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ABSTRACT. For each bounded self-adjoint operator T on a Hilbert module H over an
H*-algebra A there exists a locally compact spacelland a certain A-valued measure i
such that H is isomorphic to Lz(u)mA and T corresponds to a multiplication with a
continuous function. There is a similar result for a commuting family of normal
operators. A consequence for this result is a representation theorem for generalized

stationary processes.
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I. INTRODUCTION.

The diagonalization theorem states that for each bounded self-adjoint linear
operator T acting on a Hilbert space H there exists a measure space (S, H ) and a real
valued measurable function h(s) such that H is isomorphic to L2(S,M ) and T cor-
responds to the multiplication with h(s). Furthermore, the space (S, £ ) could be
selected in such a way that there is a Hausdorff topology on S with respect to which
h(s) is continuous, S is locally compact and which makes p a regular Borel measure.
In this note we shall give a suitable generalization of this fact.

The situation is somewhat more complex in our case. The space LZ(S,ﬂ ) needs to
be replaced by the tensor product Lz(u)sA, which is less manageable. This space is
properly defined below.

2. PRELIMINARIES.

Let A be a proper H*-algebra (Ambrose [l]) and let rA = {}y,x, y¢Ap be its
trace-class (Saworotnow and Friedell [2]); let X be a locally compact Hausdorff space
and let K be a positive rA-valued Borel measure on X. The last statement means that g
is defined on the class 3 of all Borel subsets A of X having the property that ACQ

for some compact set Q, and M is such that (#(A)x, x) > 0 for all b -Band each xeA.
Members of Bwill be called bounded Borel sets (a bounded Borel set is a Borel set

included in a compact set). Note that the scalar-valued function mA= trMAA€f, is
an ordinary Borel measure on X; it coincides with the total variation '»l (Definition

in 111.1.4 of Dunford and Schwartz [3]) of v.
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Let S(X) and S(X,A) be respectively the classes of all complex-valued and
A-valued simple functions of X. One can define the integrals for members ¥(x) =
. = . A N Q
ZiA itPAl(x) and £(x) ziaiqul(X) (Ailﬁ, ai(A and A;'s are complex numbers) of S(X)
and S(X,A) in the usual way by setting

Jrljldl-l = zkiuAi and kdlk zaiuAi (2.1)
and then extending it to larger classes using the norms
"¢,,=[l'/"dm=fl)\i‘unAi (2.2)
and
H5H=2H81\ |ma,. (2.3)

Let L(X) and B(X,A) denote respectively the classes of those functions to which the
integrals are extendable in this fashion. (Note that S(X) is dense in L(X) and
S(X,A) is dense in B(X,A)).

Then it is easy to see that

r(f-/;dp ) < Hn/; and r(fgdu) < Hf” (2.4)

hold for allyeL(X) and £¢B(X,A). (For a discussion of integrals of this type we

refer the reader to Bogdanowicz [4]).

LEMMA 1. 1If a€A and either YeL(X) or Y€B(X,A), then ay€B(X,A) and abdm =
afl/ldﬂ . IfYes(X,A) and',['z 0 m-almost everywhere then t::/;bduZ 0.

PROOF. The first assertion is easy to verify. Let ¢y be a simple function such
that "¢ (x) > 0" holds outside of some set AfB with mA= trpA= 0. Then ¥ can be
1:131¢Ai with Al’ AZ"" , An disjoint (A{B) and
a; > 0 for each i for which mAi = f(llAi) = tt(}lAi) > 0" holds. Then
trfn/zd# = t;fiai;«Ai = ZerCapd)) = Zitr/ﬁtztai@ > 0.

Let L"(M) =4 £f:X —>C If is m-measurable andj|f| dm <~} (m = tru) be the set

of all square m-measurable complex-valued functions. Then there is a rA-valued inner

represented in the form ¢ =3

product
¥, ¥,1 =f«p,¢2du (2.5)
defined on Lz(#) such that (¥, Vlz) = tt[ﬂ/lz, '//l] =/:/-;2¢ldm is an ordinary scalar
product on Lz(#) making LZ(#) a Hilbert space.
LEMMA 2. Let I/Il, l/lz,... ¢n (LZ(H) and let a,8y,000,3 €Al Then
o
trzi’jaiﬁpilﬁjduaj >0 (2.6)
PROOF. Let n(y) denote the norm on LZ(M): n(q,{l)2 = (Y,8) ffl!ﬁlzdm. Let €> 0 be
arbitrary; let ql,nz,...nn(s(x) be such that n(Y,-1n.) <€ for i = 1,2,...n. Then
* L= xpl
'tr Eaifdli'/ljd#aj-trEaifwidljd“aj

