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When o is a quasi-definite moment functional with the monic orthogonal
polynomial system {P,(x)}%_,, we consider a point masses perturbation T
of o given by T:= o+ AY " > o (=1 up/kN6M (x — ¢1), where A,
uk, and c; are constants with c1 75 ¢; for i #j. That is, T is a gen-
eralized Uvarov transform of o satisfying A(x)T = A(x)o, where A(x) =
[T (x—c)™ ™. We find necessary and sufficient conditions for T to be
quasi-definite. We also discuss various properties of monic orthogonal poly-
nomial system {R,, (x)}5°_, relative to T including two examples.

1. Introduction

In the study of Padé approximation (see [5, 10, 21]) of Stieltjes type mero-
morphic functions

where —oco < a < b < oo, Cyy are constants, and dp(x) is a positive Stieltjes
measure, the denominators R, (x) of the main diagonal sequence of Padé
approximants satisfy the orthogonality

m My

(1.1)

1=1k=0 )kH,

b mo oMy
J Ru()m(x)du(x)+> > Cud*[nRu](ct) =0, mePn 4, (1.2)

a 1=1k=0
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70  Generalized Uvarov transforms

where P, is the space of polynomials of degree < n with P_; ={0}. That is,
R, (x) (n > 0) are orthogonal with respect to the measure

m my

dLL+Z Z(—])kCLké(k)(x—cl), (13)

1=1k=0

which is a point masses perturbation of du(x). Orthogonality to a positive
or signed measure perturbed by one or two point masses arises naturally
also in orthogonal polynomial eigenfunctions of higher order (> 4) ordi-
nary differential equations (see [14, 15, 16, 19]), which generalize Bochner’s
classification of classical orthogonal polynomials (see [6, 18]). On the other
hand, many authors have studied various aspects of orthogonal polynomials
with respect to various point masses perturbations of positive-definite (see
[1, 2, 8, 14, 27, 28]) and quasi-definite (see [3, 4, 9, 11, 12, 20, 23]) moment
functionals. In this work, we consider the most general such situation. That
is, we consider a moment functional T given by

AL (_])kulk
T=0+A) 3 3 (x—a), (1.4)
1=1k=0 ’

where o is a given quasi-definite moment functional, A, w,, and ¢, are
complex numbers with u; ., #0 and c; # ¢; for i #7j, that is, T is obtained
from o by adding a distribution with finite support. We give necessary and
sufficient conditions for T to be quasi-definite. When  is also quasi-definite,
we discuss various properties of orthogonal polynomials {Rn (x)}_, relative
to T in connection with orthogonal polynomials {P,, (x)}_, relative to o.
These generalize many previous works in [4, 9, 11, 12, 20, 23].

2. Necessary and sufficient conditions

For any integer n > 0, let P,, be the space of polynomials of degree <n and
P =J,>oPn. For any 7t(x) in P, let deg(7) be the degree of 7t(x) with the
convention that deg(0) = —1. For the moment functionals o, T (i.e., linear
functionals on P) (see [7]), ¢ in C, and a polynomial ¢p(x) = Y |_, axx, let

(o', ) :=—(0,7); (po,m) := (o, pm);

{((x—c) 'o,m):=(0,0.m); (8cm) (x) = M; (2.1)

X—cC

(od)(x):= Z < Q ij> x* (oT,m) = (0,T7M), TEP.
=0 \j=k

k

)
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We also let

o0

Flo)2) =Y ZSL (2.2)

n=0

be the (formal) Stieltjes function of o, where oy, := (o,x™) (n > 0) are the
moments of o. Following Zhedanov [29], for any polynomials A(z), B(z),
C(z), D(z) with no common zero and |C|+|D| # 0, let

AF(o)+B

S(A,B,C,D)F(U)(Z) = m

(2.3)

