ON PAIRWISE S-CLOSED BITOPOLOGICAL SPACES

M. N. MUKHERJEE
Department of Mathematics
Charu Chandra College
22 Lake Road
Calcutta, India 700029
(Received August 5, 1982)

ABSTRACT. The concept of pairwise S-closedness in bitopological spaces has been introduced and some properties of such spaces have been studied in this paper.

KEY WORDS AND PHRASES. Pairwise semi-open, Pairwise almost compact, Pairwise S-closed, Pairwise regularly open and regularly closed, Pairwise extremally disconnectedness, Pairwise semi-continuous and irresolute functions.
1980 AMS MATHEMATICS SUBJECT CLASSIFICATION CODES. $54 E 55$.
i. INTRODLCTION.

Travis Thompson [1] in 1976 initiated the notion of S-closed topological spaces, which was followed by its further study by Thompson [2], T. Noiri [3,4] and others. It is now the purpose of this paper to introduce and investigate the corresponding concept, i.e., pairwise S-closedness in bitopological spaces. To make the exposition of this paper self-contained as far as possible, we shall quote some definitions and erunciate some theorems from $[5,6,7]$.

DEFINITION 1.1. [7] Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a bitopological space.
(i) A subset A of X is called τ_{i} semi-open with respect to τ_{j} (abbreviated as τ_{i} s.o.w.r.t. τ_{j}) in X if there exists $a_{i} \tau_{i}$ open set B such that $B \subset A \subset \bar{B}^{\tau_{j}}$ (where $\bar{B}^{\tau} j$ denotes the τ_{j}-closure of B in X), where $i, j=1,2$ and $i \neq j$.
A is called pairwise semi-open (written as p.s.o) in X if A is τ_{1}
s.o.w.r.t. ${ }^{\tau_{1}}$ as well as ${ }^{\tau_{2}}$ s.o.w.r.t. ${ }^{\tau}{ }_{1}$ in X .
(ii) A subset A of X is called τ_{1} semi-closed with respect to ${ }^{\tau_{2}}$ (denoted as τ_{1} s.cl.w.r.t. τ_{2}) if $X-A$ is τ_{1} s.o.w.r.t. τ_{2}. Definitions for τ_{2} s.cl.w.r.t. τ_{1} and p. s.cl. sets can be given similarly as in (i).
(iii) A subset N of X is called a τ_{i} semi-neighborhood of x w.r.t. τ_{j}, where $x_{\varepsilon} X$, if there is a τ_{i} s.o. set w.r.t. τ_{j} containing x and contained in N. A point x of X is said to be $a \tau_{i}$ semi-accumulation point of a subset A of X w.r.t. τ_{j}, if every τ_{i} semi-neighborhood of x w.r.t. τ_{j} intersects A in at least one point other than x, where $i, j=1,2$ and $i \neq j$. (iv) The intersection of all τ_{i} s.cl. sets w.r.t. τ_{j}, each containing a subset A of X, is called the τ_{i} semi-closure of A w.r.t. τ_{j} and will be denoted by $\underline{A}_{\tau_{i}\left(\tau_{j}\right)}$, where $i, j=1,2$ and $i \neq j$.

It has been proved in [7] that a subset A of a bitopological space $\left(x, \tau_{1}, \tau_{2}\right)$ is τ_{i} s.cl. w.r.t. τ_{j} if and only if $A=\frac{A}{\tau_{j}}\left(\tau_{j}\right)$ and moreover, $x \in A_{\tau_{i}}\left(\tau_{j}\right)$ if and only if x is either a point of A or a τ_{i} semi-accumulation point of A w.r.t. τ_{j}, where $i \neq j$ and $i, j=1,2$.

In [7], it was deduced that $A \subset\left(X, \tau_{1}, \tau_{2}\right)$ is τ_{1} s.o.w.r.t τ_{2} iff $\mathbb{A}^{\tau} 2=$ $\overline{\left(A^{i}\right)^{\tau}}{ }^{\tau}$ where $A^{i} 1$ denotes the τ_{1}-interior of A in X. Similarly we shall use $A^{i_{2}}$ to mean the τ_{2}-interior of A in x.

It is very easy to see that every $\tau_{\mathfrak{j}}$ open set in $\left(X, \tau_{1}, \tau_{2}\right)$ is τ_{i} s.o.w.r.t. τ_{j} and the union of any collection of sets that are τ_{i} s.o.w.r.t. τ_{j}, is also so, where $i, j=1,2 ; i \neq j$. It was shown in [5] that the intersection of two ${ }^{\tau_{1}}$ s.o. sets w.r.t. τ_{2} is not necessarily τ_{1} s.o.w.r.t. τ_{2}. But we have,
THEOREM 1.2. [5] If A is τ_{i} s.o.w.r.t. τ_{j} in $\left(X, \tau_{1}, \tau_{2}\right)$ and $B \varepsilon \tau_{1} \cap \tau_{2}$, then $A \cap B$ is τ_{i} s.o.w.r.t. τ_{i}, where $i, j=1,2$ and $i \neq j$.

The first part of the following theorem was proved in [7] and the converse part in [5].

THEOREM 1.3. Let $A \subset Y \subset\left(X, \tau_{j}, \tau_{2}\right)$. If A is τ_{i} s.o.w.r.t. τ_{j}, then A is $\left(\tau_{j}\right)_{Y}$ s.o.w.r.t. $\left(\tau_{j}\right)_{Y}$. Conversely, if A is $\left(\tau_{i}\right)_{Y}$ s.o.w.r.t. $\left(\tau_{j}\right)_{Y}$ and Y_{ε} τ_{i}, then A is τ_{i} s.o.w.r.t. τ_{j}, where $i, j=1,2$ and $i \neq j$.
DEFINITION 1.4. [6] (a) A bitopological space $\left(X, \tau_{1}, \tau_{2}\right)$ is said to be τ_{i} almost compact w.r.t. $\tau_{j}(i, j=1,2 ; i \neq j)$ if every τ_{i} open filterbase has a τ_{j} cluster point. $\left(X, \tau_{1}, \tau_{2}\right)$ is called pairwise almost compact if it is ${ }^{\tau}{ }_{1}$
almost compact w.r.t. τ_{2} and τ_{2} almost compact w.r.t. τ_{1}.
(b) A bitopological space $\left(X^{*}, \tau_{1}^{\star},{ }_{\tau}^{\star}{ }_{2}^{*}\right)$ is called an extension of a bitopological space $\left(x, \tau_{1}, \tau_{2}\right)$ if $x \subset x^{\star}, \bar{x}^{\tau_{i}^{*}}=X^{\star}$ and $\left(\tau_{i}^{*}\right)_{X}=\tau_{i}$, for $i=1,2$.

A pairwise Hausdorff bitopological space $\left(X, \tau_{1}, \tau_{2}\right)$ is called pairwise $H-c l o s e d ~ i f ~ t h e ~ s p a c e ~ c a n n o t ~ h a v e ~ a n y ~ p a i r w i s e ~ H a u s d o r f f ~ e x t e n s i o n . ~$

THEOREM 1.5. [6] (a) $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise almost compact if and only if for each cover $\left\{G_{\alpha}: \alpha \varepsilon I\right\}$ of X by τ_{i} open sets, there exists a finite subcoilection $\left\{G_{\alpha_{1}}, \ldots \ldots, G_{\alpha_{n}}\right\}$ such that $X=\bigcup_{k=1}^{n}{\overline{G_{\alpha_{k}}}}^{\tau} j$, where $i, j=1,2$ and $i \neq j$.
(b) If $\left(X, \tau_{1}, \tau_{2}\right)$ is τ_{i} regular w.r.t. τ_{j} and τ_{i} almost compact w.r.t. τ_{j}, then $\left(X, \tau_{j}\right)$ is compact, for $i, j=1,2$ and $i \neq j$.
(c) A pairwise Hausdorff and pairwise almost compact bitopological space is pairwise H-closed.

In what follows, by $\left(X, \tau_{1}, \tau_{2}\right)$ we shall always mean a bitopological space, i.e., a set X endowed with two topologies τ_{1} and τ_{2}.
2. PAIRWISE S-CLOSED SPACES.

DEFINITYON 2.1. Let $F=\left\{F_{\alpha}\right\}$ be a filterbase in $\left(X, \tau_{1}, \tau_{2}\right)$ and $X \in X$. F is said to
(i) $\tau_{i} S$-accumulate to x w.r.t. $\tau_{j}{ }_{i f}$ for every τ_{i} s.o. set V w.r.t. τ_{j} containing x and each $F_{\alpha} \in F, F_{\alpha} \cap \nabla^{\tau} j \neq \phi$.
(ii) $\tau_{i} S$-converge w.r.t. τ_{j} to x, if corresponding to each τ_{i} s.o.set V w.r.t. τ_{j} containing x, there exists $F_{\alpha} \in F$ such that $F_{\alpha} \subset \bar{v}^{\tau} j$.

