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ABSTRAT. A function f, analytic in the unit disc A, is said to be in the
. . n (n+1) ,, n-1 (n)
family R (o) if Re{(z £(2)) /(z" £(2))" 7"} > (n+a)/(n+1) for some

a(0 < a < 1) and for all z in A, where n € No, No = {0,1,2,. .}. The
The class Rn(a) contains the starlike functions of order a for n > 0,
and the convex functions of order a for n > 1. We study a class of

integral operators defined on Rn(a). Finally an argument theorem is proved.
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| INTRODUCTION.

Let A denote the family of functions f which are analytic in the unit
disc A = {z:]z] < 1} and normalised such that £(0) =0 = £'(0) - 1. The
Hadamard product or convolution of two functions f,g € A 1is denoted by fxg.

n+I)

Let D"f = (2/(1-2) *f, ne No = {0,1,2,...} which implies that

p"f = z(zn-]f)(n)/n! , n€ No .
Denote by S*(a) and K(o) the subfamilies of A whose members are,

respectively, starlike of order & and convex of order a, 0 <o < 1. Then

f e s%(a) <= Re(D'f/D°f) > a, z € A,

f € K(a) <= Re(D*f/D'f) > (1+a)/2,z € A

Ruscheweyh [16] introduced the classes {Kn} of functions f € A which

satisfy the condition

Re(D™'e/D6) > 0, z € A (1.1)
so that the definition of Kn is a natural extension of S$*(1/2), and K(0)
He proved that Kn+l c Kn for each n ¢ N0 Since KO = S*%(1/2), the

elements of Kn are univalent and starlike of order 1/2.

In this paper, we consider the classes of functions f € A which
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satisty the condition
Re(z(D"£)'/D"E) > a, z € A (1.2)

for some (0 < a < 1) We denote these classes by Rn(a) We have

Ro(a) = S*(a) and R](a) = K(a) for 0 < a < 1. The classes Rn = Rn(O)
were considered earlier by Singh and Singh [17]. It is readily seen that for
each n > 0, Rn(a) c Rn(O) and for each n 2 1, Rn(a) c Kn We note that in

definition (1.2), restriction a > 0 can be replaced by a > (1-n)/2 for
each n > 1 and, further, that the negative choices of @ permit us fully to

partition K, into classes Rn(a) c Kn (n 2 1) such that

UR (a) = K
n n

1-n
— < <
7 <@ 1

It can be easily seen that Rn+'(a) c Rn(a) for each n € N0 and for
all a. These inclusion relations establish that Rn(a) c S*¥(a) for each

n >0 and Rn(u) c K(a) for each n 2 1.

An important problem in univalent functions is the following: Given
a compact family F and an operator J defined on F , is J(f) € F for

every f € F ? Libera [11] established that the operator

2 Z
e = ;j £(t)de (1.3)
o

preserves convexity, starlikeness, and close-to-convexity. Bernardi [5]
greatly generalised Libera's results. Many authors [1,2,7,8,12,15,17]

studied operators of the form

Z
NG ﬂftY-'f(t)dt , (1.4)
ZY o]

where Yy 1is a real (or complex) constant and f belongs to some favoured
class of univalent functions from A . Recently, operators (1 4) have been
studied in more general form by Causey and White [6], Miller, Mocanu and

Reade [14], Barnard and Kellogg [3], and Bajpai [2]

In this paper, we study a class Of integral operators of the form
(1.4) defined on our family Rn(a) We also obtain an argument theorem for

the class Rn(a)
2. INTEGRAL OPERATORS.

