ON MENNICKE GROUPS OF DEFICIENCY ZERO I

MUHAMMAD A. ALBAR

Department of Mathematical Sciences University of Petroleum and Minerals Dhahran, Saudi Arabia

(Received March 26, 1985 and in revised form May 20, 1985)

ABSTRACT. The Mennicke group $M(m,n,r) = \langle x,y,z | x^y = x^m, y^z = y^n, z^x = z^r \rangle$ is one of the few known 3-generator groups of deficiency zero. Several cases of M(m,n,r) are studied.

KEY WORDS AND PHRASES. Presentation, Reidemeister-Schreier method, relation matrix. 1980 AMS SUBJECT CLASSIFICATION CODE. 20F05.

Mennicke [1] has given a class of three generator three relation groups defined by $M(m,n,r) = \langle x,y,z | x^y = x^m, y^z = y^n, z^x = z^r \rangle$ which he proves to be finite for $m = n = r \ge 3$ (see also Higman [2].) Macdonald [3] has shown that the above group is finite provided that neither $m^2 = 1$, $n^2 = 1$, nor $r^2 = 1$. For general m,n,r the above group is difficult to consider. Wamsley [3] discussed the group for some cases with m = n = r. The aim of this paper is to consider the group for several cases with general m,n,r.

a) The group $M = M(3,3,3) = \langle x,y,z | x^{y} = x^{3}, y^{z} = y^{3}, z^{x} = z^{3} \rangle$. Wamsley has shown that M' is abelian and |M| divides 2^{11} . We use his result that M' is abelian and prove: THEOREM 1. $|M| = 2^{11}$.

PROOF. We notice that $\frac{M}{M}$ = $Z_2 \times Z_2 \times Z_2$. A straightforward application of the Reidemeister-Schreier rewriting process can be used to find the order of M'. We suppress the details and merely notice that the relation matrix for M' is

Therefore $M' = Z_8 \times Z_8 \times Z_4$ and $|M| = 2^3(2^3 \times 2^3 \times 2^2) = 2^{11}$. REMARK 1. Another group of deficiency zero is Johnson's group [4],

 $I(m - m) = m + \frac{1}{2} \qquad m - 2 = 1 \qquad m + 2 \qquad m - 2 = 1 \qquad$

$$J(m,n,r) = \langle x,y,z | x^{y} = y^{n-2} x^{-1} y^{n+2}, y^{2} = z^{n-2} y^{-1} z^{n+2}, z^{x} = x^{m-2} z^{-1} x^{m+2} \rangle.$$

The order of J = J(2,2,2) is 7.2¹¹, [4]. A question could be raised here if M and