If S(A,B,C,D)F(0) = F(1) for some moment functional <, then we call T a
rational (resp., linear) spectral transform of o (resp., when C(z) =0). Then
S(A,B,C,D)F(o) = F(t) if and only if

xA(x)o = C(x)(o1)+xD(x)T,

(0,A)+x(080A) (x) +xB(x) = (07) (00C) (x) + (T,D) +x(160D) (x). (2.4)
In particular, for any c and 3 in C, let
Ule, pIF(o) = ZZIHONTE (2.5)

z—c¢
be the Uvarov transform (see [28, 29]) of F(o). Then for any {c;}_; and
{Bi}i; in C,

F(t) :=U(cx, Bx) - U(cr,B1)Flo) =

A(x)t=A(x)o. (2.7)

In this case, we say that T is a generalized Uvarov transform of o. Conversely,
if (2.7) holds for some polynomial A(x) (£ 0), then

Fir) = A(z)F(o)+ (TG(;\/X)(Z) —(060A)(2) (2.8)

and F(t) is obtained from F(o) by deg(A) successive Uvarov transforms (see
[29]), that is, T is a generalized Uvarov transform of o.

In the following, we always assume that T is a moment functional given
by (1.4), where o is a quasi-definite moment functional. Let {P,,(x)}%_, be
the monic orthogonal polynomial system (MOPS) relative to o satisfying the
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three term recurrence relation
Pn+1(x) = (X_bn)Pn(x)_CnPnfﬂx)) n>o0, (P,](X) :0) (29)

Since (1.4) implies (2.7) with A(x) =[]~ (x—ci)™ ™!, 7 is a generalized
Uvarov transform of o. Then our main concern is to find conditions under
which a generalized Uvarov transform t, given by (1.4), of ¢ is also quasi-
definite. In other words, we are to solve the division problem (2.7) of the
moment functionals.

Let

Kn(x,y):ZPj(;)E;(;”, n>0 (2.10)
)

=

be the nth kernel polynomial for {P,, (x)}22_, and K7 (x, )=, 0,1 Kn (x, ).
We need the following lemma which is easy to prove.

Lemma 2.1. Let V = (x1,%2,...,xn)t and W = (y1,Y2,...,yn)t be two vec-
tors in C™. Then

n
det (In+VW') =1+ ) xy;, n>1, (2.11)
j=1
where 1,, is the n x n identity matrix.
Theorem 2.2. The moment functional T is quasi-definite if and only if
dn # 0, n > 0, where d, is the determinant of (Y} {~;(my+ 1)) x
(X%, (my+1)) matrix Dy:

m

Dy, = [Aﬂ(n)h‘lﬂ , n>0, (2.12)
where
mlfiu o mey My
Aa(n) = [subii+A Y %Kﬁfv”(ct,cl) . (2.13)
= k=0, i=0

If v is quasi-definite, then the MOPS {R(x)}%°_, relative to T is given by

. .
Ru(x)=Pn(x)=AY_ > % “{;;'“ KT (x, e )R (c), (2.14)
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where (R (cy) 121 i~ are given by

[ Ra(cr) 1 [ Pnler)
R;I(C1) P%(C])
Dnot | R (er) [ = P (er) |, n>0(Dy=1).  (2.15)
Rn(CZ) Pn(Cz)
(mm.) (mm.)
R (em)] [P0 (em)
Moreover,
(TR2) =T (,P2), n>0(d1=1). (2.16)
n—1

Proof. (=). Assume that T is quasi-definite and expand R, (x) as
Ru(x) =Pn(x)+ > CniPi(x), n>1, (2.17)

where Cpj = (0,RnP;)/(0,P7), with 0 <j <n—1. Here,

u”‘ (x— cl),RnPj>

(2.18)
m My ulk k
=AY D G
1=1%k=0 i=0
so that
n—1 Pj(X) mo My U k K Y i)
Ru(x) =Pu(x) =AY (0,7 DY D CJRn (c)P“ (cr)
j=0 »7 )/ 1=1k=0 i=0
m my k
k : _
—pab-ad Y My (SRR Y e
1=1k=0  i=0 v
m mp; mp—i )
=Pu(x)=AY_ uﬁi}?’ K (x,c )R (1)
1=1i=0 j=0
(2.19)
Hence, we have (2.14). Set the matrices By and E, to be
Rn (Cl) Pn (Cl)
Rl Pl
B, = “{Cl) = “SCL) C1<l<m. (2.20)

