can integrate by parts with respect to t; and if we
apply the conditions v(x,ta) = v(x,tb) = 0 for all x ∈ (0, l), imposed in
(2.6), we obtain

∫ tb

ta

∫ l

0
ρA

∂u

∂t

∂v

∂t
dxdt = −

∫ tb

ta

∫ l

0
ρA

∂2u

∂t2
vdxdt. (2.9)

On the other hand, in
∫ tb
ta

∫ l
0 EI(∂2u/∂x2)(∂2v/∂x2)dxdt, the integrand may

not be continuous at the corner point c, but since

u(·, t),v(·, t) ∈ C4[0, c], u(·, t),v(·, t) ∈ C4[c, l], (2.10)

the integral may be represented as the sum of two integrals on [0, c] and
[c, l], respectively. Thus if we integrate twice by parts, with respect to x,
we obtain

∫ tb

ta

∫ c

0
EI

∂2u

∂x2

∂2v

∂x2
dxdt

=
∫ tb

ta

∫ c

0
EI

∂4u

∂x4
vdxdt

+EI
∫ tb

ta

(
∂2u
(
c−, t
)

∂x2

∂v(c, t)
∂x

− ∂2u(0, t)
∂x2

∂v(0, t)
∂x

− ∂3u
(
c−, t
)

∂x3
v(c, t) +

∂3u(0, t)
∂x3

v(0, t)

)
dt.

(2.11)
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Similarly, we obtain

∫ tb

ta

∫ l

c

EI
∂2u

∂x2

∂2v

∂x2
dxdt

=
∫ tb

ta

∫ l

c

EI
∂4u

∂x4
vdxdt

+EI
∫ tb

ta

(
− ∂2u

(
c+, t
)

∂x2

∂v(c, t)
∂x

+
∂2u(l, t)
∂x2

∂v(l, t)
∂x

+
∂3u
(
c+, t
)

∂x3
v(c, t)− ∂3u(l, t)

∂x3
v(l, t)

)
dt.

(2.12)

Replacing (2.9), (2.11), and (2.12) in (2.8), we obtain

δF(u;v) = −
∫ tb

ta

∫ c

0

(
ρA

∂2u

∂t2
+EI

∂4u

∂x4

)
vdxdt

−
∫ tb

ta

∫ l

c

(
ρA

∂2u

∂t2
+EI

∂4u

∂x4

)
vdxdt

+
∫ tb

ta

(
− r1

∂u(0, t)
∂x

+EI
∂2u(0, t)
∂x2

)
∂v(0, t)
∂x

dt

+
∫ tb

ta

(
− t1u(0, t)−EI

∂3u(0, t)
∂x3

)
v(0, t)dt

+
∫ tb

ta

(
−rc ∂u(c, t)

∂x
−EI

∂2u
(
c−, t
)

∂x2
+EI

∂2u
(
c+, t
)

∂x2

)
∂v(c, t)
∂x

dt

+
∫ tb

ta

(
−tcu(c, t) +EI

∂3u
(
c−, t
)

∂x3
−EI

∂3u
(
c+, t
)

∂x3

)
v(c, t)dt

+
∫ tb

ta

(
−r2

∂u(l, t)
∂x

−EI
∂2u(l, t)
∂x2

)
∂v(l, t)
∂x

dt

+
∫ tb

ta

(
−t2u(l, t) +EI

∂3u(l, t)
∂x3

)
v(l, t)dt.

(2.13)

According to Hamilton’s principle, the expression (2.13) must vanish for
the function u corresponding to the actual motion of the beam. If we first
suppose that both ends of the beam and the restraint at x = c are rigidly
clamped, the directions v must satisfy

v(0, t) =
∂v(0, t)
∂x

= v(l, t) =
∂v(l, t)
∂x

= v(c, t) =
∂v(c, t)
∂x

= 0 ∀t ∈ (ta, tb).
(2.14)
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Using (2.14) in (2.13) leads to

δF(u;v) = −
∫ tb

ta

∫ c

0

(
ρA

∂2u

∂t2
+EI

∂4u

∂x4

)
vdxdt

−
∫ tb

ta

∫ l

c

(
ρA

∂2u

∂t2
+EI

∂4u

∂x4

)
vdxdt.