the 2-Sylow subgroup of J are isomorphic. To answer this question let $H = \langle x^{-1} y^2, y^2 \rangle$ $y^{-1} z^2$, $z^{-1} x^2 > \langle J \rangle$. We find that $H \triangleleft J$ and $\frac{J}{H} = Z_7$. Therefore H is the 2-Sylow subgroup of J. Using the Redemeister-Schreier process we write a presentation for H which gives $\frac{H}{H^{\dagger}} = Z_2 \times Z_2 \times Z_2 = \frac{M}{M^{\dagger}}$. A student K. F. Lee of David L. Johnson showed that M and H are different. b) The group $M = M(m,n,0) = \langle x,y | x^y = x^m, y^{n-1} = e^{\lambda}, m > 2, n > 2$. The relations $x^{y} = x^{m}$ and $y^{n-1} = e$ imply that the order of x is $(m^{n-1} - 1)$. We consider $H = \langle x |$ $x^{(m^{n-1} - 1)} = Z(m^{n-1} - 1), \quad \frac{M}{H} = Z_{n-1}$. Therefore M is metacyclic and it is the split extension of Z_{n-1} by $Z(m^{n-1} - 1)$. THEOREM 2. M' = Z_d where $d = \frac{m^{n-1} - 1}{m - 1}$. PROOF: We consider $H = \langle a = x^{m-1} \rangle$. The relations $a^{x} = a$ and $a^{y} = a^{m}$ imply that $H \triangleleft M$. $\frac{M}{H}$ is abelian implies that $H \supseteq M'$. But $a = x^{-1} y^{-1} xy \in M' \Longrightarrow H \subseteq M'$. Therefore H = M'. The order of a is $\frac{m^{n-1}-1}{(m-1, m^{n-1}-1)} = \frac{m^{n-1}-1}{m-1} = m^{n-2} + m^{n-3} + \dots + m^2 + m + 1$. REMARK 2. The above theorem could be proved using the Reidemeister-Schreier process. REMARK 3. $\left|\frac{M}{MT}\right| = (m-1) (n-1)$ implies that $|M| = (n-1) (m^{n-1} - 1)$. REMARK 4. The above theorem implies that M is a finite metabilian group. REMARK 5. It is easy to see that $M(a, b, c) \cong M(b, c, a) \cong M(c, a, b)$ and M(a,b,c) ≇ M(a,c,b) in general. REMARK 6. In working with Mennicke's group we find the commutator identity (known as the Witt identity) $[x, y, z^{X}][z, x, y^{Z}][y, z, x^{Y}] = e$ quite helpful. This identity holds for any x, y and z in any group. We define [x, y, z] = [[x,y], z] and $[x,y] = x^{-1}y^{-1}xy$. c) $M = M(2,2,2) = \langle x, y, z | x^{y} = x^{2}, y^{z} = y^{2}, z^{x} = z^{2} \rangle$. Using the Witt identity we get $[x, z^2][z, y^2][y, x^2] = e$. We use the relations of M to get $x^2y^2z^2 = e$. Thus $z^2 = y^{-2}x^{-2}$ which together with $z^x = z^2$ gives $z = xy^{-2}x^{-3}$. We substitute in $y^2 = y^2$ and use $x^{y} = x^{2}$ to get $y = x^{17}$. Finally $y = x^{17}$ and $x^{y} = x^{2}$ imply that x = e. The relations of M give z = y = e. Therefore, M = E. d) $M(-1, -1, -1) = \langle x, y, z | x^{y} = x^{-1}, y^{z} = y^{-1}, z^{x} = z^{-1} \rangle$. $\frac{M}{M^{*}} \approx z_{2} \times z_{2} \times z_{2} \cdot A$ straightforward application of the Reidemeister-Schreier process gives that M' = Z imes Z generated by $z \ge z^{-1}z^{-1}$ and $z \ge z^{-1}y^{-1}$. Therefore, we have proved: THEOREM 3. M is an infinite metabilian group.

e) M(2, 2, -1) = <x, y, $z | x^y = x^2$, $y^z = y^2$, $z^x = z^{-1}$. Using the Witt identity we get $z^{-1}y^{-1}z^{-2}yz = x$. We use this relation together with the relations of M to get