In (i) and (ii) above, $i \neq j$ and $i, j=1,2 . F$ is said to pairwise S-converge to x if F is τ_{1} S-convergent to x w.r.t. τ_{2} as well as τ_{2} S-convergent to x w.r.t. τ_{1}. The definition of pairwise S-accumulation point of F is similar.

DEFINITION 2.2. $\left(X, \tau_{1}, \tau_{2}\right)$ is called ${ }^{\tau}{ }_{1}$ S-closed w.r.t. ${ }^{\tau}{ }_{2}$ if for each cover $\left\{V_{\alpha}: \alpha \varepsilon I\right\}$ of X with τ_{1} s.o. sets w.r.t. τ_{2}, there is a finite subfamily $\left\{V_{\alpha_{i}}: i=1,2, \ldots \ldots, n\right\}$ such that $\bigcup_{i=1}^{n} \bar{V}_{\alpha_{i}}{ }^{2}=X$ (where I is some index set). X is called pairwise S-closed if it is τ_{1} S-closed w.r.t. τ_{2} and τ_{2} S-closed w.r.t. ${ }^{\tau}{ }_{1}$.

THEOREM 2.3. Let F be an ultrafilter in X. Then $F{ }^{\tau} 1$ S-accumulates to a point
$x_{0} \in X$ w.r.t. τ_{2} if and only if F is ${ }^{\tau} 1$ S-convergent to x_{0} w.r.t. ${ }^{\tau}{ }_{2}$. PROOF: Let F be τ_{1} S-convergent w.r.t. τ_{2} to x_{0} and let it not τ_{1} S-accumulate w.r.t. τ_{2} to x_{0}. Then there exist a τ_{1} s.o. set V w.r.t. ${ }^{\tau_{2}}$ (containing x_{0}) and some $F_{\alpha} \varepsilon F$ such that $F_{\alpha} \cap \bar{V}^{\tau} 2=\phi$. Then $F_{\alpha} \subset X-\bar{V}^{\tau}$) and hence $X-\bar{V}^{\tau}{ }^{2} \in F \ldots(2.1)$.

Since F is $\tau_{1} S$-convergent w.r.t. τ_{2} to x_{0}, corresponding to V there exists $F_{B} \varepsilon F$ such that $F_{B} \subset \bar{V}^{\tau}$? Then \bar{V}^{τ} 。 $F^{2} \ldots$. (2.2). Clearly (2.1) and (2.2) are incompatible. Note that for this part we do not need maximality of F. Conversely, if F does not ${ }^{\tau} 1$ S-converge w.r.t. ${ }^{\tau}{ }_{2}$ to x_{0}, there exists a ${ }^{\tau} 1$ s.o. set V w.r.t. τ_{2} containing x_{0}, such that $F_{\alpha} \notin \bar{V}^{\tau}$, for each $F_{\alpha} \varepsilon F$. But F has x_{0} as a τ_{1} S-accumulation point w.r.t. τ_{2}. Hence $F_{\alpha} \cap \bar{V}^{\tau} \neq \rho$, for each $F_{\alpha} \varepsilon F$. Thus $F_{\alpha} \cap \bar{V}^{\tau} 2 \neq \emptyset$ and $F_{\alpha} \cap\left(X-\bar{V}^{\tau}\right) \neq \emptyset$, for each $F_{\alpha} \varepsilon F$. Since F is maximal, this shows that V^{τ} 2 and $X-\bar{V}^{\tau} 2$ both belong to F, which is a contradiction.

NOTE 2.4. In the above theorem, the indices 1 and 2 could be interchanged.
THEOREM 2.5. In a bitopological space $\left(X, \tau_{1}, \tau_{2}\right)$ the following are equivalent:
(a) X is $\tau_{1} S$-closed w.r.t. ${ }^{\tau_{2}}$.
(b) Every ultrafilterbase F is τ_{1} S-convergent w.r.t. τ_{2}.
(c) Every filterbase $\tau_{1} S$-accumulates w.r.t. τ_{2} to some point of X.
(d) For every family $\left\{F_{\alpha}\right\}$ of τ_{1} s.cl. sets w.r.t. τ_{2}, with $\cap F_{\alpha}=\emptyset$, there exists a finite subcollection $\left\{F_{\left.\alpha_{i_{i}}\right\}^{n}}^{n}\right.$ of $\left\{F_{\alpha}\right\}$ such that $\bigcap_{i=1}^{n}\left(F_{\alpha_{i}}\right)^{i_{2}}=\varnothing$.

PROOF: (a) => (b) Let $F=\left\{F_{\alpha}\right\}$ be an ultrafilterbase in X, which does not ${ }^{\tau}{ }_{1}$ S-converge w.r.t. τ_{2} to any point of X. Then by Theorem 2.3, F has no τ_{1} S-accumulation point w.r.t. τ_{2}. Thus for every $x \in X$, there is a τ_{1} s.o. set $V(x)$ w.r.t. τ_{2} containing x and an $F_{\alpha(x)} \varepsilon F$ such that $F_{\alpha(x)} \cap \overline{V(x)^{\tau} 2}=\emptyset$. Evidently, $\{V(x): \quad x \in X\}$ is a cover of X with sets that are ${ }_{\tau}{ }_{1}$ s.o.w.r.t. ${ }^{\tau}{ }_{2}$ and by (a), there exists a finite subcollection $\left\{V\left(x_{i}\right): i=1,2, \ldots, n\right\}$ of $\{V(x): \quad x \in X\}$ such that $\bigcup_{i=1}^{n} \overline{V\left(x_{i}\right)^{\tau} 2}=x$.
Now, F being a filterbase, there exists $F_{0} \& F$ such that

$$
F_{o} \subset \bigcap_{i=1}^{n} F_{\alpha}\left(x_{i}\right)
$$

Then $F_{0} \cap \bar{V}\left(x_{i}\right)^{\tau} 2=\emptyset$ for $i=1,2 \ldots ., n$.
$\Rightarrow F_{0} \cap\left(\bigcup_{i=1}^{n}{\overline{V\left(x_{i}\right)}}^{\tau} 2\right)=F_{0} \cap x=\emptyset \Rightarrow F_{0}=\emptyset$ which is a contradiction.
(b) \Rightarrow (c) Every filterbase F is contained in an ultrafilter base F^{*} and F^{*} is ${ }^{\tau}{ }_{1}$ S-convergent w.r.t. τ_{2} to some point x_{0} by (b), and hence x_{0} is a ${ }^{\tau}{ }_{1}$ S-accumulation point of F^{*} w.r.t. τ_{2}. Since $F \subset F^{*}, x_{0}$ is also a ${ }^{\tau} 1$ S-accumulation point of F w.r.t. ${ }^{\tau_{2}}$.
$(c) \Rightarrow(d)$ Let $F=\left\{F_{\alpha}\right\}$ be a family of τ_{1} s.cl. sets w.r.t. τ_{2} with $\cap F_{\alpha}=\emptyset$ and be such that for every finite subfamily $\left\{F_{\alpha_{i}}\right\}_{i=1}^{n}($ say $), \bigcap_{i=1}^{n}\left(F_{\alpha_{i}}\right)^{i} \neq 0$. Thus $F=\left\{\bigcap_{i=1}^{n}\left(F_{\alpha_{i}}\right)^{i} 2, n=\right.$ positive integer, $\left.F_{\alpha_{i}} \varepsilon F\right\}$ forms a filterbase in X and hence by hypothesis has a τ_{1} S-accumulation point x_{0} w.r.t. τ_{2}. Then for any ${ }^{\tau} 1$ s.o. set $V\left(x_{0}\right)$ w.r.t. τ_{2} containing $x_{0},\left(F_{\alpha}\right)^{i_{2}} \cap \overline{V\left(x_{0}\right)^{\tau} 2} \neq 0$, for each $F_{\alpha} \in F$. Since $\cap F_{\alpha}=\emptyset$, there is some $F_{\alpha_{0}} \varepsilon F$ such that $x_{0} \notin F_{\alpha_{0}}$. Hence $x_{0} \varepsilon X-F_{\alpha_{0}}$ which is τ_{1} s.o.w.r.t. τ_{2}. Hence $\left(F_{\alpha_{0}}\right)^{i_{2}} \cap \frac{\alpha_{0}}{\left(X-F_{\alpha_{0}}\right)^{\tau} 2} \neq \emptyset$ or, $\left(F_{\alpha_{0}}\right)^{i_{2}} \cap\left(x-\left(F_{a_{0}}\right)^{i_{2}}\right) \neq \emptyset$ which is impossible.
(d) \Rightarrow (a) Let $\left\{V_{\alpha}\right\}$ be a covering of X with sets that are ${ }^{\tau}{ }_{1}$ s.o.w.r.t. τ_{2}. Then $\cap\left(X-V_{\alpha}\right)=x-U V_{\alpha}=\emptyset . \quad B y(d)$, there exists finite number of indices $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ such that $\bigcap_{k=1}^{n}\left(x-v_{\alpha_{k}}\right)^{i_{2}}=\emptyset$, i.e., $\bigcap_{k=1}^{n}\left(x-{\overline{\alpha_{k}}}^{\tau}{ }^{2}\right)=\emptyset$, or $x-\bigcup_{k=1}^{n} \bar{V}_{\alpha_{k}}^{\tau_{2}}=\emptyset$, or $\bigcup_{k=1}^{n} \bar{V}_{\alpha_{k}}^{\tau_{2}}=x$ and hence x is ${ }^{\tau_{1}}$ S-closed w.r.t. ${ }^{\tau_{2}}$. NOTE 2.6. Obviously, in the above theorem, the indices 1 and 2 could have been interchanged and hence the statement (a) can be replaced by "X is pairwise S-closed" with corresponding alterations in (b), (c) and (d). DEFINITION 2.7. A subset Y of $\left(X, \tau_{1}, \tau_{2}\right)$ will be called $\tau_{i} S$-closed w.r.t. τ_{j} in X if and only if for every cover $\left\{V_{\alpha}: \alpha \varepsilon I\right\}$ of Y by τ_{i} s.o. sets w.r.t. τ_{j} of x, there exists a finite set of indices $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \varepsilon$ I such that
$Y \subset \bigcup_{k=1}^{n}\left\{{\overline{V_{\alpha k}}}^{\tau}\right\}$, where $i, j=1,2$ and $i \neq j$.

