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ABSTRACT. Let S be a convex, weakly compact subset of a locally convex Hausdorff
space (E, 1) and f: S > E be a continuous multifunction from its weak topology w to
T . Let p be a continuous seminorm on (E, 1) and for subsets A , B, of E, let
p(A, B) = inf'p(x - y): x ¢ A, y € B}l . 1In this paper, sufficient conditions are de-
veloped for the existence of an x ¢ S satisfying p(x, fx) = p(fx, S) . The result

is then used to prove several fixed point theorems.
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1. INTRODUCTION
Let (E, 1) be a locally convex Hausdorff topological vector space with topology
1 and E* = (E, 1)* be its topological dual. Let w = w(E, E*) be the weak topo-
logy of E. Let P and Q denote the family of continuous semi-norms generating
the topologies Tt and w respectively. For sets A and B of E and a p & P,
let p(A, B) = inf{p(x - y): x « A, y « B} . In this paper, we prove the following
result.
THEOREM 1. Let S be a nonempty convex, w-compact subset of E and f: (S, w)
> (E, 1) be a continuous multifunction such that f(x) 1is convex and w-compact for
each x € S . Then for each p @ P there exists a x € S satisfying
p(x, fx) = p(fx, S) . (1.1)
Futher if p(x, fx) > 0 then x € 0(S, w) n 3(5, 1) where 3 denotes the boundary.
It may be remarked the since w < r , f 1in Theorem 1 is also a continuous multi-
functicn from (S. w) » (E, w) . Consequently it follows by Reich (Lemma 1.6 [1]) that
each q € Q satisfies (1.1) for some x & S . However, since O < P , the lemma in
[1] is not applicable for arbitrary p € P . In fact, Theorem 1 contains the above
lemma [1] (see Corollary 2) and it provides a generalization of a well-known result of
Ky Fan [2] for single valued mappings.
2. PRELIMINARY RESULTS.
Recall that if X , Y are topological spaces then a multifunction f: X > Y

(fx # @ for each x) 1is upper (lower) semicontinuous iff for each closed (open) sub-
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set A of Y, f71(A) = {x e X: f(x) n A # @} 1is a closed (open) subset of X . Tt
follows by definition that f is l.s.c. iff fx n U # @ for some open set U of Y
and x in X then fz n U 2 @ for each 2z 1in some neighborhood V of X . Further,

it is well-known (i) that if f 1is u.s.c. and a net x, > x in X and yu >y in

Y with yy ¢ fx, then v & fx; (ii) if X is compact and f 1is u.s.c. with compact
values then fX 1is compact., A multifunction which is both u.s.c. and l.s.c. is called
continuous.

We prove two lemmas that simplify the proof of Theorem 1. Throughout, let E be
as stated in the beginning and S a nonempty subset of E .

LEMMA 1. Let A, B be w-compact sets of E and p ¢ P . Then p(A, B) = p(x, B)
= p(x - y) for some x € A, y & B .

PROOF. Choose sequences {xn) < A, {yn} c B such that p(xn - yn) + p(A, B)
We may assume that X, X weakly for some x € A and Y 7Y weakly for some y & B.

By Hahn Banach Theorem (see {31, Cor. 2, p. 29) there exists a x*¥ ¢ E¥ with x*(x - y)

= p(x - y) and |x*(u)| < p(u) for each u & E . Consequently, since L

x - y weakly,

p(x, B) < p(x = y) = x*(x - y) = limlx*(xn - yn)l $ lim p(x_ =y ) = p(A, B) < p(x, B)
LEMMA 2. Let S be w-compact subset of E and f: (S, w) > (E, 1) be a l.s.c.

multifunction with weakly compact values. If a net xOl -+ x weakly in S , then for
each p &P and . > 0, p(fxa, S) < p(fx, S) + € eventually.

PROOF. 1t follows by Lemma l that there is a y & fx with p(fx, S) = p(y, S) .
Let U=1{xeE: p(x -y) <e} . Then U is 7t-open and y & fx n U. Illence by l.s.c.,

fxa nU=#¢@ eventually. For such a , let Yo < fxa n U. Then eventually,

p(fx , 8) < p(ya, 8) < ply, - y) +ply, 8) < plfx, S) +e.

