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ABSTRACT. For o > 0, let B(a) be the class of regular normalized Bazilevic functions
defined in the unit disc. Choosing the associated starlike function g(z) = z gives
a proper subclass Bl(a) of B(a). For B(a), correct growth estimates in terms of the

area function are unknown. Several results in this direction are given for Bl(%).
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1. INTRODUCTION.
Let S be the class of regular, normalized, univalent functions with power series
expansion

f(z) = z + nzz anzn (1.1)

for z € D, where D = {z : |z]| < 1}.

Denote R, S*, K and B(a) the subclasses of S which are functions whose deri-
vative has positive real part [8], starlike with respect to the orgin [9 p.221], close-
to-convex [6] and Bazilevic of type a [13] respectively. Following [13] we define
f € B(a), a > 0 to be the class of functions f , regular and normalized in D, such

that, there exist g ¢ s* such that for z ¢ D,
zf'(z)
1-a
£(z) g(2)®
Then if g(z) = f(z), B(a) = s* and B(l) = K. Let C(r) denote the closed curve

R > 0. (1.2)

which is the image of D under the mapping w = f(z), L(r) be the length of C(r)
and A(r) the area enclosed by the curve C(r) . For f e S*, it was shown [7] that,
with z = reie, 0 <r <1,
L(r) = 0(1) (M(r) log T%?) as > 1, (1.3)
where M(r) = max ]f(z)], and Hayman [4] gave an example to show that this estimate is
z|=r

best possitle when f 1s bounded. In [14] this result was extended to starlike func-
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tions with A{(r) < A constant. A modification of this method alsc shows that for

f e S*, 1
L(r) = 0(1) /A(r)(log T:;) as r > 1. (1.4)

Thomas [14] also showed that (1.3) holds for the class K and for the class B(a),
0 <a <1 [13]. It is apparently an open question that (l.4) is valid for f € K or
B(a).

Pommerenke [11] showed that if f ¢ S*, then for n 2 2

nla | < o/a1 - D), (1.5)

where C 1is constant, and Noor [10] extended this to B(a) by showing that

nlanl < CM(1 - 5). (1.6)

The question as to whether (1.5) is valid for f ¢ K or B(a) is also apparently open.

In [12] the subclass Bl(a) of B(a) consisting of those functions in B(a) for

which g(z) = z was considered and sharp estimates for the modules of the coefficients

ay a5, and a, were given. 1In [15] Thomas gave sharp estimates for the coefficients
a, in (1.1) whena = I/N, N a positive integer.
In this paper we shall be concerned with the class Bl(%) and will use the method

of Clunie and Weogh [1] to establish (1.5) and hence (1.6) and the method of Thomas [14]
to prove (l.,4) and hence (1.3). The methods will in fact give results which are
stronger for this subclass,

2. STATEMENTS OF MAIN RESULTS.

THEOREM 1., Let f ¢ Bl(%) and be given by (l.1). Then

(i) n|anl < o(1) + 0(1) YAQ1 - %), as n > o,

(i1) L(r) = 0(1){/A(r) log l—f;l as r o 1.

We shall need the following:
LEMMA 1. Let f ¢ Bl(%) and be given by (1.1). Define the function F in D by

F(2)2 = £(z%). Then

ACr,F) € —L2— a(e2,5).

2(n-2)2
PROOF. For z =pe , 0 <r <1,

2n v

A(r,F) = /" ST |F'(2)]? pdpde
0 0

1,212
= fz‘n fr ELZ‘)( pdpds.
0 0 f(zz)i
Now 1 s —2 [15] and so using (1.1) we have
£(22) (1-2)2
4 21 v Vo2 ]2
A(r,F) < —— [0 " |2f'(22)]2 pdpds
(n_z)z 0 0
S zl nla ]zrbn, (where ]all = 1)
2(n-2)2 ° "
- — a2, 0.