THEOREM 2.8. A subset Y of $\left(X, \tau_{1}, \tau_{2}\right)$ will be $\left(\tau_{i}\right)_{Y} S$-closed w.r.t. $\left(\tau_{j}\right)_{Y}$ if Y is $\tau_{i} S$-closed w.r.t. τ_{j} in X and $Y \varepsilon \tau_{i}$, where i, $i=1,2$ and $i \neq j$. PROOF: We prove the theorem by taking $i=1$ and $j=2$. Similar will be the proof when $i=2$ and $j=1$. By virtue of Theorem 1.3, every cover $\left\{V_{\alpha}: \alpha \in I\right\}$ of Y by sets that are $\left(\tau_{1}\right)_{Y}$ s.o.w.r.t. $\left(\tau_{2}\right)_{Y}$ can be regarded as a cover of Y by sets that are τ_{1} s.o.w.r.t. τ_{2}. Then by hypothesis, there is a finite number of indices $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ such that

$$
Y \subset \bigcup_{k=1}^{n} \bar{V}_{\alpha_{k}}^{\tau_{2}} \Rightarrow Y=\bigcup_{k=1}^{n} \bar{V}_{\alpha_{k}}\left({ }^{\tau} 2\right)_{Y} \text { and the theorem follows. }
$$

THEOREM 2.9. If $Y\left(C\left(X, \tau_{1}, \tau_{2}\right)\right)$ is $\left(\tau_{i}\right)_{Y} S$-closed w.r.t. $\left(\tau_{j}\right)_{Y}$ and $Y \varepsilon$ $\tau_{1} \cap \tau_{2}$, then Y is $\tau_{i} S$-closed w.r.t. τ_{j} in X, for $i, j=1,2$ and $i \neq j$. PROOF: We prove only the case when $i=1$ and $j=2$. Let $\left\{G_{\alpha}\right\}$ be a cover of Y, where each G_{α} is ${ }^{\tau}{ }_{1}$ s.o.w.r.t. τ_{2}. Then by Theorem 1.2, $G_{\alpha} \cap Y$ is ${ }^{\tau}{ }_{1}$ s.o.w.r.t. τ_{2} for each α and hence by Theorem 1.3, $G_{\alpha} \cap Y$ is $\left(\tau_{1}\right)_{Y}$ s.o.w.r.t. $\left(\tau_{2}\right)_{Y}$ for each α. By hypothesis, there exists a finite number of indices $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ such that
$Y=\bigcup_{k=1}^{n} \overline{\left.\left(G_{\alpha_{k}} \cap \bar{Y}\right)^{(}{ }^{\tau} 2\right)} Y \Rightarrow \quad C \bigcup_{k=1}^{n}{\bar{G} \alpha_{k}}^{\tau} 2 \Rightarrow Y$ is τ_{1} S-closed w.r.t. ${ }^{\tau}{ }_{2}$ in x.
DEFINITION 2.10. [7] A subset A in $\left(X, \tau_{1}, \tau_{2}\right)$ is called τ_{1} regularly open (closed) w.r.t. ${ }^{\tau} 2$ if and only if $A=\left(\bar{A}^{\tau}\right)^{i^{\prime}}$ (respectively if and only if $\left.\left.A=\overline{\left(A^{i} 2\right.}\right)^{\tau}\right)$. Similarly we define sets that are τ_{2} regularly open (closed) w.r.t. ${ }^{\tau} 1$.

It has been shown in [7] that a subset B of $\left(X, \tau_{1}, \tau_{2}\right)$ is τ_{i} regularly closed w.r.t. τ_{j} iff $(X-B)$ is τ_{i} regularly open w.r.t. τ_{j}, for $i, j=1,2$ and $i \neq j$.
LEMMA 2.11. If a subset A of a bitopological space $\left(X, \tau_{1}, \tau_{2}\right)$ is τ_{j} regularly closed w.r.t. τ_{i}, then A is τ_{i} s.o.w.r.t. τ_{j}, where $i, j=1,2$ and $i \neq j$.
PROOF: Proof is done only in the case when $i=1$ and $j=2$.
A is ${ }^{\tau_{2}}$ regularly closed w.r.t. $\tau_{1} \Rightarrow(X-A)$ is ${ }^{\tau}{ }_{2}$ regularly open w.r.t. ${ }^{\tau} 1$

$$
\begin{equation*}
\Rightarrow \quad X-A=\left[\left(\overline{X-\bar{A})^{\tau}}{ }^{\tau}\right] i_{2}\right. \tag{2.3}
\end{equation*}
$$

Let $0=X-(\bar{X}-\bar{A})^{\tau} 1$. Then 0 is τ_{1} open and
$\bar{C}^{\tau} 2=\left[\overline{X-(\bar{X}-\bar{A})^{\tau}}{ }^{\tau}\right]^{\tau} 2=X-\left[X-(\overline{X-A})^{\tau} 1\right]^{i_{2}}=A($ by (2.3) $)$.
Thus $0 \subset A \subset \overline{0}^{\tau}$ and $0 \varepsilon \tau_{1}$. Hence A is τ_{1} s.c.w.r.t. τ_{2}.
LEMMA 2.12. If a subset A of $\left(X, \tau_{1}, \tau_{2}\right)$ is τ_{i} s.o.w.r.t. τ_{j} then $\bar{A}^{\tau_{j}}$ is τ_{j} regularly closed w.r.t. τ_{i}, where $i \neq j$ and $i, j=1,2$.
PROOF: As before we consider the case $i=1$ and $j=2$. Since A is ${ }^{\tau}{ }_{1}$

It has been shown in [7] that a set A in $\left(X, \tau_{1}, \tau_{2}\right)$ is τ_{i} regularly closed w.r.t $\tau_{j}(i, j=1,2 ; i \neq j)$ if it is τ_{i} closure of some τ_{j} open set. Since $A^{i} 1$ is ${ }^{\tau} 1$ open, by virtue of (2.4) the result follows.
THEOREM 2.13. A bitopological space $\left(X, \tau_{1}, \tau_{2}\right)$ is $\tau_{i} S$-closed w.r.t. τ_{j} if and only if every proper τ_{j} regularly open set w.r.t. $\tau_{\mathbf{i}}$ of X is $\tau_{\mathbf{i}}$ S-closed w.r.t. τ_{j}, for $i, i=1,2$ and $i \neq j$.

