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4ABSTKACT: Disconjugacy of the kth component of the mth order system of nth order
differeatial equations Y(n) = f(x, Y, Y ,000y Y(n-l)), (1.1), is defined, where

£(Xy Y,y eeey Yn), %E (x, Yl, veey Yn): (a,b) x ‘™ > ®R™ are continuous. Given a
1]

1’ y
a solution Yo(x) of (1.1), k-component disconjugacy of the variational equation

z(“) = y?alfY (x, Yo(x), ceey Yén-l)(x)) Z(i'l), (1.2), is also studied. Conditions
i

are given for continuous dependence and differentiability of solutions of (1.1) with
respect to boundary conditions, and then intervals on which (1.1) is k-component
disconjugate are characterized in terms of intervals on which (1.2) is k-component

disconjugate.

KEY WORDS AND PHRASES. System of differential equations, variational equation,
k-component disconjugacy (right disfocality), continuity and differentiability with
respect to boundary conditions.
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1. INTRODUCTION.

In the past several years, a number of results have been proven concerning the
disconjugacy of an nth order scalar ordinary differential equation when certain
disconjugacy assumptions are made for the corresponding linear variational equation.
In this paper we investigate similar concepts for systems of ordinary differential
equations. 1In particular, we shall be concerned with solutions of boundary value
problems for the mth order system of nth order differential equations

¥ ek, 1,y ..., YD),

where we assume throughout:

(a) f(x, Y5 oo Yn): (a,b) x R"™> R" 1s continuous;

af
(B) — (x, Y,..., ¥): (a,b) x r™ g™, 1 £3<m 1< 1<n, are continuous,

Dyij
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m
where Yi = (ytl’ ceey yim); (Note: If Y = (yl, ey ym) € R, then YE will

will denote the (m-1)-tuple (yl, cees Tiopr Tapr oo ym).)

(C) Solutions of (1) extend to (a,b);

and (D) If there exist a sequence of solutions { Yr(x)} of (1.1), a point

xo ¢ (a,b) a compact subinterval [c,d]C (a,b), M > 0, and 1 < k < m such that
(1-1) - (1-1)

( YU)E (xg) ( Y“)ﬁ (x¢), 1 <1 <mn, for all y,v ¢ N, and 'yuk(x)l <M

on [e,d], for all u e N, then there is a subsequence { Yr (x)} such that

3

{yii;l)(x)} converges uniformly on each compact subinterval of (a,b), for 1 < 1 < n.
b
Given a solution Yo(x) of (1.1), we will also be concerned with

solutions of the linear mth order system of nth order equations called

the variational equation along Yo(x) and given by

-1 i-1
2™ . E:ﬂlin(x, 00, T (0,een, 100y 207, (1.2)
afk
where fY » 1 <1 < n, denotes the m x m Jacobian matrix -y y 1 <k, J <{m.
1 1]

.Rather than with the disconjugacy of (1.1), we will be concerned with the
disconjugacy of one of the components of the system (1.1). Motivation for our
considerations here are papers by Peterson [1-2], Spencer [3], and Sukup [4].

DEFINITION. Let 1 { k { m be given. We say that (1.1) 1s k-component

disconjugate on (a,b), if given 2 < q < m, points a < X < .oee < XS <b,
x ¢ (a,b), positive integers My eees mq partitioning n, and solutions
Y (x) and Z (x) of (1.1) satisfying

Gy = 28 Dy, 1< 1 <,

k k - -

(1) Y

and e (xj) z, (xj), 0<1i<m
it follows that yk(x) z zk(x).

SL1gIga

Given a solution Yo(x) of (1.1), k-component disconjugacy of (1,2) along
Yo(x) is defined similarly.

In this paper, we first show that if the system (1.1) is k-component
disconjugate, for some 1 < k < m, then solutions of certain boundary value problems
for (1.1) can be differentiated with respect to boundary conditions. The resulting
partial derivatives as functions of x are solutions of related boundary value
problems for the system (1.2). The main results of this paper appear in section 3,
where we show that intervals on which (1.1) is k-component disconjugate can be
characterized in terms of intervals on which (1.2) is k-component disconjugate. Then
in our last section, we state without proof some analogues of the results in section

3 in terms of k-component right disfocality for the system (1l.1).