x [ - - * - -
'Etr(ajaif(‘/'i‘/’j_ni”j)d”)l < zf(ajai)'(ﬁ¢i¢/j'ﬂiﬂj)dﬂ) <

* - - * |5 _ 7 o_n
IR IE N A CE T BN P o || on <
* *
I IBIES (n(tﬁi).n(lﬁj-ﬂj) + n(t/li-ﬂi).n(ﬂj)) < €@y +e)fag iy

and the last sum can be made arbitrarily small by selecting ¢ small enough. On the

other hand one can see that
tr Z. iy ’,]n-dua‘ = tr (2.8,”. (2 a l, *d“) 0 (2.7)
( i, 1 J J) 1] J) ii t)
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. * (e
since (Zjajnj)(‘;iai'!i)* is positive and simple. Hence trEaifq,[/id;jduaj > 0.
B * -~
COROLLARY. The expression z = Zi j(agﬁﬁi¢ﬁd?aj) is a positive member of rA.
i
PROOF. Note that the expression (za,a) = tr(a*za) is of the same form as trz.
Hence (za,a) > O for each aeA.
: _ n 2
Now consider the space K of all tensors f = Zi=l¢?sai with ¢ﬁ’¢§""'¢h‘ LK)
and A a8y,eee,a €¢A. Define the positive form [f,g] on K by setting
x -
(8] = £, ja,(fdyn amws, (2.8)
(here g = Ejnj@bj). Let L= {flK:[f,f] = 0p, K' = KI7L; we define Lz(#)@A to be
the completion of K with respect to the norm llfll =./r1£,f] (modulo the setTl).
It is not difficult to see that L (#) ®A is a Hilbert module.
LLet h be a bounded continuous real valued function on X. Define the operator Th
on LZ(#)&A by setting
T, (f) = T, (Zy@a,) = (Y h)®a, (2.9)

Then T, is a bounded self-adjoint (in the sense that [Th(f),g] = [f,Th(g)] holds).
Also Th2
all feL"(M)®A, a € A).

The fact that T, is bounded (in the sense that ",lTh(f)ll S»Mllf||" holds for
some M) can be verified directly, using §10 of Naimark [5]. Let f = Zi¢{sai be a

is A-linear (additive and A-homogeneous in the sense that Th(fa) = Th(f)a for

fixed member of K. Consider the positive linear functional
* e
p(y) = tr(f,Ty(£)] = ¢tr Zaifzpiywjd#aj (2.10)

on the space BC(X) of all bounded continuous (complex) functions on X. It follows

from the proposition I in subsection 4 of $10 in Naimark [5] that p(h*h) <

”h*hllp pe) = ||h| |jp(e). Thus:
[T (O] | = er T, T (D] = exle, T (0] = by <| | n] | Zpce) =
thl 2v:r[f,f] =Ilh||m2HfH2, (2.11)

We also see that HTh| I < th |”. It turns out that each bounded self-adjoint
A-linear operator is of the form Th described above.
3. MAIN RESULTS.

Definition. An A-linear operator T on a Hilbert module H is said to be cyclic

if there exists f ¢H such that the set {Z Tk(fo)ak:ak(A,)\k complex}is dense in H

oA
(we assume that T(f ) = If = f ). Kok
o o o

THEOREM 1. For each bounded A-linear self-adjoint operator T on a Hilbert
module H there exists a locally compact Hausdorff space X, a rA-valued positive
regular measure H defined on the class 8 of bounded (dominated by compact sets) Borel
subsets of X and a bounded continuous real valued function h on X such that H is
isometrically isomorphic to Lz(#)QA and T corresponds to the operator T, (described
above) acting on Lz(u)OA. If T is cyclic, then X is homeomorphic to the compact
subset of the real line.

PROOF. Let B be the commutative B*-algebra generated by T and the identity
operator I (note that each member of B is A-linear). LetMbe the set of maximal
ideals of B, let 7 be the standard Gelfand topology on]TL and let S—>S(M) be the
Gelfand map of B into the continuous complex functions onTl. Note that?R is
homeomorphic to the spectrum of T, which is a compact subset of the real line. We

consider 2 cases.
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CASE [. First assume that there exists foe'H such that the set
! - {2‘;=lsi(fo)ai:si<n,aim} (3.1)
is dense in H (this is equivalent to the statement that T is cyclic).

