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ABSTRACT. Using equivalent formulations of Ekeland’s theorem, we improve fixed point

thcorems of Clarke, Sehgal, Sehgal-Smithson, and Kirk-Ray on directional contractions

by giving geometric estimations of fixed points.
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1. INTRODUCTION AND PRELIMINARIES

In [1 I, [2 l, Sehgal and Smithson proved fixed point theorems for set-valued weak

drectional contractions which extend earlier rosults of Clarke [3], Kirk and Ray [4],

ad Assad and Kirk [51. In the present paper, results in [1], [2] are substantialIy

strengthened by giving geometric estimations of locations of fixed points.

The foliowing equivalent formulations [61 of the weil-known central resuit of

Ekeland [7 I, [81 n the variational principle for approximate solutions of aintmization

problems is used in the proofs of the main resuIts.

THEOREM 1. Let (V, d) be a compIete metric space, and V- R U {+} a

1.s.c. function, [ +o bounded from beiow. Let > 0 and 0 be given, and a

point u V such that

F(u) <- infV
F + .

Let S(X) {x V F(x) -< F(u) e X-ld(u,x)}. Then the folIowing equivaient condi-

ttons hold:

(i) There exists a point v S(X) satisfying

F(w) F(v) e-Id(v, w) for w v.

(ii) If T S(%) 2
V

is a set-valued map satisfying the condition

x S(X) \ T(x) .q y e V fx} such that

F(y) _< F(x) eX -ld(x, y),

tlen T has a fixed point v S()).

(iii) If S(X) V satisfies

F(fx) F(x) eX-d(x, fx)

for all x e S(X), then has a fixed point v e S(X).

In Theorem 1, 2
V

denotes the power set of V Note that



664 S. PARK

S(,,) C {x V F(x) -< F(u%, d(u, x) -< l} C (u, l)

and fS(l) C S(I), where B denotes the closed ball.

Throughout this paper, (V, d) denotes a metric space and B(V) denotes the

class of all nonempty bounded subsets of V with the Hausdorff pseudometric H defined

by

H(A B) max{SUPx g A d(x B) SUpy d(y A)}
g B

A|s,, C(V) denotes the class of all nonempty compact subsets of V For an x E V

and A E C(V), we put

[x, A] {y e A d(x, y) d(x, A)},

which is nonempty. For x y e V we denote

[x, yl {z e V d(x, z) + d(z, y) d(x, y)},

and

(x, y] Ix, y] \ {x}, (x, y)= (x, y] \ {y}.

Let S be a nonempty subset of V and T S C(V) be a set-valued map. For

x e S and A e C(V), the weak directional derivative DT(x, y) of T at x in the

direction of a y e Ix, T(x)] is defined by

0, if x y,

DT(x y) inf(ll(Tx, Tz)
d(x, z) z e (x, y] CS}, if (x, y] S * ,

’, if (x, y] ( S .
A map T S C(V) is called a weak directional contraction if there exists a

k e [0, I) such that for each x e S, there exists a y e [x, T(x)] with DT(x, y)

k [2].

A map T S- B(V) is called a directional contraction if there exists a

k e [0, I) such that for each x e S and y e T(x),

H(T(z), T(x)) -< kd(z, x)

for all z e Ix, y] S [7].

2. RESULTS.

THEOREH 2. Let S be a complete subset of V and T S C(1/) a weak direc-

tional contraction for which the function F(x) d(x, T(x)), x S, is 1.s.c. Then

f()r any u S and 0 satisfying F(u) <- (1 k), T has a fixed point in

s(e) C B(u, e) r S.

PROOF. Choose a point u e S satisfying F(u) <- infsF + (1 k)e. Suppose

x e S(e) \ T(x). Since T is a weak directional contraction, there exists a ye

[x, T(x)], x * y, with DT(x, y) k Hence, there exists a z e (x, yJ S such

ha

H(T(x), T(z)) k d(x, z).

Since

we have

d(x, z)+ d(z, T(x)) <_ d(x, y)= d(x, T(x)),

d(z, T(z)) -< d(z, T(x))+ H(T(x), T(z))

-< d(x, T(x)) d(x, z) + k d(x, z)

-< d(x, T(x)) (1 k)d(x, z).
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ltence, F(z) -< F(x) (1 k)d(x, /.). l’herefore, by Therem l(iii), T has a fixed point

v
_
S().

Theorem 2 is a, improved version of Theorem (a) of [2] with much simpler proof.

],i fact, for suitable values of E and k the conclusion gives geometric estimations

of locations of fixed points. However, for Theorem (b) of [2], such estimation seems

t be hard to get.