2. CONTINUITY AND DIFPERENTIABILITY WITH RESPECT TO BOUNDARY CONDITIONS.

Our first result is concerned with the continuous dependence of
solutions of (1.1) on boundary conditions. 1Its proof is a standard application
of the Brouwer Invariance of Domain Theorem.
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THEOREM 1, Assume that for some 1 S.k £ m, the system (1.1) is k-compoment
disconjugate on (a,b). Let Y (x) be a solution of (1.1). Given 2 < q £ n, points
a < X < aee < Xy <b, a € (a,b), positive integers M ses.,m  partitioning n, and

q -
: > 0, there exists § > 0 such that 'tj - le <6,1¢3<q, ! Yéi Dy -

i
(V)p1<6, 1 <1<,y yi )(xj) mey| <80l m -1, 1<3<aq, tnply
there exists a unique solution Zs(x) of (1.1) satisfying ( Zs)éi-l)(u) -

(V)ey 1<t <m 2t )mc,,0<1<m -1,1<9<q, and
i 1L sm, 2z L1 £3Z

3 13’ 3

1im Zéi)(x) - Y(i)(x) uniformly on each compact subinterval of (a,b), for 0<i<n-1.
L.ot ALAY

In addition to the continuous dependence in Theorem 1, connectedness properties
have played an important role in establishing disconjugacy or disfocality results in
the papers of Henderson [5], Peterson [2], and Sukup [4].

THEOREM 2. Assume that for some 1 < k < m, the system (1.1) is k-component
41isconjugate on (a,b). Let Y (x) be a solution of (1.1) and let
4y Xys eees xq, z, and My eees mq be as in Theorem 1. Then, for 1 { p < q,

o -

th t S = { P 1)( )| V (x) 1s a solution of (l.l) V(i-l)( ) =
e se p Vi xp ] 1), v a

@, 1<t <n i) =Py, 0t g, 1< g v,
and Véi)(xp) - yii)(xp), 0<1< mp - 2} 1is an open interval.

PROOF., It follows immediately from Theorem 1 that Sp is open. It suffices to
( p-l)

- ' [

show that if 7, = sup {t (yk (xp), ) C Sp} and t' > 7v,, then t d Sp, and {f
(mp'l)

= Al L

o, = inf {o|[o,yk (xp)]c:_sp} and o' <oy, then o' ¢ S.. Ve will make the

the argument for the first case. We suppose that there exists 1' > T and 1' € Sp’

Then there is a solution V (x) of (1.1) satisfying

W@ =@, 11 <, vﬁi)(xj)-yii)(x 2,0 <L <mpmL,

b
rerca e o) =0, 0 <t <n-2, and vimp 1)(xp) -
Now, from the definition of Ty there exists a strictly monotone in-
(m_-1)
creasing sequence {ru} C Sp such that y, P (xp) < ™ < T and i t 1.
Let | Uu} be the corresponding sequence of solutions (1.1) satisfying

i@ = @, 1<t <ny w0 = v, 0 <t a1 <y <o,

(m_-1)

(1) (1)
$rop, W (xp) =Yy (xp), 0<1¢ m, = 2, and "ukp (xp) = 1+ Now if for some

(m -1)
© >0, {"ukp (x)} 1s uniformly bounded on [xp, x, + €], it follows from the
boundary conditions that {wuk(x)} is uniformly bounded on [x , x + e]. By

(

-1
condition (D), there exists a subsequence { 'u (x)} such that {vuik )(x)) converges
]

uniformly on compact subintervals of (a,b),for 1 < i { n. 1In particular, this
convergence is uniform on any compact subinterval containing a, and comsequently,

the subsequence { “u (x)} converges uniformly to a solution Ho(x) of (1.1)

on compact subintervals of (a,b). Thus, it follows that € Sp, which 1is

Yo
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(m_-1)
contradictory to the fact that Sp is open. Hence, given ¢ > 0, {uukp (x)}
{s not uniformly bounded on [xp, %5 +el.