Let  be the class of all Borel subsets of M (each A¢Bis bounded sinceM is
compact) and let A—)PA be a spectral measure on 3 (§l7, Proposition Il in sub-
section 4 of Naimark [5]) such that S = mS(M)dPM. Note that each PA is A-linear
since it commutes with linear maps f —>fa(a€A) (which commute with all SeB). Then

map

A—>Hp= [£ Py ] 3.2)

is a rA-valued positive measure onB, and for each S€B we have

fS(M)du(M) =fS(M)d[fo,PMf0] = e, [sendp,l = (£ ,5¢ ] (3.3)
m

(here, as above, [ , ] denotes the generalized inner product on H). 1In this case we
can take X =M. The correspondence
SE <> s(M) (3.4)

is a (linear) isomorphism between the linear subspace K = {SfO|S(B} of H and C(X) =
C(Mm). This correspondence can be extended in the obvious way to the isomorphism
between the closure of K and the Hilbert space Lz(#). The rA-valued inner product is
also preserved by this correspondence: if Sl,SZ(B then
* -

(5,55, = [£,,515,6.1 =[5,005, (a0 (3.5)
We extend this isomorphism to a correspondence between Hl and a dense subset of
2
L7(KM)®A by setting

stk(fo)ak —> 3 S, (M®a, (3.6)

This correspondence also preserves the (vector) inner product: if f =% Sk(fo)ak and
g =2Q.(f )b, then
i~ 70”71 * * o
(6,8) = T, ;a,[5,(£),Q(£ )b, = zk‘iak[Sk(M)Qi(M)dpbi (3.7)
We extend it to an isomorphism between H and L (M)®A. It is easy to check that T
correponds to the operator T, of multiplication with function h(M) = T(M):

T(X, S, (f )a, = ¥ TS (f )a, <> T T(M)S, (M)®a (3.8)

The function h is real valued since T* = T, and I lhl lmg HTl l.

Note also that in this case’U is homeomorphic to the spectrum of T, which is a
compact subset of the real line. This implies the last assertion of the theorem.

CASE II. Now let us consider the general case. For any f€H let H(f) be the
closure of the set {2:=1Si(f)31‘31‘3’31"‘}' Then it follows from Lemma 2 1n‘L
Saworotnow [6] that f€H(f). Also both H(f) and its orthogonal complement H(f) (which
coincides with the set H(f)P ={ng:[g,h] = 0 for all ht’H(f)} (Lemma 3 of Saworotnow
[6])) are invariant under T.

It follows from this fact and Zorn's Principle that there exists a set
fy:ytr}of mutually orthogonal members of H such that H = IYQH(EY), H(fy)lH(fB) if
y-fB, and each H(fy) is invariant under T.

For each y(r and S€B let Sy be the restriction of S to H(fy), and let By =
{Sy:StB}. It follows from part I (case I) of this proof that for each y(rthere

exists a compact Hausdorff space (My, Ty ), a rA-valued positive Borel measure py and
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a continuous real valued function hy( ) on‘my such that H(fy) is isomorphic to
(uy)OA and action of the operator Ty (the restriction of T) corresponds to the
multiplication with hy on L” (My). Note also that hy(M) < HT” for each M(77ly .

Let X = U 77ly and let r be the topology on X defined by the requirement that a
set 0CX is open (0€7) if and only if Onmy belongs to ry for each y(r‘. Let B8 be the
class of all bounded Borel subsets of X. For eachA €8 there are indices (we use a
simplified notation here) 1,2,...,n €r such that Aci&;’l’mi. We set

n

pA) =3 4 (Apm) (3.9)

ThenBis a ring and pis a positive rA-valued measure onf3. We define the function h
on X by setting h(M) = hy(M) whereY(I\is such that M(7ny . Then it is easy to see
that h has the required properties.