R%ml)(cl) Pglmt)(cl)
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Then,
E] B]
E2 B>
. = [Atl(n_1)]?1:] . ) (221)
Em Bm

which gives (2.15). Now,

m

Dn = [Aﬂ(“)]t,1:1

A mlfi ) ) My my m
o s [ B e ene] |
j ’ t,1=1

(o,P%)

j=0 k=0, i=0
Eq
A B T& REUSLETR
=Dn_1+ ) —]P(])(m), 1 p0) (¢ )) ’
" <G>P721> . L-o Lon ]—Zo ! ﬂ(
Em
Wy v Wi
(e, R ().
j=
uTT:L:lm PTI (Cm)]
B
)\ BZ mq U . my—1 Wq i1 .
=Dp 1 [T+ 57—5¢ =P (cy), —L2Lpl) (¢y),...,
S erd) | L;ﬂ“(])j_zo o)
Bm
m>

uq m1P Z )

um,mm
- P (Cm)] (2.22)
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so that

by Lemma 2.1. On the other hand,

(t,R%) = (T, RuPn)

<G,RnPn>—|—7\<i

my

ulk (X_Cl) »Rnpn>

1=1%k=0

—_

cr Pz —H\ii Uik Z ( )R( (kiﬂ(cl) (2.24)

1=1k=0 j=0

= (o,P? +Ai§§u“(.) ()P ()

1=1j=0k=j

so that

mo My myp— j

(LR =(a,PHy+AY Y N “1‘;:'“ (c)PM(c).  (2.25)

1=1j=0 k=0

Hence, from (2.23) and (2.25), we have
(0,PF)dn =dn 1(T,R3), M >0. (2.26)

Note that (2.26) also holds for n = 0 if we take d_; = 1. Hence, d,, # 0,
n > 0 inductively and we have (2.16).

(«<). Assume that d,, # 0, with n > 0 and define {R,,(x)}%_, by (2.14).
Then we have, by (2.14) and (2.23),
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m m
(T,RnPr) = (0,RnPy) +?\<ZZ ulk (x—cl),RnPr>
1=1 k=0
¢y ik g plki)
=(oRr ) 3 Y (§)RY P e
1=1k=0 j=0
m m mli.ul)+k o)
G Pn P —A Z Z k! n )<O—’Kn—1 (X)Cl)Pr(X)>
1=1j=0 k=0
m My Mmyp— ]LLl ]+k .
+)\ZZ Z jlk! )P£ )(Cl)
1=1j=0 k=0

(o,PnPy) ZZZ“ﬁ (c0)PI (c0) (1—8ns)

m m1m1]

AN Y Y SR )P ()

1=1j=0 k=0

0, 0<r<n—1,

— m mp my—j

(PN Y Y SR R @), r=n,

1=1j=0 k=0

0, 0<r<n—1,

) e (0,P3) #0, rT=mn,
n—1
(2.27)
since (0,K'>%) (x,¢1)Pr(x)) = P™(¢1)(1—8y,). Hence,
(T, RuRum) = 0, f0o<m<n—1, (2.28)
(T,RnPn) #0, ifm=n, ’

so that {R,,(x)}_, is the MOPS relative to T and so 7 is also quasi-definite.
O

General division problems of moment functionals
D(x)t=A(x)o (2.29)

is handled in [17], when D(x) and A(x) have no common zero. Theorem 2.2
includes the following as special cases.

e m =1, my =0: Marcellan and Maroni [23],

e m=2, my =m; =0: Draidi and Maroni [9], Kwon and Park [20],
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e m =1, m; = 1: Belmehdi and Marcellan [4],
e m = 1: Kim, Kwon, and Park [12].
Some other special cases where o is a classical moment functional were
handled in [2, 1, 3, 8, 11, 14].
From now on, we always assume that d,, # 0, with n > 0, so that 7 is also
quasi-definite.