3. MAIN RESULTS.
PROOF OF THEOREM 1. Let p & P, Define a multifunction g: (S, w) + (S, w) by
g(x) = {y < S: p(y, fx) = p(fx, S)}.
Then by Lemma 1, g(x) # @ and is clearly convex. Further, since S is Tt-closed and
for any y, z © g(x), the triangular inequality implies
Ip(y, £x) - p(z, £x)| < p(y - 2).
It follows g(x) 1is Tt-closed convex and hence a w-compact subset of S . We show

that g is u.s.c. Let C be a weakly closed (hence weakly compact) aubset of S .
We show that x < g=l1(C), that is g(x) n C =z @ . Choose for each a , Y, € 8%, 0 C .

We may assume that Yo 7Y weakly for some y & C. Also since p(ya, fxa) =

p(fx,, S), there exists z < fx = with p(y -z ) = p(fx , S) . Further f: (S, w)

> (E, w) being u.s.c., it follows that fS is weakly compact and hence we may assume

that za -+ z weakly for some 2z & fx. Thus Yo = za »> y - z weakly. Choose as before
* * P

a x* € E® such that x*(y - z) = p(y - z) and [x*(u)| < p(u) for each u s E. Let

€ > 0 . Choose uqg € A such that p(fxa, S) s p(fx, S) + ¢ for a 2 age Conse~

quently, for a oy Ix*(ya - Za)' < p(fxa, S) < p(fx, S) + € and hence

ply, fx) < p(y - z) = 1im|x*(yrl - Za)’ < p(fx, S) + €.
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Since € > 0 is arbitrary and p(fx, S) < p(y, fx), we have p(y, fx) = p(fx, S) that
is y € g(x) n C. Thus g is u.s.c. Hence by Glicksberg [4] there exists a x € S
with x € g(x) . This implies p(x, fx) = p(fx, S).

Now, suppose p(x, fx) > 0. Then fx n S =@ . Choose by Lemma 1, a y & fx
satisfying p(x - y) = p(x, fx). Now, if x & int(S, w) or int(S, 1), then since S
being weakly closed and convex, there isa z & (x, y) n S with 0 < p(fx, S) <
p(y - z) < p(x - y) = p(fx, S), a contradiction. This proves the result.

As a consequence of Theorem 1, we have

COROLLARY 1. Let S be a convex and weakly compact set in E and f: (S, w) -
(E, 1) be a continuous multifunction with convex and w-compact values. Then either
f has a fixed point or there exists a p ¢ P and x & S satisfying 0 < p(x, fx) =
p(fx, S) .

PROOF. For each p & P, let xp € S satisfying (1). If p(xp, fxp) =0 for

each p & P, then using the implication that f: (S,w) » (S,w) 1is continuous, it

follows that Ap = {x « S: p(x, fx) = 0} is nonempty, weakly compact and the family
(Ap: p « P} has finite intersection property. Consequently, there exists x € S with

p(x, fx) = 0 for each p &P . Now, if x ¢ fx, then since x - fx 1is t1-closed and
convex and 0 ¢ x - fx, there exists (see [3], Cor. 1, p. 30) a x* € E¥ such that
0¢ {x*(x - y): y< fx}. Let p = [x*|. Then p <P and p(x, fx) = 0 , a contra-
diction.

The following corollaries result from Theorem 1.

COROLLARY 2. (Reich [1]). Let S be a compact and convex in (E, t) and f:
(S, t) > (E, t) be a continuous mutifunction with convex and compact values. Then
either f has a fixed point or there exists a p € P and x & S satisfying 0 <
p(x, fx) = p(fx, S). .

COROLLARY 3. (Waters [5]). Let S be a compact and convex subset of (E, 1)
and f: (S, 1) » (E, 1) be a continuous multifunction with convex and weakly compact
values. Then for each p « P , there exists a x & S satisfying (l.1).

PROOF, It suffices to show that the hypotheses in Corollary 2 and Corollary 3

imply that f: (S, w) > (E, 1) 1is a continuous multifunction. Let A be Tt-closed

in E . Then f~l(A) is T-compact subset of S. Since S is weakly closed, it

follows that f~!(A) 1is weakly closed. Thus f 1is u.s.c. Similarly if A is T-open

set in E then S\f-l(a) = -1 (E\A) is w-closed and hence f-!(A) is w-open. Thus
f is 1l.s.c.

In the setting of semi-reflexive locally convex spaces, we have

COROLLARY 4. Let S be a closed, bounded and convex subset of a semi-reflexive
locally convex space E. If f: (S, w) » (E, 1) 1is continuous multifunction with
closed, bounded and convex values then for each p & P , there exists x ¢ S satis-

fying (1.1).

*Theorem 1 of this paper was presented at the summer meeting of the Amer. Math. Society,

(1983), Albany, New York.
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