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m z n x r
ABSTRACT. The Mennicke group H(m,n,r) <x,y,z x

y
x y y z z > is one of

the few known 3-generator groups of deficiency zero. Several cases of M(m,,r) are

studied.
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Mennicke [i] has given a class of three generator three relation groups defined by

m z n x rM(m,n,r) <x,y,z x
y

x y y z z which he proves to be finite for m n

r e 3 (see also Higman [2].) Macdonald [3] has shown that the above group is finite

provided that neither m i, n2 i, nor r2 For general m,n,r the above

group is difficult to consider. Wamsley [3] discussed the group for some cases with

m n r The aim of this paper is to consider the group for several cases with

general m,n,r

a) The group M M(3 3 3) <x,y,z[xy x
z

z
x

zy y >. Wamsley has shown that

M’ is abelian and IMI divides 211 We use his result that M’ is abellan and prove:

THEOREM 1. IMI 211
MPROOF. We notice that , Z2 Z2 Z2. A straightforward application of the

Reidemeister-Schreier rewriting process can be used to find the order of M’ We

suppress the details and merely notice that the relation matrix for M’ is

0 0 0 0

0 0 0 0

o0 8 0

0 0 8

0 0 0

Therefore M’ Z Z8 Z and [M[ 23(23 23 22 211
REMARK I. Another group of deficiency zero is Johnson’s group [4],

n-2 -1 n+2 z r-2 -1 r+2 x m-2 -1 m+2J(m,n,r) <x,y,z x
y

y x y y z y z z x z x

The order of J J(2,2,2) is 7.2 II, [4]. A question could be raised here if M and
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-I 2
the 2-Sylow subgroup of J are isomorphic. To answer this question let H <x y

-i 2 -I 2 J
y z z x > <J We find that HJ and Z 7 Therefore H is the 2-Sylow

subgroup of J Using the Redemeister-Schreier process we write a presentation for H

H M
which gives -r Z2 Z Z2 - A student K. F. Lee of David L. Johnson showed

that M and H are different.

m n-1b) The group M M(m,n,0) <x,ylxy x y e>, m > 2, n 2. The relations

m n-1
x
y

x and y e imply that the order of x is (m
n-1 I). We consider H <x

(m
n-1

x Z(mn- MI), = Zn_

extension of Z by Z(mn-1 I)n-I
n-I

THEOREM 2. M’ Z
d

where d
m
m

m-I x mPROOF: We consider H <a x > The relations a a and a
y

a imply that

M -I -IH M is abelian implies that H

_
M’ But a x y xy e M’----H _c M’

Therefore H M’.
n-I n-i

m
2

m m n-2 n-3 + + + m +The order of a is m + m
n-i m-(m-l, m i)

REMARK 2. The above theorem could be proved using the Reidemeister-Schreier process.

REMARK 3. ’r (m-i) (n-l) implies that IMI (n-l) (mn-I i)

REMARK 4. The above theorem implies that M is a finite metabilian group.

REMARK 5. It is easy to see that M(a, b, c) -= M(b, c, a) M(c, a, b) and

M(a,b,c) M(a,c,b) in general.

REMARK 6. In working with Mennicke’s group we find the commutator identity (known as

the Witt identity)

z xy[x y zX][z, x, y ][y, z, e

quite helpful. This identity holds for any x, y and z in any group. We define

Ix, y, z] [Ix,y], z] and Ix,y] x y xy

c) M M(2,2,2) <x, y, zlxy x2
z 2 x 2y y z z Using the Witt identity we

get Ix, z2][z, y2][y, x2] e We use the relations of M to get x2y2z e. Thus

z y2z2 y-2x-2 which together with z
x z gives z xy-2x-3 We substitute in y

and use x
y

x2 to get y x17 Finally y xI? and x
y

x2 imply that x e.