. _ . h b
Let Y be a complex number with Rey#-1 We define Y y
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(o]
- Y+l 3
hY(Z) jE|Y+jz , z €A . (2.1)
Let the operator J:A > A be defined by F = J(f), where
1+y z Y-1
F(z) = —-If(t)t dt
AR (2.2)
Then the function F can also we written in the form
F(z) = £(z)*h_(z)
Y z
We need the following result of Jack [9] which is also due to
Suffridge [18]
LEMMA. Let w be nonconstant and analytic in [z|< r < 1,w(0) = 0
If |w| attains its maximum value on the circle lz] =r at z_, then
o
zow'(zo) = kw(zo) , where k 1is a real number and k 2 1
We first give a condition on f € A for which the function J(f)
belongs to Rn(a)
THEOREM 1. Let 0 <a < 1, and Y # -1 be a complex constant such
that Rey z -a, Imy > 0, and |y|® + 2a(1 + Rey) 2 1. If for a given
n € No, f € A satisfies the condition
n
z(D f(z))' (1-a) (a+Rey)
Re ——4m8M—~— > o - (2.3)
DE(2) 2{]y]*+20Rey+a®+(1-a) Imy}
for all z € A, then F(z) given by (2.2) belongs to Rn(a).
PROOF  From (2.2), we obtain
2(D"F(2))"'+y D"F(z) = (y+1)D"£(2). (2.4)
Define w in A by
2(D"F(2))" | 1+(20-1)u(z) (2.5)
D"F(2) Trwlz)
Here w(z) 1is analytic in A with w(0) =0 and w(z) # -1, z € A
We nced to show that |w(z)| < 1 for all =z € A. In view of (2.4),
(2.5) yields
D" f(z) = O+y)+(2a-1+y)w(z) (2.6)
DF(2) (+y) (1+w(z))

Differentiating (2.6) logarithmically and simplifying, we obtain
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n
2(D f(z))' 1-w(z) 2(1-a)zw'(z)
2lD tlz)) - - .7
e o+ (-0 50y~ Tt (2o w207
D f(z)
Now (2 7) should yield |w(z)| < 1 for all z € A for otherwise, there
exists a point z € A at which Iw(zo)l = 1 and by Lemma, we have

zow'(z) = kw(zo), k > 1. For this value of 2z = z, we find that (2.7) yields

(D"f(z0))" 2k(1-a) (a+Rey)
ReZeiD ti2o)) o 2.8
an(zo) * [Cl+y)+ 2o 14y)w(zo) | *

< a (1-a) (a+Rey)

2{]y]*+2aRey+a+(1-a) Imy}

which contradicts (2.3) Hence |w(z)| <1 for all z € A and by (2.5),

it follows that F(z) € Rn(a),
i tisties the condition
COROLLARY. If for a given n € No’ f € A sati

n ' 20(y+a)-(1-a) (2.9)
Ro z(D f(z))' T zed,

p"£(z)
where (a,y) is any point in the set
D= {(a,y) : y*20 2 1, 0 s < 1, ¥ > -1},

then F(z) given by (2.2) belongs to Rn(u)

PROOF. If y # -1 is a real constant such that y + a > 0 , then
[v|?+2a(1+Rey) = | implies (Yy+1)(y+2a-1) > 0 . The result follows

from Theorem |
It is easy to show that if f € Rn(a), then f satisfies the condition

(2 3). Thus it follows from Theorem | that J(Rn(a)) c Rn(a) More precisely,

we state the result in
THEOREM 2 If f ¢ Rn(u), then the function

YA
e =l j £(e) e ae
Z‘Y o

is again an element of Rn(a), where Yy # -1 is a complex constant with

restrictions as stated in Theorem 1.

REMARK 1 Letting n=0=7Y -1 and n=1=Y , in Theorem 1, we
get L(S*(B)) < S*(a) and L(K(B)) < K(a) respectively, where L 1is the

Libera transform defined in (1.3), and
B = ((2a%+3a-1)/2(1+a)) < a .

These results improve the earlier results due to Libera [11] and Bernardi [5]

in the sense that their results hold under much weaker conditions
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In (2], Bajpai has established that J(S*) < S*(a) for some a. We

generalize this result in

THEOREM 3. Let J:A > A be defined as in (2 2), where Yy 1is a
complex constant. If f € Rn, then J(f) € Rn(a), where o satisfies the

inequality

al [ 1+y|+]20-1+y| 1% < 2(1-a)(a*Rey) , and 0 < & < |

PROOF Proceeding as in Theorem | and applying Lemma, we have
2o(D"£(2)" 2(1-a) (a+ Rey)
Re n = - [+ +(2o=T+y)w(z,) |7
D £(zg) °

2(1-a) (a+Rey)
(T [+]20-1+y[D*

IA
QR

where Rey » - o. Since the right hand side is < 0, we have a contradiction
for feR = Rn(O). Thus we must have |w(z)| <1 for all z in A and

by (2 5), 1t follows that J(f) € Rn(a).