Theorem 2.3. For the MOPS {Rn(x)}%_, relative to T, we have
(i) (the three-term recurrence relation)

Rn+1 (X) = (X* Bn)Rn(X) 7Yan—1 (X), n> O» (230)
where

)\ m My mp—1 'LLI .

Brn =bn+ o)
AR CA Y ;izo ] (2.31)

< (PP ()R (1) =P ()R (1)} (n>0),
Yn= dgfn_zcn (m=>1). (2.32)
n—1

(ii) (the quasi-orthogonality)

m 1 n+r
1_[(><—c1)ml+ Rn(x) = Z CniPj(x), m>r, (2.33)
1=1 j=mn—r

where r=3 " (my+1), Chn_r #0, and
1
(o, T (x=c)™ " RaPy)

Cnj = <(T,Pj2 )
m my+1 . *
= <T’H1:1 ()2_;% RnP)>, where n—r<j<n+r.
o, P
Proof. For (i), by (2.14), we can rewrite (2.30) as
mooMmy My — lu .
el A S S M (e R (e
1=1i=0 j=0 1]
m my mp—i UL i (04) )
= (x—ﬁn){Pn(x)—AZZ > i K (x,cl)kw(cl)}
1=1i=0 j=0
m mp mp—i s o
—Yn{Pn 1) =AY 1';'+J K29 (x,¢0)RY 1(61)}
1=11i=0 j=0 v
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After multiplying (2.35) by P,,(x) and applying o, we have
mo oMy My — i

35T e R e

1=11=0 j=0

. (2.36)
C NN Wi p0) @
= (bn—Bn){(o,P2)—A)_ i P He)RY ().
1=1i=0 j=0
Hence, we have (2.31) and by (2.16)
RZ
Yn= <T n) _dndnz oy (2.37)

For (ii),]_[’f;](x—cl)ml“Rn(x):Z;fOrCmP( ), wherer=3 ", (m+1)
and

an<0', P]2<> =

= <ﬁ (X_Cl)m1+1Tan(X)Pk(X)> (2.38)

T,H (x—cl)ml+]Rn(x)Pk(x)> =0, ifr+k<n.

Hence, Chix =0, 0 <k <n—r—1and C, n_r # 0 so that we have (2.33)
and (2.34). O

Corollary 2.4. Assume that o is positive-definite and let [&,1] be the true
interval of the orthogonality of o. Then
1) TT%, (x—cy)™* 'R, (x) has at least n—r distinct nodal zeros (i.e.,
zeros of odd multiplicities) in (&,m).
(ii) Rn(x) has at least n—r—m distinct nodal zeros in (&,n).
Iffurthermore my (1<1<m)areoddor §>c, (1<1<m), then
(iii) Rn(x) has at least n—r distinct nodal zeros in (&,n).

Proof. (i) and (ii) are trivial by (2.33).

For (iii), assume that m; (1 <1 < m) are odd. Then & := [, (x —
ci)™ o is also positive-definite on [&,1]. Let {P,(x x)}%_, be the MOPS
relative to 6. Then we may write R, (x) = Zj:o Cm P]( x), where

m
énk<6, ]31%> = <(~)', Rnﬁk> = <H (X—Cl)ml+1T>Rn]5k>

1=1
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Hence, Cny =0, 0 <k <n—r—1so0 that Ry (x) =3 ", _ CnjP;(x). Hence,
R, (x) has at least n —r distinct nodal zeros in (&,1). In case & > ¢, (1 <
1<m), =[]~ (x—cy)™ 1o is also positive-definite on [£,1] so that by
the same reasoning as above R,,(x) has at least n —r distinct nodal zeros
in (&,1). O

Theorem 2.5. For any polynomial p(x) of degree at most n, we have

(1, LIO® (x,y)p(x)) =p'* (2.40)
where L (x,y) = Y ' ;Ri(x)Ri(y)/(T,R?), n > 0, is the nth kernel poly-
nomial for {R, (x)}%_, and

m My mp—i

A i
Ln(x)y) :Kn(X»U)*d—ZZ|D“| Z ui,]T)K X Cl), (241)