PROOF: We only take up the case $i=1$ and $j=2$.
Let X be ${ }^{\tau_{1}} S$-closed w.r.t. τ_{2} and F be a proper ${ }^{\tau_{2}}$ regularly open set of X w.r.t ${ }^{\tau}{ }_{1}$. Let $\left\{V_{\alpha}: \alpha \varepsilon I\right\}$ be a cover of F by sets that are ${ }^{\tau_{1}}$
s.o.w.r.t. τ_{2}. Since $X-F$ is τ_{2} regularly closed w.r.t. τ_{1}, by Lemma 2.11, $(X-F)$ is ${ }^{\tau}{ }_{1}$ s.o.w.r.t. τ_{2} and hence $(X-F) U\left\{V_{\alpha}: \alpha \varepsilon I\right\}$ is a cover of X by ${ }^{\tau}{ }_{1}$ s.o. sets w.r.t. τ_{2}. Since X is τ_{1} S-closed w.r.t. τ_{2}, there exists a finite-number of indices $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ such that $x=(\overline{X-F})^{\tau} \bigcup^{2}\left[\bigcup_{k=1}^{n}\left(\bar{v}_{\alpha_{k}}{ }^{\tau}\right)\right]$. Since F is τ_{2} open, $F \cap \overline{X-F}^{\tau_{2}}=\emptyset$ and hence $F \subset \bigcup_{k=1}^{n}\left(\bar{V}_{\alpha_{k}}{ }^{\tau_{2}}\right)$, proving that F is τ_{1} S-closed w.r.t. τ_{2}. Conversely, let $\left\{V_{\alpha}: \alpha \varepsilon I\right\}$ be a cover of X by sets that are ${ }^{\tau}{ }_{1}$ s.o.w.r.t. τ_{2}. If $X=\bar{V}_{\alpha}{ }^{2}$, for each $\alpha \varepsilon I$, then the theorem is proved. So, suppose $X \neq \bar{V}_{\beta}{ }^{\tau}$, for some $\beta \in I$ and $V_{\beta} \neq \emptyset$. Then $\bar{V}_{\beta}{ }^{{ }^{2}}$, is a proper subset of X. Since V_{β} is τ_{1} s.o.w.r.t. τ_{2}, by Lemma $2.12, \nabla_{\beta}{ }^{\tau_{2}}$ is τ_{2} regularly closed w.r.t. ${ }^{\tau}{ }_{1}$, so that $x-\bar{V}_{\beta}{ }^{\tau} 2$ is proper τ_{2} regularly open w.r.t. τ_{1} and by hypothesis, it is τ_{1} S-closed w.r.t. τ_{2}. Then there exists a finite
set of indices $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}$ such that $x-\bar{v}_{\beta}{ }^{\tau} 2 \subset \bigcup_{k=1}^{m} \bar{v}_{\alpha_{k}}{ }^{\tau} 2$. Hence $x=\bar{V}_{B}^{\tau}{ }^{\tau} \bigcup\left(\bigcup_{k=1}^{m} \bar{V}_{\alpha_{k}}{ }^{\tau}{ }^{2}\right)$ and x is τ_{1} S-closed w.r.t. ${ }^{\tau}{ }_{2}$.

THEOREM 2.14. A subset A in $\left(X, \tau_{1}, \tau_{2}\right)$ is $\tau_{i} S$-closed w.r.t. τ_{j} in X if and only if every cover of A by sets that are τ_{j} regularly closed w.r.t. τ_{i} in x, has a finite subcover, where $i, j=1,2$ and $i \neq j$.

PROOF: We consider only the case $i=1$ and $j=2$. Let A be ${ }^{\tau}{ }_{1} S$-closed w.r.t. $\quad \tau_{2}$ in X and $\left\{V_{\alpha}\right\}$ be a collection of τ_{2} regularly closed sets in X w.r.t. τ_{1}, which is a cover of A. Then each V_{α} is τ_{1} s.o.w.r.t. τ_{2}, by Lemma 2.11 and hence there exists a finite set of indices $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ such that $A \subset \bar{V}_{\alpha_{1}}^{{ }^{\tau} 2} U \ldots \ldots . . \cup \bar{v}_{\alpha_{n}}^{\tau_{2}}=v_{\alpha_{1}} \cup \quad \ldots . \cup v_{\alpha_{n}}$ (since each $v_{\alpha_{i}}$ is ${ }^{\tau_{2}}$ closed). Conversely, let the given condition hold and $\left\{V_{\alpha}\right\}$ be a ${ }^{\tau}{ }_{1}$ s.o. cover of A w.r.t. ${ }^{\tau_{2}}$. Then $\bar{V}_{\alpha}{ }^{\tau_{2}}$ is τ_{2} regularly closed w.r.t. ${ }^{\tau}{ }_{1}$ for each α, by Lemma 2.12, and $\left\{\bar{V}_{\alpha}^{\tau}{ }^{\tau}\right\}$ is a cover of A. Then by hypothesis, there exist a finite number of indices $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{i j}$ such that $A \subset \bigcup_{k=1}^{n} \bar{V}_{\alpha_{k}}^{\tau}$, showing that A is τ_{1} S-closed w.r.t. $\quad \tau_{2}$.
THEOREM 2.15. If A and B are $\tau_{i} S$-closed w.r.t. τ_{j} in $\left(X, \tau_{1}, \tau_{2}\right)$, then $A \cup B$ is also so, where $i, j=1,2$ and $i \neq j$.
PROOF: Let $\left\{V_{\alpha}\right\}$ be a cover of $A \cup B$ by sets that are τ_{i} s.o.w.r.t. τ_{j} in X. Then it is a cover of A as well as of B. By hypothesis, there will exist a finite number of indices $\alpha_{11}, \alpha_{12}, \ldots, \alpha_{1 k}$ and $\alpha_{21}, \alpha_{22}, \ldots, \alpha_{2 r}$ such that $A \subset \bigcup_{k=1}^{k} \bar{V}_{\alpha}{ }^{\tau} j k$ and $B \subset \bigcup_{k=1}^{r} \bar{V}_{\alpha_{2 k}}^{\tau}{ }_{2 k}$. Then $A \cup B \subset\left(\bigcup_{k=1}^{k} \bar{V}_{\alpha_{1 k}}^{\tau_{j}}\right) \bigcup\left(\bigcup_{k=1}^{r} \bar{V}_{\alpha_{2 k}}{ }_{2 k}\right)$ and hence $A \cup B$ is $\tau_{i} S$-closed w.r.t. τ_{j}. THEOREM 2.16. If A is $\tau_{1} S$-closed w.r.t. τ_{2} in $\left(X, \tau_{1}, \tau_{2}\right)$ then $\bar{A}^{\tau} 2$ is also so.

PROOF: Let $\left\{V_{\alpha}\right\}$ be a cover of $\bar{A}^{\tau} 2$ by sets that are τ_{1} s.o.w.r.t. τ_{2}, then it is also a cover of A. Thus there exists a finite number of indices $\alpha_{1}, \ldots, \alpha_{n}$ such that $A \subset \bigcup_{i=1}^{n} \bar{V}_{\alpha_{i}}^{\tau} 2 \Rightarrow \bar{A}^{\tau} 2 \subset \bigcup_{i=1}^{n} \bar{V}_{\alpha_{i}}{ }^{\tau} 2$ and the result follows. From

Theorem 2.9 arid Theorem 2.16 we get:
COROLLARY 2.17. If $A \quad\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise open and $\left(A,\left(\tau_{1}\right)_{A},\left(\tau_{2}\right)_{A}\right)$ is pairwise S-closed, then $\bar{A}^{\tau} \mathfrak{i}$ is pairwise S-closed in x, for $i=1,2$. COROLLARY 2.18. A space $\left(X, \tau_{1}, \tau_{2}\right)$ is $\tau_{i} S$-closed w.r.t. τ_{j} if there exists a $\tau_{i} S$-closed subset A w.r.t. τ_{j} in X, which is τ_{j} dense in X, where i, $j=$ 1,2 and $i \neq j$.

THEOREM 2.19. Let $A \subset\left(X, \tau_{1}, \tau_{2}\right)$ be ${ }^{\tau}{ }_{1} S$-closed w.r.t. τ_{2} and B is τ_{2} regularly open w.r.t. ${ }^{\tau}{ }_{1}$ in x. Then $A \cap B$ is $\tau_{1} S$-closed w.r.t. ${ }^{\tau}{ }_{2}$. PROOF: Let $\left\{V_{\alpha}: \alpha \in I\right\}$ be a τ_{1} s.o. cover of $A \cap B$ w.r.t. ${ }^{\tau}{ }_{2}$, where I is some index set. Since $X-B$ is τ_{2} regularly closed w.r.t. τ_{1}, by Lemma 2.11 , ($X-B$) is τ_{1} s.o.w.r.t. τ_{2}. Thus $A \subset \bigcup_{\alpha \in I}\left\{V_{\alpha}\right\} \cup(K-B)$ and A is $\tau_{1} S$-closed w.r.t. ${ }^{\tau}{ }_{2}$.