2(w=2)2
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LEMMA 2, For f ¢ S

(1) the map r - (l1-r)® A(r)/(1+r)?r? 1is decreasing on the interval (0,1),

(i1) A(/r) < 3%3 A(r) for 0 <r <1,

PROOF. Since

A = r2 T £ (2) |2 odpds,
0 0
we have
' 2m , P
rA'(r) = 6 |2£'(2)] 246
2r .r 212f''(2) 2 ry o, 2

< ' —_—— 2 f dpdf.
<2 6 6 | £ (z)l | 7(2) I pdpdd + 6 6 [ (z)| pdo

The classical distortion theorem for f ¢ S [3,p.5] gives

rat(r) < 4rEF2 2T T )12 sagae + 2 127 £TIE" (2)|20dodo.
20 0 0 0

l-r
2
= 2a(r) [ EHAEEL 4
1-r2
Thus

d a . r2ain? |

- (logA(r)) < — (log ——*—

dr dr‘ (l—r)b ‘

and part (i) of Lemma 2 is now obvious. Part (ii) follows immediately.
PROOF OF THEOREM 1.

(i) Since f € Bl(%) , we can write from (1.2)

2f'(22) = f(zz)% h(z2) (2.1)

where Re h(z) > 0, for =z € D.

_ 1+w(z?)

Set h(z?) s
1-w(z2)

where w(z2) is regular, Iw(zz){ <1lin D, w(0) = 0 and w(z) = nz

1
Then with F(z) = f(22)° and

® 2n-1 X
F(z) = z + n£2b2n—lz , (2.1) gives

(z£'(22) + F(2)) w(2?) = z£'(22) - F(2).
Thus

2

k-1 by 2%k-1
)z } w(z?) = k£2 (kak -b

{2z + kEZ (kak + b2k—1 )z . (2.2)

Equating coefficients of zZn-l in (2.2), we find that for n 2 2

2k-1

T o B G LIV

n + ...+ [(n-l)an

-2 -1 F byl

This means that the coefficient combination na - b2n—l on the left hand side of (2.2)

depends only on the coefficient combinations [Za2 + b3],....[(n-1)an_l + b2n—3] on

the right-hand side. Hence, for n * 2 we can write
2k-1 ® 2k-1

n=1 2k-1 2y _ D
{2z +H I, (ka +b, )z tw(z?) = kgz(kak-bZk_l)z il G2 2.3)
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say. Squaring the moduli of both sides of (2.3) and integrating round Iz] =r, we

obtain, using the fact that Iw(zz)| <1 for =z € D,

n 4k-2 4k=-2
- 2 2
ik Tk = by 12 r ki ol x
<4+ ka, +b, ]2
k=2 k 2k-1
letting r - 1, we have
o 2
WLy Ikag = by 12 =4+ z lka + by 12
Thus
Ina - b, ]2 <4+ z kla, | by 1l (2.4)
(where lall = |b1|= 1.
Hence
lna_ - b, 12 <4 C5! kla DO kb, 2}
n 2n-1 - k=1 k k=1 2k~1
—4ntl @ 2 4k, i 2 4k-2,}
<4r (L, k[ak| L @k=D by, [2 27
for 0 < r <1, and so
_ 2 -4n+l , A(x2,f) A(x,F)
lnan bZn-ll <4r /( =) /( )
Lemma 1l now gives
_ 2 4 ~4n+1
nay = b 1 S ey t Ar?,9).
and choosing 2 =1- % we obtain
Inan ~ bZn—llz < CA(l - %), where C 1is constant. (2.5)

Finally, it is easy to see that from the definition of Bl(b), F € R and so [8] for

2

n<2, byl g

Thus (2.5) gives

ala ] = o(1) +0(1) /(AQ = 1) as n >

This proves part (i) of Theorem 1.
(ii)

2m

Since L(r) = 6 |zf'(z)|d9 , and F(z)2 = £(z2) , (2.1) gives

2m

L(r2) = |22£' (22)]d6 < ¢ 62" |F(z) h(z2)|de

i6

s
0
72" 6‘ [F'(2) h(z2)]|dpd6 + 2r 62“ ér [F(z) h'(22)|pdpd® (z=pel®)