REMARK 1 If we let n=0=y-1 in the above theorem, then

V17-3
A

L(S*) c S¥*( ), where L(f) = (2/z) sz(t)dt Thus we have recovered a
o

result of Miller, Mocanu and Reade ([14], pp 162-163).

REMARK 2 If n=1, Yy 1is a real constant such that y+a > 0, and
f € K, then it follows from Theorem 3 that the function F(z) in (2 2) is
an element of K(a), where
-(2y+1) + /(2y-1)2+8(1+y)

4
This result was proved by Miller, Mocanu and Reade ([14], pp 165)

a =

Further, this is an improvement of an earlier result due to Bernardi [5],

who proved that f € K implies F € K .

For Y = n, where n & N , we have an improvement over Theorem 2
’ o

THEOREM 4. Let

Z
+1 n-l 2.10
F(z) = £(z) % h (2) == - | £’ de ( )

n z o

If f e R (a), then F e R (a)
n n+1
PROC F. From (2.10), we obtain

O™ F(z)) + D™ R(2) = (aeD™ E(2) (2.11)

and
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2(D"F(2))" + nD"F(z) = (n+1)D"£(2) (2.12)
Using the identity

2(D"£(2))" = (n+ DD E(2) - nD"E(2) (2.13)
in (2.11) and (2.12), we obtain

(e D™ E(2) = (ne2)D™2F(2) - D™ F(2) (2.14)

and

e (2.15)

D"f(z) = D
In view of the identity (2 13) and the relations (2.14) and (2 15),

f e Rn(a) yields

(n+2)0™ 2k (4) - (e DD™ ' (2)
L

Dn+IF(z)

Re

which implies that

{z<o“*‘p<z))'}

™ e(2)

Re > a, z€d

This proves that F € Rn+l(a)'

REMARK For n = 0, Theorem 4 gives the well known result:

YA
3(s%(0)) = K(a), where J(f) = fo(f(t)/t)dt

We now investigate the converse of Theorem 2. In fact, we find the
sharp radius of the disc in which f € Rn(B) when F , defined in (2.2),
is in Rn(a) for 0 sa <1, 0<B <1: 1In [12], Libera and Livingston
have solved this converse problem for the case n =0, y = 1 when
a £ B < 1. These authors were not able to obtain suitable results for the
complementary case when B < a However, the method used in the next
theorem gives results that are more general and also covers both B 2> a

and B < a.
THEOREM 5. If F 1is an element of Rn(a) for n 20 and 0 <a <1,

Z
F(z) = ';1'[ £(e)eY ae (2.16)

z

with z € A, Rey 2 - a, and 0 < B < I, then the function f is an

element of R _(B) for lz[ < L where r is the smallest positive
n
root in (0,1) of the equation

(y+2a-1) (20-B-1)r2+2((y+0) (a-B)-(1-a) (2-a) ) r+(y+1) (1-B) = 0 (2.17)

The result is sharp
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PROOF  Since F € Rn(a), we can write

n 1]
2O RN L oy (ew)p (2, (2.18)
D F(z) n

where Pn(z) 1s analytic in A and satisfies the conditions Pn(O) =1
RePn(z) >0 for z € A Using the identity
2(D"F(2))" = (n+ D™ 'F(2) - nD"F(2) (2.19)