Then there exist indices $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$, finite in number, such that
$A \subset \bigcup_{i=1}^{n} \bar{V}_{\alpha_{i}}{ }^{\tau} 2{\overline{(X-B)^{2}}}^{\tau}=\bigcup_{i=1}^{n} \bar{V}_{\alpha_{i}}{ }^{\tau} 2 \cup(X-B)$.
Thus $A \cap B \subset \bigcup_{i=1}^{n} \bar{V}_{\alpha_{i}}^{\tau}$ and $A \cap B$ is $\tau_{1} S$-closed w.r.t. τ_{2}.
COROLLARY 2.20. Let $A \subset\left(X, \tau_{1}, \tau_{2}\right)$ be $\tau_{1} S$-closed w.r.t. τ_{2} and B is τ_{2} regularly open w.r.t. ${ }^{\tau_{1}}$, then
(a) B is $\tau_{1} S$-closed w.r.t. τ_{2} if $B \subset A$.
(b) $A^{i} 2$ is τ_{1} s-closed w.r.t. τ_{2} if A is τ_{1} closed in x.

PROOF: (a) Follows immediately from Theorem 2.19.
(b) Since $\left(\bar{A}^{\tau}\right)^{i_{2}}{ }^{\text {is }}$ is τ_{2} regularly open w.r.t. ${ }^{\tau} 1$ and $\left(\bar{A}^{\tau}\right)^{i_{2}} \cap A=A^{i_{2}} \cap A$ $=A^{1} 2$, the result follows by virtue of Theorem 2.19.

THEOREM 2.21. If $\left(X, \tau_{1}, \tau_{2}\right)$ is τ_{i} regular w.r.t. τ_{j} and τ_{i} S-closed w.r.t. τ_{j}, then $\left(X, \tau_{i}\right)$ is compact, where $i, j=1,2 ; i \neq j$.
Proof By virtue of Theorem 1.5(a), we see that every ${ }^{\tau}{ }_{i} S$-closed space w.r.t. ${ }^{\tau}{ }_{j}$ is τ_{i} almost compact w.r.t. τ_{j}. Hence by Theorem $1.5(b)$ the result follows.

In Theorem 3.7 we shall prove a partial converse of the above theorem.
3. PAIRWISE EXTREMALLY DISCONNECTEDNESS AND S-CLOSED SPACE.

DEFINITION 3.1. A bitopological space $\left(X, \tau_{1}, \tau_{2}\right)$ is said to be τ_{i}
extremally disconnected w.r.t. τ_{j} if and only if for every τ_{i} open set A of X,
$\bar{A}^{\tau} \mathbf{j}$ is τ_{i} open, where $i, j=1,2$ and $i \neq j . \quad X$ is called pairwise extremally disconnected if and only if it is τ_{1} extremally disconnected w.r.t. τ_{2} and τ_{2} extremally disconnected w.r.t. τ_{1}.

Datta in [8] has defined pairwise extremally disconnected bitopological space identically as above, we shall show (see Corollary 3.4) that the concept can be defined by a weaker condition.

The conclusion of the following theorem was also derived in [8] under the hypothesis that the space is pairwise Hausdorff and pairwise extremally disconnected. We prove a much stronger result here.
THEOREM 3.2. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be τ_{1} extremally disconnected w.r.t. τ_{2} or τ_{2} extremally disconnected w.r.t. τ_{1}. Then for every pair of disjoint sets A, B in x, where $A \varepsilon \tau_{1}$ and $B \varepsilon \tau_{2}$, one has $\bar{A}^{\tau} 2 \cap \bar{B}^{\tau} 1=\emptyset$. PROOF: Suppose $\left(X, \tau_{1}, \tau_{2}\right)$ is τ_{1} extremally disconnected w.r.t. τ_{2} and A_{ε} ${ }^{\tau} 1$,
$B \varepsilon \tau_{2}$ with $A \cap B=\emptyset$. Then $\bar{A}^{\tau} \cap \cap B=\emptyset \ldots(1)$. Now, if $\bar{A}^{\tau} \cap \cap \bar{B}^{\tau} 1 \neq \emptyset$, then there exists $x \in \bar{B}^{\tau} 1$ and $x \in \bar{A}^{\tau} 2 \varepsilon \tau_{1}$. Hence $\bar{A}^{\tau} 2 \cap B \neq \emptyset$ contradicting (1). Similarly the other case can be handled.

We prove a stronger converse of the above theorem.
THEOREM 3.3. $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise extremally disconnected if for every pair of disjoint sets A and B, where $A \in \tau_{1}$ and $B \varepsilon \tau_{2}, \bar{A}^{\tau} 2 \cap \bar{B}^{\tau} 1=\emptyset$ holds. PROOF: Suppose $\left(X, \tau_{1}, \tau_{2}\right)$ is not τ_{1} extremally disconnected w.r.t. τ_{2}. Then there is a ${ }^{\tau_{1}}$ open set A such that $\bar{A}^{\tau}{ }^{2} \tau_{1}$. Then $X-\bar{A}^{\tau} \varepsilon_{\varepsilon} \tau_{2}$ and $A \varepsilon \tau_{1}$ such that $A \cap\left(X-\bar{A}^{\tau} 2\right)=0$. Hence by hypothesis, $\bar{A}^{\tau} 2 \cap\left(X-\bar{A}^{\tau}\right)^{\tau} 1=0$. Then $\left.\overline{\left(X-\bar{A}^{\tau} 2\right.}\right)^{\tau} 1=X-\bar{A}^{\tau} 2$ and $X-\bar{A}^{\tau} 2$ is τ_{1} closed. Thus $\bar{A}^{\tau} 2$ is τ_{1}-open. A contradiction.

Similarly, $\left(x, \tau_{1}, \tau_{2}\right)$ is τ_{2} extremally disconnected w.r.t. τ_{1}.
From Theorems 3.2 and 3.3 we have,
COROLLARY 3.4. $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise extremally disconnected if and only if it is either τ_{1} extremally disconnected w.r.t. τ_{2} or τ_{2} extremally disconnected w.r.t. ${ }^{\tau}{ }_{1}$.

LEMMA 3.5. If $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise extremally disconnected, then for every ${ }^{\tau} 1$
s.o. set V w.r.t. $\tau_{2}, \underline{V}_{\tau_{2}\left(\tau_{1}\right)}=\bar{V}^{\tau}{ }^{2}$ and for every τ_{2} s.o. set U w.r.t τ_{1}, $\underline{U}_{\tau_{1}}\left(\tau_{2}\right)=\bar{U}^{\tau}$.
PROOF: Obviously, $\underline{V}_{\tau_{2}\left(\tau_{1}\right)} \subset \bar{V}^{\tau}$.
Now, if $x \notin \underline{V}_{2}\left(\tau_{1}\right)$, then there exists a τ_{2} s.o. set W w.r.t ${ }^{\tau_{1}}$, containing x such that $V \cap W=\emptyset$. Then $V^{i} 1$ and $W^{i_{2}}$ are nonempty disjoint sets, respectively τ_{1} open and τ_{2} open. Since $\left(x, \tau_{1}, \tau_{2}\right)$ is pairwise extremally disconnected, we have
 Similarly the other part can be proved.

LEMMA 3.6. In a pairwise extremally disconnected space $\left(X, \tau_{1}, \tau_{2}\right)$, every τ_{i} regularly open set w.r.t. τ_{j} is τ_{i} open and τ_{j} closed, where $i, j=1,2$ and i $\neq j$. PROOF: Let A be a ${ }^{\tau}{ }_{1}$ regularly open set in X w.r.t. τ_{2}, so that $\left(\bar{A}^{\tau}\right)^{i}{ }^{1}=A$. Now, $\left(X-\bar{A}^{\tau} \stackrel{2}{2}\right)$ and A are disjoint sets, respectively τ_{2} open and ${ }^{\tau_{1}}$ open. Since $\left(x, \tau_{1}, \tau_{2}\right)$ is pairwise extremally disconnected, we have ${\left.\overline{\left(X-\bar{A}^{\tau} 2\right.}\right)^{\tau}}^{1} \cap \bar{A}^{\tau} 2=\emptyset$, ty Theorem 3.2. Then $\left(X-\bar{A}^{\tau}\right)^{\tau} 1=X-\bar{A}^{\tau} 2$ and $X-\bar{A}^{\tau} 2$ is ${ }^{\tau} 1$-closed. Hence $\bar{A}^{\tau} 2$ is τ_{1}-open, so that $\bar{A}^{\tau} 2=\left(\bar{A}^{\tau}\right)^{i_{1}}=A$ is ${ }^{\tau} 1$ open and ${ }^{\tau} 2$-closed.