<
-0
= Il(r) + Iz(r) say.
Again using (2.1) we have

L) =x /" 02“ Ih(?) 2080 = 2nr /7 1+ E) [0 ]2 ) do

where h(z) =1 + 51 h z for z € D, and since |hn| <2 for n>1 [2p. 10],
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L) < 2me [T+ 4 £ 0™
- 0 n=1

0(l) log(T%;) as r > 1.
Also

r (27
1

W <2 ¢ IF(2)? h'<z2>|odedo>*(6r o ' (22) |pdde)

}

2r (3, (x)) (Jz(r))& say.

Since Re h(zz) >0, for z € D, we may write

21 1 + 22 e_it
e (o),

2y = L
ne = 2m 6 1 -z¢%e

where up(t) increases and %; 62" du(t) = 1. [5 p. 68].

Therefore
-it
2 =T au(o),
0 (1 - z2 e )2
and so
veoayl o L ogom du(t)
b5 < m 6 2 -itp ”
|l -2z% e I
Thus
2
J () < &g Bz) | %rdedu(t)do .
1 - T0 0 0 1 - 22 e-lt

Since F 1is an odd function we may write

Fz) = 2n-1
L2 it nk1 Sop-1 (V)2
and so
2 -3 -
2 F(z) dedu(t) = 21 £ o%™2 f2M |5 ()]2 du(r).
2 -it n=1 2n-1
0 0 1 -2%e 0

We now show that for n > 1,

2m 2 no
! [8)py (©17 dute) < 2w (1) 5l ] by, 1
% 2n-1
where F(z) = nEI b2n-lz for z € D.
From (2.7) we have
* 2n-1 _ © 2n-1 ® -int_2n
n£1 SZn-l(t) z - (ngl b2n-1z )(n§0 € 2
and so for n > I,
© -i(n-k)t
Son-1(8) = 4y Py ©
Now (2.1) gives
-4 2n-1 © 2n-1 -4 2n
(%) nayz ) = (ad1 Ponoy )(nEO hz™)
(where hO =1) and so for n > 1
b
nag = L) byyiPaoye

It is easy to see from (2.6) that, for k > 1,

789
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1 ,2m  -kit
hk =3 IO e du(t).
and so
L7 2T _j(n-v)t
nag =3k Pour ) e . (2.9)
Now
2 - < (Y
18,01 ()7 = S5, 1 (©) Sy (0
- nod < —i(k=i)t _ D )
= 2Re jL; Ly Doy 1Pop-g © A LY
where we have used (2.8). Therefore, using (2.9)
2m 2 N nj - 2 -i(k-j)t n 2
{ s, 1 (©)]2 aue) = 2 Re jI; &) byy 1bypey [Te du(t) - 2n £ lby ]
=2 b a. -2 L|b |2
= 2m Reyly byyy day = 21 (BylPgyy
< n —
< 2 Re jgl Jaj b2j—1
n
. .
<o L)) |aj| lsz_ll.
Thus
< r « 4n-1, 0
Iy s dm fF e (Y slagl Tby5_y1)de
< r © 4n-1, 0 ok, D 2%
< [0E 0 TTGL) 317G 3oy )7
x © il @ 4i-2 %
r n . 2 21 2 i b 2 ]
san gt B ot L) ilayl? o £ @-n | 21l ®

L L
T AR A,
0 1-p ?

A
~

4 r Alp,f)
= (m=2)V2 6 1-p dp, by lemma 1.

Since A(p) is increasing on (0,1)

4
1) = Goyys A 6r T%ﬁ

_ 4
Now T Gz ACD 1°3(T%?)'

Jz(r)

r .2n
I s h' (22
5 o |h' (22)|pdpde,

2
and since [h'(zz)l < Re h(z%) for 0<r <1,

1-r*

A

r .21 Re h(z?)
2 [ 7 —=——==—+ pded
00 1ok pdbdp

IA

Jz(r)

b fr _do
0 l_p#

IA

since h 1is harmonic in D
Thus

.