in (2.18) and then taking logarithmic derivative, we obtain

(1-a)zP'(z)
n

n+| v ot _
z(D F(z)) D7 F(z) lar(1-a)P (2) + ——mm(l_a)l,n(z)l (2.20)
From (2 16) we obtain
z(Dm]F(z))' + yD"HF(z) = (YH)Dan(z). (2.21)
From (2 20) and (2 21) we have
nel nel (l-a)zP;(z)
(y+1)D f(z) = D 'F(2) [a+y+(l-a)Pn(z) + ;IE:TT:ESF;TQT] (2.22)
Also (2.18) together with the identity (2 4) yields
(1+7)D"(2) = DF(2) (asy+(1-)P (2)). (2.23)
Now from the relations (2 22), (2 23), and (2.18) we conclude that
n (1-0)zP'(2)
z(D f(z))' o _ . —_
—Dn—f(z)—— -B=a B+ (1 Q)Pn(z) + (!+'Y+(]—0,)Pn(2) . (2.24)
Using the well known estimates
| 2P ()] = (2r/C1-r?))ReP (2)
n n
and
ReP (z) 2 (1-r)/(1+r), |z| = r
in (2 24), we obtain
2(D"£(2))" . (1-0) ((1=1) (y+1+(y+20-1)r)=2r)
Re == Bl 2 (a-B) + 2 Drey+ 1) (2.25)
D f(z)
where Rey 2 -a . Therefore,

n L}
Re (2RTEGEDY g

n

D f(z) o ‘
if the right side of (2.25) is positive, which is satisfied provided that
1

1 iti i 0,1) of (2.17).
r<r where r = 18 the smallest positive root 1n (0,

unction f defined by

(2.26)

The result in the theorem is sharp with the f

(o = (/Qeenz' TCETFEN,
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where ¢ =Rey>-a , and F 1is given by
z (D"F(2))" 1-(20-1)z
o = -2 (2.27)
D F(z)

REMARK. By specializing choices of «,B,y, and n , theorem 5 gives
rise to the corresponding results obtained earlier in [3,4,8,12,13,15]

and by many others

3 AN ARGUMENT THEOREM.

THEOREM 6 If f ¢ Rn(u), then

k-1

k
D f(z) .- . =1 2(1-a)
|arg ——z—£—| 2(1-a)sin r + I sin (E:T:TE:EEZTT;T)

m=0

for each k(0 < k < n+1).

PROOF We may write

DE(e) _ £t D™ e(2)
z Z  m=0 D"f(z)

, 0< k< o+l

which yields

k-1 m+ |
D
|are ££§l| o1 |arg ZEE2) (3.1)

m
) m=0 D f(z)
Since Rn+](a) c Rn(a) Yn € N it follows that f ¢ Rm(a) for each

Dkf(z) l

|arg 2

m(0 < m< n) Setting

D™ 'e(2)

= q (z), (0 <m<n),
D™¢(2) nen (3.2

m
we note that Re(qm(z)) > (m+a)/(m+1)
Therefore, the function

m+a m+Q

oy = P e - -y
_ m+a - hto
(ap(2) = 450 + (0 - =)
B qm(z) -1
- 2(m+a.)
qm(z) - (_—E:T— -1

is analytic with w(0) = 0 and |w(z)] <1 in A Hence by Schwarz's

Lemma,
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q (z) -1
| = | < |
q (z) + 1 = 2(m+q)/(m+1)
m

z

for z in A Now it is easy to see that the values of qm(z) are
contained in the circle of Appolonius whose centre is at the point
(m+1-(m+2a-1)r?)/((1+m)(1-r®)) and has radius 2(1-a)r/((m+1)(1-r?))

Thus max|arg qm(z)| is attained at the points where
zel

] 2(1-a)r )

(m+l—(m+2a—l)r

arg qm(z) =+ sin

which gives

| D™ '¢(2) o i 20-a)r
arg ™ (2) = m+1-(m+2a-1)r

(3.3)

>

for 0 <m<n, and z € A

Next, note that Rn(u)& S*(a), n> 0, and f € S*(a) if and only

if F(z) = J(f(z)/z)dz is in K(a) But for F € K(a), we have

| arg F'(2)| = 201-a)sin” ¢ (lz] = )

Thus f € Rn(a) implies

|arg Eéfl] < 2(1-a)sin 't (3.4)
Applying (3 3) and (3.4) to (3.1) we obtain the result.
For n =0 , we obtain

COROLLARY If f € S*(a), then (3.4)

and

-1 2(1-a)r

|arg £'(2)| < 2(l—a)sin-]r + sin - ( ]-(Za-l)tz)

REMARK  The case n =0, a = 0 way proved by Krzyz [10].

The author is grateful to the referee for his suggestions which

greatly helped in presenting this paper in a compact form.
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