Similarly, we can show that every τ_{2} regularly open set in X w.r.t. τ_{1} is τ_{2}-open and τ_{1}-closed.
THEOREM 3.7. If $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise extremally disconnected and (X, τ_{1}) is compact, then $\left(X, \tau_{1}, \tau_{2}\right)$ is $\tau_{1} S$-closed w.r.t. τ_{2}.
PROOF: Let $\left\{V_{\alpha}: \alpha \varepsilon I\right\}$ be a cover of X by sets that are ${ }^{\tau}{ }_{1}$ s.o.w.r.t. ${ }^{\tau}{ }_{2}$. For each $x \varepsilon X$, there is a $V_{\alpha_{X}}$ containing x, for some $\alpha_{x} \varepsilon I$. Then there exists a ${ }^{\tau_{1}}$ open set $0_{\alpha_{x}}$ such that $0_{\alpha_{x}} \subset v_{\alpha_{x}} \subset \overline{0}_{\alpha_{x}}^{\tau_{2}}$. Since x is pairwise extremally disconnected, $\overline{0}_{\alpha_{x}}^{\tau} 2$ is τ_{1} open for each $x \in X$. By compactness of $\left(x, \tau_{1}\right)$ there exists a finite set of points $x_{1}, x_{2}, \ldots, x_{n}$ of x such that $x=\bigcup_{k=1}^{n}\left\{\overline{0}_{\alpha_{x_{k}}}^{\tau_{2}}\right.$ \}. But $0_{\alpha_{x}} \subset v_{\alpha_{x}}$, for each x. Hence $\overline{0}_{\alpha_{x}}^{\tau} \subset \bar{v}_{\alpha_{x}}^{\tau}$. Hence $x=\bigcup_{k=1}^{n}\left\{\bar{V}_{\alpha_{x_{k}}}^{\tau}\right.$, and x is ${ }^{\tau} 1$ S-closed w.r.t. ${ }^{\tau}{ }_{2}$.

We have earlier observed that every $\tau_{i} S$-closed space $\left(X,{ }^{\tau}{ }_{1},{ }^{\tau}{ }_{2}\right)$ w.r.t. ${ }^{\tau}{ }_{j}$ is always τ_{i} almost compact w.r.t. τ_{j} for $i, j=1,2$ and $i \neq j$. Now we have: THEOREM 3.8. If $\left(X, \tau_{1}, \tau_{2}\right)$ is τ_{1} almost compact w.r.t. τ_{2} and pairwise extremally disconnected, then $\left(X, \tau_{1}, \tau_{2}\right)$ is τ_{1} S-closed w.r.t. τ_{2}. PROOF: Let us consider a cover $\left\{V_{\alpha}: \alpha \varepsilon I\right)$ of X with sets that are ${ }^{\tau} 1$ s.o.w.r.t. τ_{2}. For each $\alpha \in I$, we consider the set $\left.U_{\alpha}=\left(\bar{V}_{\alpha}^{\tau}\right)^{i}\right)^{1}$ which is ${ }^{\tau}{ }_{1}$
 U_{α} is τ_{1} regularly open w.r.t. τ_{2}, by Lemma $3.6, U_{\alpha}$ is τ_{2}-closed and hence, $U_{\alpha} \subset U_{\alpha} U V_{\alpha} \subset \bar{U}_{\alpha}^{\tau} 2=U_{\alpha}$. Thus $U_{\alpha}=U_{\alpha} \cup V_{\alpha}$. Again, U_{α} being τ_{1}-open, for each $\alpha \in I$, it follows that $\left\{U_{\alpha} U V_{\alpha}: \alpha \in I\right\}$ is $a{ }^{\tau}{ }_{1}$-cpen cover of $\left(x, \tau_{1}, \tau_{2}\right) .\left(X, \tau_{1}, \tau_{2}\right)$ being τ_{1} almost compactw.r.t. τ_{2}, there exists a finite subfamily

 Hence $\left(X, \tau_{1}, \tau_{2}\right)$ is $\tau_{1} S$-closed w.r.t. τ_{2}.
4. SEMI CONTINUITY, IRRESOLUTE FUNCTIONS AND S-CLOSEDNESS.

DEFINITION 4.1. [7] A function f from a bitopological space (X, τ_{1}, τ_{2}) into a bitopological space $\left(Y, \sigma_{1}, \sigma_{2}\right)$ is called $\tau_{1} \sigma_{1}$ semi-continuous w.r.t. ${ }^{\tau}{ }_{2}$ if for each $A \in \sigma_{1}, f^{-1}(A)$ is τ_{1} s.o.w.r.t. τ_{2}. Similar goes the definition of $\tau_{2} \sigma_{2}$ semi-continuity of f w.r.t. $\tau_{1} . f$ is called pairwise semi-continuous if f is ${ }^{\tau}{ }_{1} \sigma_{1}$ semi-continuous w.r.t. ${ }^{\tau}{ }_{2}$ and $\tau_{2} \sigma_{2}$ semi-continuous w.r.t. ${ }^{\tau}{ }_{1}$. LEMMA 4.2. If a function $\mathrm{f}:\left(\mathrm{X}, \tau_{1}, \tau_{2}\right) \rightarrow\left(\mathrm{Y}, \sigma_{1}, \sigma_{2}\right)$ is $\tau_{1} \sigma_{1}$ semi-continuous w.r.t. τ_{2}, then for any subset A of $x, f\left(\underline{A}_{\tau_{1}}\left(\tau_{2}\right) \subset \overline{f(A)}{ }^{\sigma}{ }^{1}\right.$.

PROOF: Let $y \in f\left(\underline{A}_{\tau_{1}}\left(\tau_{2}\right)\right.$ and $y \in V \varepsilon \sigma_{1}$. Then there exists $x \in \underline{A}_{\tau_{1}}\left(\tau_{2}\right)$ such that $f(x)=y$ and $x \in f^{-1}(V)$ and $f^{-1}(V)$ is τ_{1} s.o.w.r.t. ${ }^{\tau}{ }_{2}$.
Hence $f^{-1}(V) \cap A \neq \emptyset \Rightarrow f\left(f^{-1}(V) \cap A\right) \neq \emptyset \Rightarrow V \cap f(A) \neq \emptyset \Rightarrow y \varepsilon \overline{f(A)}^{\sigma}$. THEOREM 4.3. Pairwise semi-continuous surjection of a pairwise S-closed space onto a pairwise Hausdorff space is pairwise H-closed.

PROOF: Let $f:\left(X, \tau_{1}, \tau_{2}\right) \rightarrow\left(Y, \sigma_{1}, \sigma_{2}\right)$ be a pairwise semi-continuous surjection, where X is pairwise S-closed. We first show that $\left(Y, \sigma_{1}, \sigma_{2}\right)$ is σ_{1} almost compact w.r.t. σ_{2}. Let $\left\{V_{\alpha}: \alpha \in I\right\}$ be $a \sigma_{1}$ open cover of Y. Then
$\left\{f^{-1}\left(V_{\alpha}\right): \alpha \varepsilon I\right\}$ is a cover of X by sets that are ${ }^{\tau}{ }_{1}$ s.o.w.r.t. τ_{2}. Since X is ${ }^{\tau} 1$ S-closed w.r.t. ${ }^{\tau}{ }_{2}$, there exists a finite subfamily I_{0} of I, such that $X=\bigcup_{\alpha \in I_{0}}{\overline{f^{-1}\left(V_{\alpha}\right.}{ }^{\tau} 2}^{\tau}$. We show that $\bigcup_{\alpha \in I_{0}} f^{-1}\left(V_{\alpha}\right) \tau_{2}\left(\tau_{1}\right)$ X. In fact, let $x \in X$ and W be any τ_{2} s.o. set w.r.t. τ_{2}, containing x. Then there exists $U \varepsilon \tau_{2}$ such that $U \subset W \subset \bar{U}^{\tau} 1$ and $U \neq \emptyset$. Since $\bigcup_{\alpha} I_{I_{0}} f^{-1}\left(V_{\alpha}\right)$ is τ_{2} dense in X, every nonempty τ_{2} open set must intersect $\bigcup_{\alpha \varepsilon I_{0}} f^{-1}\left(V_{\alpha}\right)$ and hence
$U \cap\left[\bigcup_{\varepsilon} I_{0} f^{-1}\left(V_{\alpha}\right)\right] \neq \emptyset$. Then $W \cap\left(\bigcup_{\alpha} \mathcal{I}_{0} f^{-1}\left(V_{\alpha}\right)\right) \neq \emptyset$ and hence

$$
=\underbrace{\bar{V}_{\alpha}^{2}}_{\alpha \varepsilon I_{0}} .
$$

(using Lemma 4.2 and the fact that f is $\tau_{2} \sigma_{2}$ semi-continuous w.r.t ${ }^{\tau}{ }_{1}$). Thus by Theorem 1.5(a), Y is σ_{1} almost compact w.r.t. σ_{2}. Similarly, Y is σ_{2} almost compact w.r.t. σ_{1}. Since Y is pairwise Hausdorff, it finally follows by virtue of Theorem $1.5(c)$ that $\left(Y, \sigma_{1}, \sigma_{2}\right)$ is pairwise H-closed.
DEFINITION 4.4. A function $f:\left(X, \tau_{1}, \tau_{2}\right) \rightarrow\left(Y, \sigma_{1}, \sigma_{2}\right)$ is called $\tau_{1} \sigma_{1}$-irresolute w.r.t. τ_{2} if for every σ_{1} s.o. set V w.r.t. $\sigma_{2}, f^{-1}(V)$ is τ_{1} s.o.w.r.t. τ_{2}. Functions that are $\tau_{2} \sigma_{2}$ irresolute w.r.t. ${ }^{\tau}{ }_{1}$ and pairwise irresolute can be defined in the usual manner.