1
J < 4 —_
z(r) m log -
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Combining the estimates for Jl(r) and Jz(r) shows that

1,(r) = 0(1) Y(A()) log ({&) as r~ 1

and the result is proved.

COROLLARY 1. Let f € Bl(%), then as n > «

(1) nla| <o) +0(1) P(L - 52
i) nja | <o D5

where for 0 < r <1, P(r) = % Ia lrn
n=1 n

(i) nla_| <o) +0(1) ACL - %)1/“(1og 3

L s
(ii1) L(x) = 0(1) A(r) “(log(=))% as r 1 .
PROOF. From (2.4) and the fact that !bZk—ll < 5%:T for k 2 1, it follows that, for
0 <r <1,
klakl

-1
L) 71

_ 2
nay = by l? <8

n
k

Ar_nP(r).

A

3 =

Choosing r =1 - (i) follows.

(ii) follows since
n,
®© 2.0 1/2 © r >
P(r) < (I, nla [2r)*( £, )7
It follows trivially from(2.1) that

- 4 1
L(r) = 0(1l) M(r) "~ log 1= as r > 1

and so (iii) follows at once on noting that

%
M(r)? < éi;ﬁl logié?

and on using lemma 2.

REMARK. In view of Theorem 1 and Corollary 1, it is possible that for f € Bl(%) the

following conjectures are valid.

(1) n%al = 0() HA - D as no e,
(i) n"a:‘1 = 0(1) ACL - %) as n -+ ®,
(ii1) L(r) = 0(1) (A} log(ﬁ) as r » 1.

We note that (ii) is stronger that (i) and that we have proved (ii) and (iii) in the
case when A(r) 1is finite.

The following extensions to Theorem 1 support the above conjectures.
3. INTEGRAL MEANS.

For f regular in D , define for A real,

1,(r,6) = 62" £ (rel®) | qs.
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THEOREM 2. For f € Bl(i) and A > 1,

r M(r:l))‘/2

dp
X >
(1-p)

I,(r?,2f") < C(A) 6

where C()) is a constant depending only on A .

PROOF. (2.1) gives

Ix(rz,zf') = 62“ lzzf'(zz)lxde

A

Ar (f)’ 62“ l2£' (22) |}V F(2) h (22) |d6do

+ 2r 6‘ 62" lz£' (22)|* " F(2) ' (22)|pdedo

Ji(r) + Jé(r) say.

Now for A > 1,

N = 6r (162,267 621‘ |F'(2) h(z2)|dop' ™ do.

i6
From the proof of Theorem 1 (ii), we have with 2z = pe1 N

£2" |F'(2) h(z2)]de < 0(1) —— as p » 1.
0 1-p

Also (2.1) and the distortion theorem for functions of positive real part [4] gives

G2, o) ¢ 20D

Thus
-1
T Mo, F)

INr) € cO) S — 4
! o -t

and since F(z)? = f(z2), A-1

2
Ji(r) < c() st M,f) ~

- A
(1-p)
Similarly, using the fact that h is harmonic, we have
r MG@,P A
A
(1-p0)

/2
r M(p,f)
 co " M

Combining the results for Ji(r) and Jé(t) we obtain the result.

Jé(r) < c(h) 6 dp

dp

THEOREM 3, Let f € Bl(%), then for 0 <r <1,

2 2
Il(r , £f) < Il(r ,fO)

where

2
£,(2%) = (/% L ary2
0 1_t2

PROOF. Since f € Bl(%), then F € R.
Thus

L}

_1_ 2m 2 _1__ 2m 2 de

o [£(22)]de = 5 ! [F(2)]
® 2 4n-2

- 2

=t ah Ib2n—1I r



v
GROWTH RESULTS FOR A SUBCLASS OF BAZILEVIC FUNCTIONS 793

. I 2

and since for n 2 1, [b2n-1| S o

o pon-? 12
I (r2,f) <12 +4 I, ———v =5 " |[f (22)]d6
1 n=2 21 0
(2n-1)

and the theorem is proved.
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