The relations of M give z y e Therefore, M E.
d) M(-1,-1,-i) <x, y, zlxy x-I z x

z- MY y- z -- z z2 z2 A
straightforward application of the Reidemeister-Schreier process gives that M’ Z Z
generated by z x z-lx-l and z y z-ly-I. Therefore, we have proved:
THEOREM 3. M is an infinite metabilian group.

e) M(2 2, -I) <x, y zlxy x2 z y2 z
x

Y z- >. Using the Witt identity we get
z-lY-lz-2yz x We use this relation together with the relations of M to get

Therefore M is metacyclic and it is the split



MENNICKE GROUPS OF DEFICIENCY ZERO I 823

x
zx z-4. Substituting in z z- we get e and so x e We notice that

z2 z y3 z
Y Y (yZ) y e The relation y y becomes (yz) e Thus

M <y, zly z (yz) 2 e> S

M
f) M(-I, -i, 0) <x, y, zlxy x-l, y2 e> -F Z2 Z Using the Reidemeister-

Schreier process we get that M’ is infinite cyclic generated x2 ".

THEOREM 4. M is an infinite metabilian group.

REMARK 7. It is possible to find M’ as follows. Let H <x21> It is easy to see

M x y-lx-lyx e M’ H M’that H M and z z2 Therefore, H M’ But

Thus H M’

x z_g) M(1, 0, -1) <x, zlz It is easy to see that H <zl> is normal in M

M
and <xl> Therefore M is the split extension of <xl> by <zl> where the

x z- z and xz2
action is given by z see [5]. We also notice that (z2) x -2 x-l= z-2

M z2 Iz_Therefore K <z2> M Z x Z --K M’ x- xz.K M’

T,us K M’
THEOREM 5. M is an infinite metabilian group.

h) It is easy to show the following cases:

(i) M(I, I, I)= Zx Z Z (ii) M(I, I, O)= Z Z

(iii) M(I, O, O) Z M(I, 2, O) (iv) M(3, 2, O) Z

(v) M(0, 0, 0)= M(2, 2, 0)= M(2, 0, 0)= E (vi) M(2, 3, O)= S

(vii) M(I, n, 0) Z Z for n >
n-i

(viii) M(m, 2, 0)= M(m, 0, O) Zm_ for m 2

M(I m, n)(ix) M(I, m, n) is infinite because M"(1,m,n) is infinite.

(x) M(1, -I, O) Z Z2 (xi) M(-m, 0, O) Zm+1, m 0

(xii) M(-m, 2, O) Zm+1, m 0

Mennicke’s group was a generalization of a group given by Higman [2].

Another generalization of Higman’s group was considered by Fluch [6] as

rm -8bc8 b
n a-caY cH <a,b,clb-aaba a c

We notice that when a 8 then H M(m, n, r)

Another generalization of Mennicke’s group was given by Post [7] as follows:

G(m,n,r,s,t) <a,b,clabma-I b
n rb-I s -i t

bc c cac a

ACKNOWLEDGEMENT. I thank Dr. D. L. Johnson for his useful comments on this paper. I

also thank the University of Petroleum and Minerals for the support I get for conducting

research.

REFERENCES

i. MENNICKE, J. Einige endliche Gruppen mit drei Erzeugenden und drei Relationen,
Arch. Math., 10 (1959) 409-18.

2. HIGMAN, G. A finitely generated infinite simple group, J. London Math. Soc. 26
(1951), 61-64.



824 M.A. ALBAR

3. WAMSLEY, J. W. The deficiency of finite groups, A Ph.D. thesis, University of
Queensland, 1968.

4. JOHNSON, D. L. A new class of 3-generator finite groups of deficiency zero, J.
London Math. Soc. 2 (1979), 59-61.

5. ALBAR, M. A. On presentation of group extensions, Communications in Algebra, 12
(1984) 2967-2975.

6. FLUCH, W. A generalized Higman group, Nederl. Akad. Wetensch. Inda$. Math., 44
(1982), 153-166.

7 POST, M. J. Finite three-generator groups with zero deficiency, Comm. Algebra,
6(1978), 1289-1296.