(2.15)

Setting (2.15) to zero since v is an arbitrary smooth function satisfying
conditions (2.14), the fundamental lemma of the calculus of variations
can be applied, and we obtain that u must satisfy the following differen-
tial equations:

EI
∂4u(x,t)

∂x4
+ ρA

∂2u(x,t)
∂t2

= 0 ∀t, ∀x ∈ (0, c), (2.16)

EI
∂4u(x,t)

∂x4
+ ρA

∂2u(x,t)
∂t2

= 0 ∀t, ∀x ∈ (c, l). (2.17)

Next we remove the restrictions (2.14); and since u must satisfy (2.16)
and (2.17), (2.13) reduces to

δF(u;v) =
∫ tb

ta

(
−r1

∂u(0, t)
∂x

+EI
∂2u(0, t)
∂x2

)
∂v(0, t)
∂x

dt

+
∫ tb

ta

(
−t1u(0, t)−EI

∂3u(0, t)
∂x3

)
v(0, t)dt

+
∫ tb

ta

(
−rc ∂u(c, t)

∂x
−EI

∂2u
(
c−, t
)

∂x2
+EI

∂2u
(
c+, t
)

∂x2

)
∂v(c, t)
∂x

dt

+
∫ tb

ta

(
−tcu(c, t) +EI

∂3u
(
c−, t
)

∂x3
−EI

∂3u
(
c+, t
)

∂x3

)
v(c, t)dt

+
∫ tb

ta

(
−r2

∂u(l, t)
∂x

−EI
∂2u(l, t)
∂x2

)
∂v(l, t)
∂x

dt

+
∫ tb

ta

(
−t2u(l, t) +EI

∂3u(l, t)
∂x3

)
v(l, t)dt.

(2.18)

The expression (2.18) must vanish for the function u corresponding to
the actual motion of the mechanical system under study, and as the func-
tions v(0, t), ∂v(0, t)/∂x, v(l, t), ∂v(l, t)/∂x, v(c, t), ∂v(c, t)/∂x, and the
interval [ta, tb] are arbitrary, equating (2.18) to zero leads to the natural
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boundary conditions of the problem:

r1
∂u(0, t)
∂x

= EI
∂2u(0, t)
∂x2

,

t1u(0, t) = −EI
∂3u(0, t)
∂x3

,

rc
∂u(c, t)
∂x

= EI

(
−∂

2u
(
c−, t
)

∂x2
+
∂2u
(
c+, t
)

∂x2

)
,

tcu(c, t) = EI

(
∂3u
(
c−, t
)

∂x3
− ∂3u

(
c+, t
)

∂x3

)
,

r2
∂u(l, t)
∂x

= −EI
∂2u(l, t)
∂x2

, t2u(l, t) = EI
∂3u(l, t)
∂x3

.

(2.19)

3. Determination of the exact solution

Using the well-known method of separation of variables, one assumes
as a solution of (2.16) the expression of the form

u−(x,t) =
∞∑
n=1

u−
n(x)T(t). (3.1)

Similarly, for (2.17), we write

u+(x,t) =
∞∑
n=1

u+
n(x)T(t). (3.2)

The functions u−
n(x) and u+

n(x) denote the corresponding nth mode of
natural vibration and are, respectively, given by

u−
n(x) =A1 coshkx +A2 sinhkx +A3 coskx +A4 sinkx,

u+
n(x) =A5 coshkx +A6 sinhkx +A7 coskx +A8 sinkx,

(3.3)

where the parameter k is given by k = (
√
ρA/EIωn)1/2.

Substituting (3.3) in (3.1) and (3.2) and then in the boundary condi-
tions (2.19) and in the continuity conditions (2.5), one obtains a set of
eight homogeneous equations in the constants Ai. Since the system is
homogeneous for the existence of a nontrivial solution, the determinant
of coefficients must be equal to zero. This procedure yields the frequency
equation

G
(
Ri,Ti,Rc,Tc,λ,c

)
= 0, (3.4)
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where

Ri =
ril

(EI)
, Ti =

til
3

(EI)
, i = 1,2,

Rc =
rcl

(EI)
, Tc =

tcl
3

(EI)
,

λ = kl, c =



√

ρA

EI
ωl




1/2

.