Clearly, every $\tau_{i} \sigma_{i}$ irresolute function w.r.t. ${ }^{\tau_{j}}$ is $\tau_{i} \sigma_{i}$ semicontiriucus w.r.t. τ_{j}, where $i, j=1,2$ but $i \neq i$, but it can be shown that the converse is not true, in general. This converse is true if the function f is, in addition, pairwise open [7].

LEMMA 4.5. A function f from a bitopological space $\left(X, \tau_{1}, \tau_{2}\right)$ to a bitopological space $\left(Y, \sigma_{1}, \sigma_{2}\right)$ is $\tau_{1} \sigma_{1}$ irresolute w.r.t τ_{2} if and only if for every subset A of $X, f\left(\underline{A}_{1}\left(\tau_{2}\right)\right) \subset \xrightarrow{f(A)} \sigma_{1}\left(\sigma_{2}\right)$.
PROOF: Let $f:\left(X, \tau_{1}, \tau_{2}\right) \rightarrow\left(Y, \sigma_{1}, \sigma_{2}\right)$ be $\tau_{1} \sigma_{1}$-irresolute w.r.t. ${ }^{\tau} 2$ and $A \subset X$. Then $f^{-1}\left(\underline{f(A)} \sigma_{1}\left(\sigma_{2}\right)\right.$) is ${ }^{\tau} 1$ s.cl.w.r.t. ${ }^{1}{ }_{2}$. Since $A \subset f^{-1}(f(A)) \subset$ $f^{-1}\left(\underline{f(A)}_{\sigma_{1}}\left(\sigma_{2}\right)\right.$, we have $\left.\underline{A}_{\tau_{1}}\left(\tau_{2}\right) C^{-1} \underline{f(A)}_{f_{1}}\left(\sigma_{2}\right)\right)$ and hence

$$
\begin{aligned}
& x \varepsilon \underbrace{\tau_{2}\left(\tau_{1}\right)}_{\alpha \varepsilon I_{0} f^{-1}\left(V_{\alpha}\right)} \text {. Now, } \\
& Y=f(X)=f \underbrace{\tau_{2}\left(\tau_{1}\right)}_{\left[_{\alpha}^{\bigcup_{0}} f_{0}\left(V_{\alpha}\right)\right.}] \\
& C \overline{f\left(\prod_{\alpha} I_{0} f^{-1}\left(V_{\alpha}\right)\right)^{\sigma} 2}
\end{aligned}
$$

$f\left({ }_{-\tau_{1}\left(\tau_{2}\right)}\right) \quad f f^{-1}\left(\underline{f(A)}_{\sigma_{1}}\left(\sigma_{2}\right)\right)$, i.e. $f\left(\underline{A}_{\tau_{1}}\left(\tau_{2}\right) \subset \underline{f(A)}_{\sigma_{1}}\left(\sigma_{2}\right)\right.$.
Conversely, let B be σ_{1} s.cl.w.r.t. σ_{2} in Y. By hypothesis, $f\left(\frac{f^{-1}(B)}{\tau_{1}}\left(\tau_{2}\right)\right) \subset$ $f^{f^{-1}(B)_{\sigma_{1}}}\left(\sigma_{2}\right) \subset \underline{B}_{\sigma_{1}}\left(\sigma_{2}\right)=B$.
Then $\underline{f}^{-1}(B)_{1}\left(\tau_{2}\right) \subset f^{-1}(B)$ and hence $f^{-1}(B)=\underline{f}^{-1}(B)_{\tau_{1}}\left(\tau_{2}\right)$. This shows that $f^{-1}(B)$ is τ_{1} s.cl.w.r.t. τ_{2} and then f is $\tau_{1} \sigma_{1}$ irresolute w.r.t. τ_{2}. COROLLARY 4.6. If a function $f:\left(X, \tau_{1}, \tau_{2}\right) \rightarrow\left(Y, \sigma_{1}, \sigma_{2}\right)$ is $\tau_{i} \sigma_{i}$ irresolute w.r.t. τ_{j}, then for any subset A of $x, f\left(\underline{A}_{\tau_{i}}\left(\tau_{j}\right) \subset \overline{f(A)}{ }^{\sigma}\right.$, where $i, j=1,2$ and $\mathfrak{i} \neq j$.
PROOF: For every subset B of a bitopological space $\left(X, \tau_{1}, \tau_{2}\right)$ we always have $\underline{B}_{\tau_{i}\left(\tau_{j}\right)} \subset \overline{\mathrm{B}}^{\tau^{i}}$, for $i, j=1,2$ and $i \neq j$. Hence by Lemma 4.5, the corollary follows.

NOTE 4.7. Following a similar line of proof as in Lemma 4.2, we could also prove the above corollary 4.6.
THEOREM 4.8. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be pairwise extremally disconnected and $f:\left(x, \tau_{1}, \tau_{2}\right) \rightarrow\left(Y, \sigma_{1}, \sigma_{2}\right)$ be pairwise irresolute, where $\left(Y, \sigma_{1}, \sigma_{2}\right)$ is a bitopological space. If a subset G of X is pairwise S-closed in X, then $f(G)$ is pairwise S-closed in Y .

PROOF: Let $\left\{A_{\alpha}: \alpha \in 1\right\}$ be a cover of $f(G)$ by sets that are σ_{1} s.o.w.r.t. σ_{2} in Y. Then $f^{-1}\left(A_{\alpha}\right)$ is τ_{1} s.o.w.r.t. τ_{2} in X, for each $\alpha \in I$ and $\left\{f^{-1}\left(A_{\alpha}\right): \alpha \in I\right\}$ is a cover of G. Since G is pairwise S-closed in X, there exist a finite number of indices $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ such that $G \subset \bigcup_{k=1}^{n} \overline{\left(f^{-1}\left(A_{\alpha_{k}}\right)^{\tau}\right)}$. By Lemma 3.5, we have $\overline{f^{-1}\left(A_{\alpha_{k}}\right)^{\tau} 2}=f^{-1}\left(A_{\alpha_{k}}\right) \tau_{2}\left(\tau_{1}\right)$ for $k=1,2, \ldots, n$. Since f is $\tau_{2} \sigma_{2}$ irresolute w.r.t. τ_{1}, we have by Lemma $4.5 \underset{f\left({ }^{f^{-1}\left(A_{a_{K}}\right)}{ }_{\tau_{2}\left(\tau_{1}\right)}\right) C}{ }$ $\left(f^{\left(f^{-1}\left(A_{\alpha_{k}}\right)\right.}{ }_{\sigma_{2}\left(\sigma_{1}\right)}\right) \subset A_{\alpha_{\alpha_{k}}\left(\sigma_{1}\right)}^{\subset \frac{\sigma}{A_{\alpha_{k}}}} 2$, for $k=1,2 \ldots, n$.
Hence $f(G) \subset f\left[\bigcup_{k=1}^{n} \overline{f^{-1}\left(A_{\alpha_{k}}\right)^{\tau}}\right] \subset \bigcup_{k=1}^{n}{\overline{A_{\alpha_{k}}}}^{\sigma_{2}}$ and then $f(G)$ is σ_{1} S-closed w.r.t. σ_{2} in Y. Similarly, $f(G)$ is σ_{2} S-closed w.r.t. σ_{1} in Y. Hence $f(G)$ is pairwise S-closed in Y . This completes the proof.

NOTE 4.9. If the set G of Theorem $4 . \varepsilon$ is the whole space X, then we do not require the condition that $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise extremally disconnected. In fact, proceeding in a similar fashion as in Theorem 4.3 and using Corollary 4.6, we Can have :
THEOREM 4.10. If $f:\left(X, \tau_{1}, \tau_{c}\right) \rightarrow\left(Y, \sigma_{1}, c_{?}\right)$ is pairwise irresolute and surjective, where $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise S-closed, then $\left(Y, \sigma_{1}, \sigma_{2}\right)$ is also pairwise S-closed.