Note also that for Theorem of Clarke []J, we can apply our Theorem 2.

The following improves Corollary of [2] and a result of Kirk and Ray [4].

COROLLARY I. Let S be a closed convex subset of a Banach space X and T

S C(S) a map for which the function F(x) d(x, T(x)), x S is l.s.c. Suppose

t]ere exists a k e [0, I) such that for each x S there correspond a y y(x)

[x, T(x) and a e (0, I) satisfying

H(T(x), T(x + 6(y x)) -< k6[[y- x[ [.
Then the conclusion of Theorem follows.

PROOF. As in the proof in [2 [, T is a weak directional contraction with the

cnatant k

THEOREM 3. I.et S be a closed subset of a complete metric space V and T

S- B(V) a directional contraction with the constant a If T satisfies

(a) for each x S, y T(x) \ S, there exists a z (x, y) \ S with T(z) S,

lld

(b) g(x) d(x, T(x)) is l.s.c.,

then, for any u e S, e 0 and a B satisfying g(u) (I -B) there

exists a fixed point v of T in S(E) fh S.

LEMMA [4 ]. Under the hypothesis of Theorem 3, there exists a map A S B(X)

with the following properties

i) for each x e S, A(x) and A(x) T(x)

ii) if y A(x) then d(x, y) (1 B +a)-]d(x, T(x)),

iii) if A(x) S for some x e S, then there exists a y y(x) A(x) and

a z z(x, y)e (x,y) fh S such that

d(x, y) s d(x, T(x)) + (B- a)d(x, z). (2.1)

PROOF OF THEOREM 3. Define a map S S as follows: for x e S such that

A(x) S let f(x) be any element of A(x) fl S and for x S such that

A(x) f S since there exist y y(x) e A(x) and z z(x, y) (x, y) S

satisfying (2.1) by Lemma, let f(x) z We claim that for any x e S

H(T(x) T(f(x))) -< a d(x, f(x)). (2.2)

This is clear if A(x) ( S If A(x) f S since f(x) T(x) and f(x)g

Ix, f(x)] ( S the definition of T implies (2.2). Set F(x) (I B)-Ig(x) We

know that for any x S and y f(x)

F(y) < F(x) -d(x, y)

holds as in the proof of [I, Theorem I]. Therefore, by Theorem (iii), for any u S

and 0 satisfying F(u) _< inf S F + e, there exists a fixed point v of f in

S(e) f S This implies that v T(v) for otherwise f(v) A(v) S and hence by

the definition of A(v) f S Thus, f(v) e (v, y(v)) for some y(v) A(v).

This contradicts v z f(v) Consequently, v T(v). Since inf S
F 0 u can be
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chosen so that F(u) <_ e that is, d(u, T(u)) -< (I B)e. This completes our proof.

Note that Theorem 3 is a strengthened form of [I, Theorem I].

A metric space is said to be convex if for each x, y e X, x y, there exists

a z e ix, y) It is known that if S is a closed subset of a complete convex metric

space V and x g S and y S then there exists a z e [x, y) f 8S where is

the boundary.

Now, we obtain the following improved version of I, Corollary 13 as an immediate

consequence of Theorem 3.

COROLLARY 2. Let S be a closed subset of a complete convex metric space V

L,t T B(V) be a drectional contraction hich the constant a such that

T("fi) C S If (x) d(x, T(x)) is l.s.c, on S then for any u c S 0

,,d B, satisfying g(u) (I B), there exists a fixed point v of T

in S(.) f S.

Also,, the followin improves [1, Corollary 2] and an earlier result of Assad-Kirk

I1.

COROLLARY 3. Let S be a closed subset of a complete convex metric space V

Suppose T S B(X) is a contraction, that is, there exists an e F0, 1) such

thnt for all x,y S,

H(T(x), T(y)) -< a d(x, y).

If T(6S) C S then for any u e S, 0 and , a B satisfying

d(u, T(u)) -< (1 f,)c either u is a fixed point of T or there exists a fixed

pint v of T in

S(e) f3 S \ B(u, s)

where s d(u, T(u)) (i + a) -1

PROOF. Since a contraction is a directional contraction and g(x) d(x, T(x))

is continuous, by Corollary 2, T has a fixed point v e S(e) f S Suppose u is

not fixed under T Then for any Y e B(u, s) S we have

d(u, T(u)) -< d(u, y)+ d(y, T(u))

s + d(y, T(u)),

that is,

cz(l + a)-Id(u, T(u)) d(y, T(u)).

ttence,

d(y, T(u)) as ad(y, u).

Suppose y e T(y) Then we have

HiT(y), T(u)) ad(y, u),

a contradiction. This completes our proof.
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