™ 1=11i=0

where u = Z]l{;ll(mk—l—])—l—(i—l—]) and Dt is the matrix obtained from
D, by replacing the ith column of D,, by

[Kn((ﬁ )y)aK(LO) (C] »U)»- . -aK%m] -0) (C1 »U)»

T

1o o (2.42)
Kn(CZ»y))K( )(CZ,U)» .)K;‘mm, )(Cmyy)] .

Proof. If deg(p) <m, then p(x) =Y {* ,({T,pRi)/(T,R?))Ri(x) so that

(LM () = 3 SO 102 Ry )

Expand Ly (x,y) @ Ln(x,y) = ¥ an; (u)P; (x), where

anj(y) = <
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by (2.40). Hence

k! i
1=1k=0 i=0
m my mlfiu
=Kaly) =AY > 3 =K (x ) L0 (e, y)
1=1i=0 j=0 ek
(2.45)
and so
D [Ln(c1,u), L (c1,y),...,.Li™ % (cq,y),
La(e2,u)se L (em,y)] (2.46)
= [Kn(c1,u), K8 (er,y),... Km0 (eq,y), '
K (c2,1), .0, Km0 (e, y)]
Hence, we have (2.41) from (2.45) and (2.46). O

3. Semi-classical case

Since 7 is a linear spectral transform (see [29]) of o, if o is a Laguerre-
Hahn form (see [22]) or a semi-classical form (see [24]) or a second degree
form (see [26]), then so is T. Here, we consider the semi-classical case more
closely.

Definition 3.1 (see Maroni [24]). A moment functional o is said to be semi-
classical if o is quasi-definite and satisfies a Pearson type functional equa-
tion

(b(x)o) —h(x)o=0 (3.1)
for some polynomials ¢(x) and P (x) with deg(¢$p) > 0 and deg(y) > 1.

For a semi-classical moment functional o, we call
s :=minmax (deg(¢) —2,deg(p)—1) (3.2)

the class number of o, where the minimum is taken over all pairs (¢,V) of
polynomials satisfying (3.1). We then call the MOPS {P,, (x)}$_, relative to o
a semi-classical OPS (SCOPS) of class s.

From now on, we assume that o is a semi-classical moment functional
satisfying (3.1) and set s := max(deg(¢) —2,deg(P) —1). Then T satisfies
the functional equation

(T)d(x)T)" = (T () b(x) +T(x)b(x))T, (3.3)
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where
m

Tx) =[] (x—c)™ . (3.4)
1=1
We now determine the class number of t. By (3.3), if o is of class s, then
tis of class <s+) ™, (m+2).

Lemma 3.2 (see [25]). The semi-classical moment functional o satisfying
(3.1) is of class s if and only if for any zero ¢ of ¢(x),

N(o3¢) = [re|+[(0,qc(x))| #0, (3.5)
where ¢(x) = (x—c)dc(x) and dc(x) —b(x) = (x—c)qc(x) +Tc.

Theorem 3.3. Assume that o is of class s = max(deg(¢p)—2,deg(p)—1).
Then tis of class s+ |~ (mi+2) if ¢(c1) #0, T<1<m.

Proof. Assume ¢(cy) #0, 1 <1< m. Let ¢p(x) = T(

T (x)(x) + T(x)W(x). For any zero ¢ of ¢(x), let Gp(x) = (x —c)Pe |

Ge(x)—P(x) = (x—c)dc(x)+TFc. Then either c = ¢ (1 <t < m) or ¢
If c=c¢ (1 <t<m), then

&)c(x)_d)(x) = T(X%dz(tx)

Hence, 7. =0 but

~T () b(x) =TH)Y(x) = (x—ct)de(x).  (3.6)