THEOREM 4.11. Let $f:\left(X, \tau_{1}, \tau_{2}\right) \rightarrow\left(Y, \sigma_{1}, \sigma_{2}\right)$ be ${ }^{\tau}{ }_{1} \sigma_{1}$ semi-continuous w.r.t. $\sigma_{2}, f:\left(X, \tau_{2}\right) \rightarrow\left(Y, \sigma_{2}\right)$ is continuous and open. If $G \subset X$ is $\tau_{1} S$-closed w.r.t. τ_{2} in X, then $f(G)$ is σ_{1} S-closed w.r.t. σ_{2} in Y. PROOF: Let $\left\{U_{\alpha}: \alpha \in I\right\}$ be a cover of $f(G)$ by sets that are σ_{1} s.o.w.r.t. σ_{2}.
 $\left(Y, \sigma_{2}\right)$ is open, we have $f^{-1}\left({\overline{V_{\alpha}}}^{\sigma_{2}}\right) \subset{\overline{f^{-1}\left(V_{\alpha}\right)}}^{\tau} 2$. Since f is $\tau_{1} \sigma_{1}$ semicontinuous w.r.t. $\tau_{2}, f^{-1}\left(V_{\alpha}\right)$ is τ_{1} s.o.w.r.t. τ_{2} and hence there exists 0ε ${ }^{\tau}{ }_{1}$, such that
$0 \subset f^{-1}\left(V_{\alpha}\right) \subset \overline{0}^{\tau} 2 \Rightarrow 0 \subset{\overline{f^{-1}}\left(V_{\alpha}\right)}^{\tau} 2 \subset \overline{0}^{\tau} 2$. Thus $0 \subset f^{-1}\left(V_{\alpha}\right) \subset f^{-1}\left(U_{\alpha}\right) \subset f^{-1}\left({\overline{V_{\alpha}}}^{\alpha}\right)$ $\subset{\overline{f^{-1}}\left(V_{\alpha}\right)}^{\tau_{2}} \subset \overline{0}^{\tau_{2}}$. That is, $0 \subset f^{-1}\left(U_{\alpha}\right) \subset \overline{0}^{\tau_{2}}$ and $0 \varepsilon \tau_{1}$. Therefore, $f^{-1}\left(U_{\alpha}\right)$ is τ_{1} s.o.w.r.t. τ_{2}, for each $\alpha \in I$, and $\left\{f^{-1}\left(U_{\alpha}\right): \alpha \varepsilon I\right\}$ is a cover of G. Then there exists a finite number of indices $\alpha_{1}, \ldots, a_{n}$ such that $G \subset \bigcup_{i=1}^{n}{\overline{f^{-1}\left(U_{\alpha_{i}}\right)}}^{\tau} 2$. Since $f:\left(x, \tau_{2}\right) \rightarrow\left(Y, \sigma_{2}\right)$ is continuous, $f\left[\overline{f^{-1}\left(U_{a_{i}}\right)^{\tau} 2}\right] \subset \bar{U}_{\alpha_{i}}{ }^{\sigma_{2}}$, for $i=1,2 \ldots, n$. Therefore, $f(G) \subset \bigcup_{i=1}^{n} \bar{U}_{\alpha_{i}}{ }^{\sigma_{2}}$ and then $f(G)$ is σ_{1} S-closed w.r.t. σ_{2} in Y.
COROLLARY 4.12. Pairwise S-closedness is a bitopological invariant. PROOF: Since every pairwise continuous function is pairwise semi-continuous, the corollary follows by virtue of Theorem 4.11.
COROLLARY 4.13. Let $\left\{\left(X_{\alpha}, \tau_{\alpha}^{1}, \tau_{\alpha}^{2}\right): \alpha \varepsilon I\right\}$ be a family of bitopological spaces and $\left(X, \tau^{1}, \tau^{2}\right)$ be their product space. If $\left(X, \tau^{1}, \tau^{2}\right)$ is pairwise S-closed, then each $\left(X_{\alpha}, \tau_{\alpha}^{1}, \tau_{\alpha}^{2}\right)$ is also pairwise $S-c l o s e d$.
PROOF: Since $P_{\alpha}:\left(X, \tau^{i}\right) \rightarrow\left(X_{\alpha}, \tau_{\alpha}^{i}\right)$ is an open, continuous surjection, for $i=1,2$ and for each $\alpha \in I$, , the corollary becomes evident because of Theorem 4.11.

THEOREM 4.14. The pairwise irresolute image of a pairwise S-closed and pairwise extremally disconnected bitopological space in any pairwise Hausdorff bitopological space is pairwise closed.

PROOF: Let f be a pairwise irresolute function from a pairwise S-closed arid pairwise extremally disconnected space $\left(x, \tau_{1}, \tau_{2}\right)$ into a pairwise Hausdorff space (Y, σ_{1}, σ_{2}). Let $y \in \overline{f(X)}^{\sigma_{2}}$ and $N_{1}(y)$ denote the σ_{1}-open neighborhood system at y in $\left(Y, \sigma_{1}, c_{2}\right)$. Then $F=\left\{f^{-1}(V): V \in N_{1}(y)\right\}$ is a filter-base in X. Since x is $\tau_{2} S$-closed w.r.t. τ_{1}, F has a $\tau_{2} S$-accumulation point x w.r.t. ${ }^{\tau} 1$.

We show that $f(F)$ has $f(x)$ as a σ_{2} accumulation point. In fact, let $f(x) \varepsilon V \varepsilon \sigma_{2}$. Then $f^{-1}(V)$ is τ_{2} s.o.w.r.t. τ_{1} and contains x. Now, for each $W \varepsilon N_{1}(y), f^{-1}(W) \varepsilon F$ and hence $f^{-1}(W) \cap{\overline{f^{-1}(V)}}^{\tau} \neq \emptyset$. Since $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise extremally disconnected, we then must have $\left[f^{-1}(W)\right]^{i} \cap\left[f^{-1}(V)\right]^{i} \neq \emptyset$. Indeed, if $\left[f^{-1}(W)\right]^{i} 10\left[f^{-1}(V)\right]^{i} 2=\emptyset$, then $\left[\bar{f}^{-1}(W)\right]^{i}{ }^{\tau} \bigcap_{\left[f^{-1}(V)\right]^{1} 2}{ }^{\tau} 1$ i.e., $\bar{f}^{-1}(W) \quad \cap{\overline{f^{-1}(V)}}^{\tau} 1=\emptyset$ which is not the case. Now, $\emptyset \neq f\left[\left(f^{-1}(W)^{i} \cap f^{-1}(V)\right)^{i} 2\right] \subset f\left[f^{-1}(W) \cap f^{-1}(V)\right] \subset w \cap v$. Hence $w \cap v$ $\neq \emptyset$. This shows that $f(x)$ is a σ_{2} accumulation point of $f(F)$ in Y. But $f(F)$ being finer than $N_{1}(y), N_{1}(y)$ also σ_{2} accumulates to $f(x)$. Now, if $y \neq f(x)$, by pairwise Hausdorff property of $\left(y, \sigma_{1}, \sigma_{2}\right)$, there exist σ_{1} open set A and σ_{2} open set B such that $y \in A, f(x) \in B$ and $A \cap B=\emptyset$. Since $A \varepsilon N_{1}(y), f\left(f^{-1}(A)\right.$ $\varepsilon f(F)$ and hence $B \cap f\left(f^{-1}(A) \neq \emptyset\right.$, because $f(x)$ is a σ_{2} accumulation point of $f(F)$. In other words $B \cap A \neq \emptyset$ which is a contradiction. Hence $y=f(x)$ and then $y \in f(X)$. Consequently $f(X)$ is σ_{2} closed in Y. Similarly $f(X)$ is σ_{1} closed in Y. This completes the proof.

ACKNOWLEDGEMENT. I sincerely thank Dr. S. Ganguly, Reader, Department of Pure Mathematics, Calcutta University, for his kind help in the preparation of this paper.

REFERENCES

[1] THOMPSON, T. S-closed Spaces. Proc. Amer. Math. Soc., 60 (1976), 335-338.
[2] THOMPSON, T. Semi-continuous and Irresolute Images of S-closed Spaces, Proc. Amer. Math. Soc., 66 (1977), 359-362.
[3] NOIRI, T. On S-closed Spaces, Ann. Soc. Sci. Bruxelles, T.91, 4 (1977), 189-194.
[4] NOIRI, T. On S-closed Subspaces, Atti Accad. Naz. Lincei Rend. cl. Sci. Mat. Natur. (8) 64 (1978), 157-162.
[5] MUKHERJEE, M. N. A Note on Pairwise Semi-open Sets in a Subspace of a Bitopological Space (communicated).
[6] MUKHERJEE, M. N. On Pairwise Almost Compactness and Pairwise H-closedness in a Bitopological Space, Ann. Soc. Sci. Bruxelles, T.96, 2 (1982), 98-106.
[7] SHANTHA, R. Problems Relating to some Basic Concepts in Bitopological Spaces, Ph.D. Thesis submitted to the Calcutta University.
[8] DATTA, M. C. Projective Bitopological Spaces II, Jour. of the Austr. Math. Soc. 14 (1972), 119-128.