(mp-l) (mp-l) (mb-l)
Since, for each u e N, Y (xp) < "uk (xp) < i (xp), it follows
that there exists a sequence (éj} with Gj* 0 such that, either
(mp~l) (mp-l) (mp-l) (mp-l) (mp-l)
(1) "ujk (xp+6j) " Yy (xp+6j) and Y (x) < wujk (x) < Vi (x),
on (xp, xp + 6j), for all j,
(mp-l) (mp-l) (mp-l) (mp—l)
or (i1) L (xp+ﬁj) =V (xp+éj) and Ve (x) < wujk (x) <
(m_-1)
i P (x), on (xp, xp + GJ), for all j., We then have by continuity that
(1) - (1) -
ii: uujk(xp + Gj) e (xp), 0<1¢ mp 2,
and hence by Theorenm 1, {uu(i)(x)) converges to yéi)(x) uniformly on each

compact subinterval of (a,b), for 0 £ 1 < n-1; a contradiction. This
completes the proof,

Our next result deals with differentiation of solutions of (1.1) with
respect to boundary conditions in the presence of k-component disconjugacy.
The proof follows along the lines of those given {n Henderson [5-6] and
Peterson (1] and we will omit {t here.

THEOREM 3. Let 1 Lk <m be given and assume that (1.1) and the variational
equation (1.2) along all solutions Y (x) of (1.1) is k-component disconjugate on
(a,b). Let Y (x) be a solution of (1.1), and let 2 £ q <, poiats
a < X € eee £ xq <b, a € (a,b), and positive integers My eeey mq partitioning
n be given. For 1 <p<q, let Sp be as {n Theorem 2, and for each s e S

(m_-1)
let V (x,s) denote the corresponding solution of (1.1) where Vi P (xp,e) -8,
Then 335.(x,s) exists and Z (x,s) = 335.(x,s)

{3 the solution of (1.2) along V (x,s) and satisfies the boundary
conditions

A1)y w0, 1 <1<,

ZE
2 x) =0, 0¢1<m -1, 1« 1< q ¢
k 5 ’ =2y ’ 2389 Py

Zi(xp) =0,0<1¢ mp-z,
(mp-l)
Z (xp) =1,
3. INTERVALS OF K~COMPONENT DISCONJUGACY.
In this section, we determine subintervals of (a,b) on which (1.1) is
k-component disconjugate in terms of subintervals on which (1.2) is
k~component disconjugate. Our arguments for this characterization are much
like those in Peterson (2] and Spencer [3].
For notational purposes, given a € (a,b), let Y (x; a, Vl, ceny Vn) denote the

(1-1) -
solution of the {nitial value problem for (1.l) satisfying Y (a) V1

(vil’ ceey vim)’ 1 <1 < n. Then, under our assumptions (A) - (D), for each
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1<y <n and 1 {v<m T

_9Y
. (x; a, Viseeos Vn) z 57:: (x; a, Vis eees Vn) exists

and is a solution of (1.2) along Y (x; a, Vl, eeesy Vn) satisfying Uﬁt-l)(a) =0,

-1
=0, 1<1<n, 1¢y, “\(13 Y@) = e, = (61yr weer 8,00

DEFINITIONS. Let 1 < k < m be given and let t ¢ (a,b).
(1) Define nt(t) = inf (t1 e (t,b)| (1.1) 1is not k-component disconjugate on

[t,tll}. If (1.1) is k-component disconjugate on [t,b), we set nt(t) = b,
(11) Given a solution Yo(x) of (1.1), define nt(t; Yo(x)) = inf[tl e (r,b)

(1.2) 1is not k-component disconjugate along Yo(x) on [t,tll}.

The main result of this paper 1is that nf(t) = inf {nf(t; Yo(x))} which will
Yo(x
be established in two parts. Similar to the argument in Spencer [3], we first prove

that n?(t) < inf {nt(t; Yo(x))}. The proof of the final theorem of the section
Yo(x)
shows that strict inequality is not possible, hence the equality will be established.