<mddm>=<o+AZ: I“Jﬁuwawwx—qyaam>
1=1 k=0 kt
) <““Zi S0 (o)
1=1 k=0 k
TX)bx) T (x)b(x)+Tx)p(x)
(x—cy)? X—Ct
/ T
= <(d>cf) ﬂ)a,xﬁxc)t> (3.7)
+<)\i m (*])kulké(k) (x—cv),
1=1%k=0 Kt
TG0) T ()0 +T(x)(x)
(x—ct)z X—Ct

so that N(t,c) #0.
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If c #ce (1 <t<m), then ¢(c) =0, be(x) =T(x)dc(x), and

B (x) =P (x) = T e (x) =T ()b (x) = T(x)(x). (3.8)
Hence, 7. = T(c)dc(c) —T(c)d(c) = T(c)re. If ro #£0, then 7. # 0 so that
N(t;c) #0.
If r. =0, then (0,q.(x)) # 0 and . =0 so that
Ge(x) =T(x)qe(x) =T (x)de(x). (3.9)
Then
(1,dc(x)) = (0,dc(x)) = (0, T(x) e (x) =T (x) e (x)). (3.10)

Set Q] (X)) QZ(X)y Q3(X)y and T, T2, T3 to be
T(x) = (x—c)Q1(x) +71;
T (x) = (x—¢)Q2(x) +72; (3.11)
Q1(x) = (x—c)Q3(x)+73.

Then Q2 (x) = Q] (x)+Q3(x) and 72 =13 = Q1 (c).

Hence,
(1,dc(x)) = (0,Q1(x)
—(0,Q2(x)b(x)) = (0, m2¢c(x))
=(0,Q3(x)b(x)) +(0,13dc(x))
—(0,Qq (x))+(0o,m1qc(x))
—(0,Q2(x)d(x)) = (0, T2dbc (x)) (3.12)
= ($(x)0,Q3(x)) +{d(x)0,Q (x))
—{(p(x)0,Q2(x))+71{0,qc(x))

(d)c(x) P(x ))>+<U quc(x)>

()
(x)o(

m
2
(0,qc(x (c—c))™ " (0,qc(x)) #0.
1=1

Hence N(T;c) #0. O

4. Examples

As illustrating examples, we consider the following example.

Example 4.1. Let

T:= c—i—)\(umé(x—l)—l—uzoé(x—i-])+u115/(X—1)+U215/ (x+1)), (4.1)
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where A # 0, [ujol + [uzol 4+ w11 +uz21| # 0, and o is the Jacobi moment
functional defined by

1
<G,7‘[>ZJ_1(1—X)“(1—|—X)B7’[(X)dX (a>—1,p>-1), meP. (4.2)

Then
Pr(x) = PP (x)

(et B & nta) ntp .
( ° > %(nk)( : >(x—1)k(x—|—1) Km0

(4.3)
are the Jacobi polynomials satisfying
(1=x2)y"(x) + [B—a— (a+ B +2)x]y’ (x) +n(n+a+B+1)y(x) =0,
(o,P{oB) (%)) i= Ky
- 20BN P4+ )T (4B +1) >0
T+ a+B+1)2n+o+B+1)(n+o+p+1)2° =7
(4.4)
where
1, ifk=0
(@)= . (4.5)
alfa+1)---(a+k—1), ifk>1.
In this case, using the differential-difference relation
(@B ()Y T v p) _
(PLPI(x) T = P (x), v=0,1,2,...,n>~v, (4.6)

(m—v) ™7

the structure relation

(1) PLP) ()" = PR (x) + B PL B () + 7 PR (%), n>0,
(4.7)
where
&n = —M,

2a—RInn+a+p+1)
2n+oa+p)2n+2+ax+p)’ (4.8)
_Ann+o)(n+B)n+a+p)(n+ot+p+1)

2n+a+p—1)2n+o+p)22n+o+p+1)’

Bn:

W=
and the three term recurrence relation

PLOB)(x) = (x— Bn )PP (x) =y PP (x), (4.9)
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where
BZ—OCZ
Bn = (2n+a+p)(2n+2+a+p)’ (4.10)
_ Ann+o)(n+p)(n+oatp) '
Y Ot atp—1)(2ntatpl22ntotprl)

we can easily obtain (see [1, equations (30)-(32)]):