 $x = z^{-4}$. Substituting in $z^{x} = z^{-1}$ we get $z^{2} = e$ and so x = e. We notice that $v = v^{2^{2}} = (v^{2})^{2} = v$ $y^{3} = e$. The relation $y^{2} = y$ becomes $(yz)^{2} = e$. Thus $M = \langle y, z | y^3 = z^2 = (yz)^2 = e^3 = S_3$. f) M(-1, -1, 0) = $\langle x, y, z | x^{y} = x^{-1}, y^{2} = e \rangle$. $\frac{M}{M!} = Z_{2} \times Z_{2}$. Using the Reidemeister-Schreier process we get that M' is infinite cyclic generated x^2 : THEOREM 4. M is an infinite metabilian group. REMARK 7. It is possible to find M' as follows. Let $H = \langle x^2 | \rangle$. It is easy to see that H M and $\frac{M}{H} = z_2 \times z_2$. Therefore, $H \supset M'$. But $x^2 = y^{-1}x^{-1}yx \in M'$ $H \subset M'$. Thus H = M'. g) M(1, 0, -1) = $\langle x, z | z^X = z^{-1} \rangle$. It is easy to see that H = $\langle z | \rangle$ is normal in M and $\frac{M}{H} = \langle x | \rangle$. Therefore M is the split extension of $\langle x | \rangle$ by $\langle z | \rangle$ where the action is given by $z^{x} = z^{-1}$, see [5]. We also notice that $(z^{2})^{x} = z^{-2}$ and $xz^{2}x^{-1} = z^{-2}$ Therefore $K = \langle z^2 \rangle \triangleleft M$. $\frac{M}{K} = Z \times Z_2 \implies K \supset M'$. $z^2 = x^{-1}z^{-1}xz \implies K \subset M'$. Thus K = M'. THEOREM 5. M is an infinite metabilian group. h) It is easy to show the following cases: (i) $M(1, 1, 1) = Z \times Z \times Z$ (ii) $M(1, 1, 0) = Z \times Z$ (iii) M(1, 0, 0) = Z = M(1, 2, 0) (iv) $M(3, 2, 0) = Z_2$ (v) M(0, 0, 0) = M(2, 2, 0) = M(2, 0, 0) = E (vi) $M(2, 3, 0) = S_3$. (vii) $M(1, n, 0) = Z \times Z_{n-1}$ for n > 1. (viii) $M(m, 2, 0) = M(m, 0, 0) = Z_{m-1}$ for m > 2. (ix) M(1, m, n) is infinite because $\frac{M(1, m, n)}{M'(1, m, n)}$ is infinite. (x) $M(1, -1, 0) = Z \times Z_2$ (xi) $M(-m, 0, 0) = Z_{m+1}$, m > 0(xii) $M(-m, 2, 0) = Z_{m+1}, m > 0$.

Mennicke's group was a generalization of a group given by Higman [2]. Another generalization of Higman's group was considered by Fluch [6] as

 $H = \langle a, b, c | b^{-\alpha} a b^{\alpha} = a^{m}, c^{-\beta} b c^{\beta} = b^{n}, a^{-\gamma} c a^{\gamma} = c^{r}.$ We notice that when $\alpha = \beta = \gamma = 1$ then H = M(m, n, r).

Another generalization of Mennicke's group was given by Post [7] as follows:

 $G(m,n,r,s,t) = \langle a,b,c | ab^{m}a^{-1} = b^{n}, bc^{r}b^{-1} = c^{s}, cac^{-1} = a^{t} \rangle$.

ACKNOWLEDGEMENT. I thank Dr. D. L. Johnson for his useful comments on this paper. I also thank the University of Petroleum and Minerals for the support I get for conducting research.

REFERENCES

- MENNICKE, J. Einige endliche Gruppen mit drei Erzeugenden und drei Relationen, <u>Arch. Math.</u>, <u>10</u> (1959) 409-18.
- HIGMAN, G. A finitely generated infinite simple group, <u>J. London Math. Soc. 26</u> (1951), 61-64.

- WAMSLEY, J. W. The deficiency of finite groups, A Ph.D. thesis, University of Queensland, 1968.
- 4. JOHNSON, D. L. A new class of 3-generator finite groups of deficiency zero, J. London Math. Soc. 2 (1979), 59-61.
- ALBAR, M. A. On presentation of group extensions, <u>Communications in Algebra</u>, <u>12</u> (1984) 2967-2975.
- FLUCH, W. A generalized Higman group, <u>Nederl</u>. <u>Akad</u>. <u>Wetensch</u>. <u>Indag</u>. <u>Math.</u>, <u>44</u> (1982), 153-166.
- POST, M. J. Finite three-generator groups with zero deficiency, <u>Comm. Algebra</u>, <u>6</u>(1978), 1289-1296.