THEOREM 4. Let 1 < k < m be given., Then nf(t) < {inof {n?(t; Yo(x))}.
Y, (x)

0
PROOF., Let 1 = {inf (n:(t; Yo(x))} and let € > 0 be given. Then on the
Yo(x)
interval [t, t+e), there exist 2 < q<n, points t< X < vee xq < 1+,

a ¢ [t,1+e), positive integers My eees mq partitioning n, and a non-trivial

solution Z (x; Yo(x)) of the variational equation (1.2) along a solution Yo(x)

of (1.1), such that Zéi-l)(a; Yo(x)) =0,1<1<n, and zéi)(xj; Yo(x)) =0,
0<¢1<ml, 1< <a
By disconjugacy arguments similar to those in Henderson [7], Muldowney [8],

and Peterson [9], it follows that there is a solution W (x; Yo(x)) of (1.2)
along Yo(x) and points t < t; < ... <t < t+e such that Héi_l)(a; Yo(x)) =0,

1 <1<n, wk(x; Yo(x)) has a simple zero at x = ti’ 1 -1, and has an odd
<

order zero at x = .- Now for suitable constants Cik’ n, W (x; Yo(x)) -

o -
Tl=lclk Uik(X;a’ Vl, ey V“), where Yéi 1)(u) =V
consider now the difference quotient

1
- : - N - .

- Y (x3a,( vl)k'vlk+hclk’°"’( vn)k’vnk+hcnk) Y (x;a, Vl, ey Vn)} -

T 1<{1<n. For h+:#oO,

} -

Yy (X;C:!:( Vl)i‘(,vlk"'hclk,...,( vn)i,vnk+hcnk)-y1(x;a' vl"”’ vn)

h . . (3.1)
ym(X;G,( Vl)fc’vlk+hclk""’< Vn)ﬁ,vnk+hcnk)—ym(x;a’ vl"“' vn)

By adding and subtracting, to the jth component, 1 < § < m, of the

quotient, terms of the form yj(x;a, vl""’( vs)i’ Ve * hcsk”"’

( LA vk * han), we obtain
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1 . . . - . -
;( Y (x3a,( vl)k’vlk+hclk""’( vn)k’vnk+hcnk) Y (x3a, Vl, ey Vn)}

Orier 500 C VPRV * B o Vo vghi0e oo s C VDoV + 0C)
1k .
Uem X590 C VD Ve * B C V)V thCone e s C VD gov g + 1C L)
+ .00 +
unkl(x;a, Vl,..., vn-l’( Vn)&. Vor * Enkl)
C . , where for each
nk .
Ui X539 Vpseees Voo C V6 Vg * Eon)
1 {v<m, Eukv is between O and hcuk. Hence, as h + 0, the difference

quotient (3.1) converges uniformly on compact subintervals to

ulkl(x’?’ Vl,..., Vn) .\ ‘e unkl(x’?' VI,..., Vn) .
lk : LN} nk :
ulkm(x;a, Vl,..., Vn) unkm(x;u. Vl,..., Vn)

c

fo .
1=1C1k Uik(x’u’ VI, ceey Vn). Thus, for h sufficiently small, the
difference P (x) = Y (x;a,( vl)i'vlk + hclk""’( v )ﬁ'vnk + han)

- Y (x;a, Vl,..‘. Vn) satisfies the conditions P(é-l)(a) =0,1<1<n,
and pk(ci) =0,1<1<n, for some t< 0 < gy < eue L < t+e.

It follows that n?(t) < t+e, and since € > 0 was arbitrary, we have

O < taf ¥ 1 00)).

Yo(x)

THEOREM 5. Let 1 <k < m be given. Then n:(t) = inf (nr(t; Yo(x)}.
x

Y, (x)

PROOF., Tet 7 = {nf {n?(t; Yo(x))) and assume that nr(t) < 0. On

Yo(x)
the set {(ml, ooy mq)}, where My eees mq are positive integers partitioning
a, 1 < q < n, we define a lexicographical ordering by (nl, ceey nq) > (ml, cees mp),
q»0 1 £1 <8, and

if o, >m, or {f there exists s ¢ {1, ..., q-1} such that n, = m

i

no > ms

+1°
Since we are assuming that n:(t) < o, there exist a last tuple (ml, ceey m ),

points t < x < ... < *q <o, aelt,o), and distinct solutions Y (x) and W (x) of
(1.1) such that Yéi-l)(a) = Héi-l)(a),lﬁ}i n, and yéi)(xj) = wéi)(xj), 0 <1< my-l,
1 <3<aq. (ml,...,mq) is the last tuple for such distinct solutions, hence
yém‘)(xl) + uiml)(xl). That being the case, it follows from the argument used in the
proof of Theorem 2, that the set S = {véml)(xl) V (x) 1is a solution of (l.l),
i@ 1), 1<t <ny i i), 0 <t Cmym1, 1 <3 <o,

vii)(xq) = yﬁi)(xq), 0<1¢ mq-Z} is an open interval.
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If for each s ¢ S, we let V (x,s) denote the corresponding solution of (1.1),
then there are distinct s,s' € S such that Y (x) = V (x,8) and W (x) = V (x,8').
From the connectedness of S and Theorem 3, we conclude that there exists an 8 € S
which {s between 8 and s8' such that, for the kth component,