(PP 1) nn+B)
Ckno1(2ntat+ B+ 1) yn(a+1)’

nPP (—1)PieP) (1)
kn1(2n+a+pB+1)yn’

PLBN ()PP (1) (4 B) (n—T1)
kn_1(2n4+o+B+1)yn(ax+2)

K&, -1 =—

KO, =4

b

(PRPY (—1)PRP (1) (n—1)
kn_1(2n+o+p+1)yn

Ky (1,1) = PR () (PEeP)) (1) (n 1) (n+B)

KOV, 1) =—

)

[(a+2)(n? +no+np) — (x+1) o+ B +2)]
2kn-1(2n+ o+ B+ 1) yn(a+1)(oc+2) (o +3)’

PLPI 1) (PR (1) (n—1) [n? 4 noc+np —a— B —2]

K9, =—
(L) T 1 (2nt ot B+ ) ynlat 1)

)

(4.11)

where

(4.12)

is the nth kernel polynomial of {P{™P/(x)}%_; and K\ (x,y) =01 8], K., (x, u).
Using the symmetry of the Jacobi kernels, we obtain that the moment func-
tional T in (4.1) is quasi-definite if and only if

dn =

‘A” A2) o >0, (4.13)

A2 A




where

)\U.]()Kn

AlUoo Kg 0

MizoKy®)
A= | (4
(] )_] ) ‘|‘7\U21 KT‘L

T+ Aug oK
m(]fl)'F)\U.]]Kg

(1,—1) +Auz KO

(1,1) + Mg KO
RIIRY
'(1,-1)
Y1,-1
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(1,1)

Aup K1)
201,

1+)\u11K‘E’L
A KO (1,-1)
Aug KO (1,-1)

- A oK (=1, 1) FAu KO (=11 Aug KDY (=1 1)
Az = (1,0) (1,1) (1,0)
AuroKn 7 (=1, 1) +Aun Ky P (=1,1) Aun Ky (—=1,1)
Az =
T Ao KOO (1, — 1)+ Aup KO (=1, 21) Aup k&% (—1,-1)
MoK (=1, 1)+ Aua K (=1,-1) T Aup kY (=1,-1))

(4.14)

Alvarez-Nodarse, J. Arvest, and F. Marcellan [1] showed that for any val-
ues of A and uqq, uzp, U7, uz1, dn # 0 for large n so that R,, (x) exists for
large n. Moreover, they express R, (x) as
PLEEl ()’

Rn(x) = (14+n&n+1mn )PP (x) + [Gn (1—-

+ [Xn (T+%) —wn (1—x ]Pn‘"B

X) =N (14+x) + 6, (

X))”,
(4.15)

where (n, N, On, Xn, and wy are constants depending on n, A, u;g, Uz,
and w1, (see [1, equations (47)-(50)]). They also express R, (x) as a gener-
alized hypergeometric series ¢Fs (see [1, Proposition 2]).

Example 4.2. Consider a moment functional T given by

S(—1)ku
— — k s (k)
T.—G—I—?\ZO o 5 (x),
k=

where A #£ 0, ux € C, N €{0,1,2,
tional defined by

(4.16)

..} and o is the Laguerre moment func-

(a>—1), meP. (4.17)

(o,p) = J:O x%e *m(x)dx

Then

_ n“'i (n+ oc) x)k

—1)"(x+1)n

(4.18)

1F1(_nvtx+1yx)y nZO
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are the monic Laguerre polynomials satisfying

xy” (%) + (T+a—x)y’(x) +ny(x) =0,

(4.19)
(o,L{¥(x)?) =nIM(n+a+1), n>0.
Hence
() (=D T(+o+1) B n<n+oc)
LX) (0) = o 1) =(=1) o nl. (4.20)

Hence, by Theorem 2.2, the moment functional T in (4.16) is quasi-definite
if and only if d,, # 0, where d,, is the determinant of the (N+1) x (N+1)
matrix Dy,

N
D, = 51;+?\Zu:;‘< {, oo)} ., n>0, (4.21)
i,j=0
where K, (x,y) = 3 1o LI ()L (y) /{0, L™ (x)2).