(3.5)

4. Analysis of particular cases

Since the analytical expression of (3.4) is extremely complex, it is not
included, but since it can be used to obtain special cases by substituting
limiting values of the restraint parameters Ri,Ti, i = 1,2, Rc, and Tc, some
particular analytical expressions will be included.

(i) Boundary conditions: RR-F (one end rotationally restrained and
the other free, T1 →∞, R2 → 0, T2 → 0, Rc → 0, Tc → 0).

Frequency equation:

λ(sinhλcosλ− sinλcoshλ) +R1(1+ cosλcoshλ) = 0. (4.1)

(ii) Boundary conditions: TR-TR (both ends translationally restrained
R1 → 0, R2 → 0, Rc → 0, Tc → 0).

Frequency equation:

λ6(1− cosλcoshλ) + T2λ
3(−sinλcoshλ+ sinhλcosλ)

+ T1λ
3(sinhλcosλ− sinλcoshλ) + 2T1T2 sinhλsinλ = 0.

(4.2)

(iii) Boundary conditions: SLIDING-ER (one end sliding and the other
elastically restrained against rotation and translation, R1 → ∞, T1 → 0,
Rc → 0, Tc → 0).

Frequency equation:

2
(
λT2 cosλcoshλ−R2λ

3 sinhλsinλ
)

+ (sinhλcosλ+ coshλsinλ)
(
R2T2 −λ4) = 0.

(4.3)

5. Numerical results

The first five natural frequencies of free vibration of beams with sev-
eral complicating effects were obtained by using the following strategy.
When the values of the parameters Ri, Ti, Rc, Tc, and c are given, (3.4) re-
duces to Ḡ(λ) = 0. A first approximation of the roots of this equation was
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Table 5.1. Values of the coefficient λ1 of a cantilever beam with an
intermediate point elastically restrained against rotation and transla-
tion, T1 =∞, R1 =∞, T2 = 0, R2 = 0, and c = 0.6.

Tc

0 1 10 100 1000 10000

Rc

0 1.87510407 1.90645722 2.13028597 2.93657102 3.57232073 3.67174004

1 2.06654909 2.09118908 2.27624824 3.02368609 3.65356416 3.75239457

10 2.60875718 2.62383401 2.74617885 3.37789697 4.03322217 4.13616565

100 2.94991835 2.96250788 3.06733852 3.67937709 4.44669639 4.56946848

1000 3.00457788 3.01689906 3.11984386 3.73240031 4.53274975 4.66229891

10000 3.01037153 3.02266576 3.12542146 3.73807988 4.54227057 4.67263743

Table 5.2. Values of coefficients λ1 for a beam with both ends and
the intermediate point elastically restrained against rotation and
translation.

Tc

0 1 10 100 1000

Rc

0 1.72043695 1.76837312 2.08199639 3.08486980 3.20873280
1 1.73326078 1.78041921 2.09082061 3.12149362 3.33630498

10 1.76617200 1.81126557 2.11253599 3.15326549 3.89970682
100 1.78185396 1.82592282 2.12240538 3.15839242 4.34988176

1000 1.78402861 1.82795307 2.12374977 3.15892488 4.35002422

determined by means of a graphical procedure. The corresponding nu-
merical values with an accuracy of 15 digits were obtained by applying
the classical bisection method and then rounded to eight decimal digits.

Some of these were compared with those available in the literature.
The results are presented in a tabular form in Tables 5.1, 5.2, 5.3, 5.4, 5.5,
and 5.6.

Translationally and rotationally constrained cantilever beam

Table 5.1 depicts the values of the coefficient λ1 of a cantilever beam with
an intermediate point elastically restrained against rotation and transla-
tion. The values obtained with the present approach, when rounded to
five decimal digits, show a complete agreement with the values reported
by Lau [13].
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Table 5.3. Values of coefficients λ2 for a beam with both ends and
the intermediate point elastically restrained against rotation and
translation.