(m_-1)
(mq'l) (mq*l) vy 1 _
- - ’ - -g!
0 Vi (xq,s) . (xq,s ) (s8-8 )33- (xq,e).
If we set Z (x,s) = 3 v (x,8), then Z (x,8) {s the solution of (1.2) along
8

x,8) and satisfles Z (a,8) =0, 1 <1<, z, (xj,s) =0, QS;Spj-l,

1 <J<qg-1 (1)(x 3) =0, 0<1{<m=-2, and (m‘)(xljé) = 1. But we also have
3L v q’ ’ S EAmTe ﬁ(
(m _-1)

above that 2, q (xq,?) = 0, which contradicts the disconjugacy of (1.2)
on [t,0). Thus, our assumption is false and nf(t) = inf {n:(t; Yo(x))).

Yo(x)

4. RIGHT DISFOCALITY AND INTERVALS OF RIGHT DISPOCALITY.

In this section we present analogues of the results of section 3 in
terms of what we call k-component right disfocality. Much of our notation is
that used by Muldowney [10].

DEFINITIONS, Let T = (tl, caey tn) be an n-tuple of points from (a,b).
We say that a function y(x) has n zeros at 1 provided y(ti) =0,

1<t<n, and yPe) =0, 00 cu, 16 ¢
A partition (11; e} Tt) of 1t 1s obtained by inserting £-1 semicolons.

occurs m times in T,

Let m = 'Tll be the number of components of Ti' We say that

(rl; ...;12) Is an increasing partition of 1 provided t ﬁ.tz £ e £ th

T S € rj with {1 < j, then either t < 8 or t = s and
i +m < j, where m {s the multiplicity of ¢t 1in Ty

and if t ¢ ¢

We say the system (1.1) is k-component right (ml; oo} ml) disfocal on
(a,b), 0 < m, < n-j+1, if given solutions Y (x), Z (x) of (1.1) such that

]
their difference W (x) = Y (x) - Z (x) satisfies Héi-l)(a) =0,1<1<n,

some a ¢ (a,b), and wéj_l)(x) has m, =zeros at Tj’ 1 <J <12, where

]
(T15 oees Tl) is an increasing partition of n points in (a,b) with

mj = 'Tj|, then {t follows that wk(x) = 0,

For a sequence of integers {nj};-l satisfying
n = > n, D oeee D n, 21, (4.1)
let {mj}’;_1 be a sequence of nonnegative integers satisfying

m + i+ m, = m, m, * oot my < Dgy seey Wy_y + m, < n,_1 Wy < n,. (4.2)

For a sequence {nj}";:_1 satisfying (4.1), define Bk(t) - sup{tl > t] (1.1) s

£
k-component right (ml; oo} ml) disfocal on [t,tll, for all sequences {mj}j-l
satisfying (4.2)}. Given a solution Y (x) of (l.1), Bk(t; Y (x)) 1is
defined similarly for the variational equation (1.2) along Y (x).
In much the same manner as Peterson [11] has proven for scalar equations, Bk(t)

can be characterized in terms of Bk(t; Y (x)) as stated in the following theorem.
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THEOREM 6. Let 1 < k < m be given and let c ¢ (a,b). Then, either

(1) there is a solution Y (x) of (1.1) such that the variational equation (1.2)

along

where d = Bk(c; Y (x)), a € [c,d], and j satisfies

where

(11)

10.

11.

Y (x) has a nontrivial solution Z (x) satisfying the conditions
2 () = 0 ,1<1 <,

2D (e) = 0 ,1<1< 09,
2 () =0 , 341 < 1 < o,

Bpege2 <3 S gup

1 <n=-3j+q1 <2, (n = 0), or

2+1

8%c) = tnf {8%(e; Y (x))}.
Y (x)
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