When d ;é 0 forn > O we now claim that the MOPS {R,, (x)}?°_, relative
to T can be given as

N+1

=Y AN LM (%), n>0 (4.22)

for suitable constants A[™ (0 < k < N+ 1) with A(()“) = 1. For any fixed
n>1, set

N-+1

=) AL (x), (4.23)
=0

where {AklN+1 are constants to be determined. Note here thatif 0 <n <N,
then a‘,jl_n (x) =0 for n+1 <k <N+1 so that we may take Ay for
n+1<k<N+T tobe 0. Since (LV(x)) = nL™ " (x), n > 1, we
have

N+1
R =Y (n—k+1)AL X (%), (4.24)
k=0

where Lil (x) =0 for n < 0. We now show that the coefficients {Ak}N+1 can
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be chosen so that
(t,x™Rn(x)) =0, 0<m<n-—T. (4.25)

If N+1 <m<mn, then by (4.24)

00 N
(T,x™Rn(x)) = J X™Rp (x)x%e ¥ dx+A Y We emR (%) ¥ (0)
0 = k!
NAT ~ Y
= %AKJ' XML (x)x%e ™ dx
1;) (=t & (4.26)
N4 ~
=3 g, T e
k=0 ) 0
=0.

We now assume that 0 < m < min(N,n—1). Then

<0‘,xml_n°‘_1k) (x)> = L xan“j(k) (x)x%e ™ dx
(4.27)

o0
:J KM x)x ke ™ dx =0,
0

for0<k<m.Form+1<k<n,

n—k 3 0
<G,xan°‘j<k)(x)> = (=)™ *(n—k)! Z (__”J ( n+oc'> J xMFeFie=x qx
. 0

= j! n—k—j
1)k k)'n_k(f”i n+o r( i)
— n— ,]; 7 (n—k—j) m+o+j+
_(_1)“k(n—k)!@t:)r(mﬂxﬂ)

x2Fi(—n+k,m+a+1k+a+1;1)

= (1 )“k(n—k)!< n_k_]> M(m+a+1)

(4.28)
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by (4.18) and ,F;(—n,b;c;1) = (c—b)n/(c)n. Hence by (4.20)

k=m+1

N1
n k—1l+m n+o
A Z 1 m)! Z (n—k—l—l—m)Ak’

0<m<min(N,n—1),
(4.29)

where (}) =0, for k < 0. Hence (T,x™Rp (x)) =0, with 0 < m <n—1if and
only if

N+1 n_m—1
Fm+a+1) Z (—1)“"( )Ak

n—k
k=m+1
N N+ (4.30)
W —k—1l+m n+o
A " Ax=0
* l:Zm(l—m)!kZo( ) (n—k—1+m> k=0

0<m<min(N,n—1).

Since (4.30) is a homogeneous system of N + 1 (resp., n) equations for
N +2 (resp., n+ 1) unknowns {A} X "] (resp., {Ax}_,) when n > N+ 1
(resp., n < N ), there always exists a nontrivial solution {Ay}} 7). With
this choice of {Ax N, R Rn(x) is a nonzero polynomial of degree < n and
(T,x™Ry(x)) = 0 for 0 < m < n—1 so that deg(R,) = n, that is, Ay # 0.
Then A, 'R, (x) = Rn(x) so that we have (4.22).

Now we can express Ry, (x) as a hypergeometric series (see [13]);

BoB1-- PN

Rn ) = T Tmms

(=)™ (x+1), (Ao+A1+--+AN+1)

_n)f50+1,[31+1,...,(3N+1‘ ) (4.31)
X

X N+2FN+2<
OC+N+2)BO)6])""BN

for suitable constants {f;}]\.,.
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