Tc

0 1 10 100 1000

Rc

0 3.22334788 3.22346332 3.22460001 3.27769943 4.35024819
1 3.34730310 3.34737250 3.34804509 3.36944527 4.35025349

10 3.90227826 3.90228315 3.90232854 3.90296435 4.35031637
100 4.51301613 4.51301773 4.51303213 4.51318339 4.51602489

1000 4.64793800 4.64794190 4.64797701 4.64833088 4.65211572

Table 5.4. Values of coefficients λ3 for a beam with both ends and
the intermediate point elastically restrained against rotation and
translation.

Tc

0 1 10 100 1000

Rc

0 6.06090936 6.06297669 6.08160554 6.26861751 7.70206094
1 6.06131847 6.06338589 6.08201554 6.26903564 7.70295117

10 6.06395142 6.06601882 6.08464827 6.27166813 7.70772262
100 6.06943070 6.07149472 6.09009401 6.27684185 7.71423506

1000 6.07129751 6.07335937 6.09193939 6.27851772 7.71581204

Table 5.5. Values of coefficients λ4 for a beam with both ends and
the intermediate point elastically restrained against rotation and
translation.

Tc

0 1 10 100 1000

Rc

0 9.08972148 9.08973195 9.08982653 9.09080408 9.10521528
1 9.14024985 9.14026019 9.14035354 9.14131701 9.15524739

10 9.48041713 9.48042702 9.48051627 9.48142974 9.49324713
100 10.25960952 10.25962165 10.25973098 10.26083269 10.27273276

1000 10.53799639 10.53801108 10.53814340 10.53946999 10.55305237

Translationally and rotationally constrained beam at both ends and at an inter-
mediate point

Tables 5.2, 5.3, 5.4, 5.5, and 5.6 depict the values of coefficients λi, i =
1, . . . ,5, for a general restrained beam. Both ends and the intermediate
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Table 5.6. Values of coefficients λ5 for a beam with both ends and
the intermediate point elastically restrained against rotation and
translation.

Tc

0 1 10 100 1000

Rc

0 12.15273465 12.15300155 12.15540541 12.17961523 12.43664656
1 12.15362210 12.15388894 12.15629225 12.18049668 12.43748474

10 12.16024052 12.16050678 12.16290491 12.18705823 12.44361796
100 12.18208455 12.18234743 12.18471518 12.20856803 12.46251085

1000 12.19397508 12.19423521 12.19657823 12.22018715 12.47203118

point are elastically restrained against rotation and translation (T1 = 1,
R1 = 100, T2 = 10, R2 = 10, and c = 1/2).

6. Conclusions

Exact frequency expressions for generally restrained beams with inter-
mediate elastic constraints were derived. Numerical results for the first
five natural frequencies have been presented in tabular form.

Several particular cases were solved and the results obtained were
compared with previously published results to demonstrate the accu-
racy and flexibility of the present approach. Excellent agreement was
obtained between the present results and the comparison exact values.

It can also be seen, from the results presented, that both the rotational
and the translational restraints at the intermediate point have a signif-
icant effect on the frequencies and that the translational restraint gen-
erally has greater influence on these frequencies than the rotational re-
straint.

The procedure presented has a great flexibility and excellent accuracy
and constitutes an efficient tool for the rapid and inexpensive determi-
nation of natural frequencies in an important number of beam vibrating
problems being, in consequence, of interest in design works.

Boundary conditions containing the function u and derivatives of u
of orders not greater than m − 1 are called stable or geometric for a dif-
ferential equation of order 2m, and those containing derivatives of or-
ders higher than m − 1 are called unstable or natural [23]. Thus, if 0 ≤
ri, rc <∞, and if 0 ≤ ti, tc <∞, i = 1,2, conditions (2.19) are unstable. It is
well known that when using the Ritz method, we choose a sequence of
functions vi which constitute a base in the space of homogeneous stable
boundary conditions (see [23]), so in this case there is no need to sub-
ject the functions vi to the natural boundary conditions (2.19). This is a
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very important characteristic of the mentioned variational method in the
determination of approximate solutions of the problem under study.
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