To complete the proof it is now Sufflclent to show that L (#)@A -EyL (My)QA.
First note that each L (Ky) is included in L (K) and that L (#) = 2),L (#y) (easy to
verify). Now let fel, (II)OA. For each € > 0 one can find g = _il=1 \/liQai such
that ||f 5] I( € with w eL” (#) But each ¢i can be approximated in Lz(ﬂ) by
expressions of the forﬂlz ‘l¢ with ¢ € L (u ) for some Y Yoreeoay, gIﬂ Thus f
can be approximated (as close as we please) by members" (2 c,b )Oa of EVL (1 )®A,
i.e., g is a member of ZyL (P-y)®A.

Conversely, let ffzy (#y)@A then f can be approximated by finite sums of
expressions of the type i lnj/@a with a, (A and '/11,1/12,...;0 belonglng to some
!.2(#6) withﬂ{l—‘. We may conclude that fﬂ (Il)OA since L (#y)C.L (#) for eachyY. The
reader should be able to give a precise argument here.

THEOREM 2. Let Z be a family of bounded A-linear operators on a Hilbert module
H (over an H*-algebra A) such that each member of Z and its adjoint (with respect to

the generalized inner product) commute with any other member of Z. In particular, Z
could be a commutative *-algebra of A-linear operators on H. Then there exists a

locally compact Hausdorff space X, a rA-valued positive Borel measuref on X and a map

‘T —> h,, of Z into complex valued functions on X such that H is isomorphic to LZ(#)OA

T

and each T corresponds to multiplication with some function hT'

Moreoever ,lth' <
T]] for each Te€Z. g

PROOF. The proof is essentially the same as the proof of Theorem 1 above. We
use the *-algebra of operators generated by Z (and the identity operator 1) instead
of the algebra generated by the operator T (and 1).

COROLLARY 1. Each *-representation of a commutative *-algebra by bounded
A-linear operators is of the form x —> Th’ where Th is an operator of multiplication
with a complex valued function h = hx described before Theorem 1.

This corollary could be considered as a generalization of Theorem 65 in Mackey
[7] if we disregard the fact that Mackey considers more general (self-adjoint)
algebras and we do not specify the space X on which the functions h = hx act (also
our Hilbert module does not have to be separable (as a Hilbert space)).

COROLLARY 2. Let G be a commutative locally compact group with composition +
and let t —-—>Ut be a *-representation of G by A-linear unitary operators acting on a
Hilbert module H. Assume that there exists a vector fO(H such that the submodule HO’
generated by the vectors of the form Ut(fo)’ is dense in H. Then there exists a

compact Hausdorff space”, a positive rA-valued Borel measure p on 7l and a map
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t ——>gt of G into the continuous functions on 7 such that H is (isometrically)

2 X
isomorphic to LZ(#)DA and each Ut corresponds to multiplication members of L™(#) with

g .
t
The map t ———>gt has the following properties (for each teG and all MM
gO(M) = 1 (here 0 is the identify of G) (3.10)
lgt(M)l =1 (3.11)
=g 3.12

g (W = g 00 (3.12)

= 3. 13

By (D = g, (08 (0 (3.13)

It is appropriate at this point to mention a certain application of the last
corollary. Let G, A and H be as above, and let f:G —>H be a generalized stationary
process (Saworotnow [8]), i.e., f is an H-valued function on G such that
(é(t+r) &(s+r)) = (f(t),f(s)) for all t,r,s€G. Let Hg be the submodule generated by

> . )|
the vectors of the form £(t), te€G (Hf = closure of {%k=l§(tk)ak:tkfc})'
For each teG consider the operator Ut on Hf defined by
n = Mo+ =&£(0). 3. 14
Ut(2k=lf(tk)dk) b k=l’(tk t)a, and let f, £(0) ( )

Then the map t -—-—->Ut is a representation of G by A-linear unitary operators and
it is casy to see that the assumptions of Corollary 2 are fulfilled. Let b, i and Ht
he as in Corollary 2 and let f(M) be the member of COR) corresponding to £y = &,
Then the space Tf is isomorphic to Lz(u)QA and each Ut corresponds to multiplication
of members of L7(®) with 8- For each t€G let ht(M) = gt(M)f(M). In this fashion we
arrived at a concrete representation of the abstract stationary process E by the
complex valued continuous function ht defined on7l. Note that the scalar product
(£(t),£&(s)) corresponds to the expression

Sr oon mhauon = fg 008 GHECOTTNARGD =

fgt(M)g_s(M)If(M)|2du(M) - fgt_S(M)|f(M) 2 4u(M) (3.15)

and this expression depends on t-s only and is independent of a particular choice of
t and s.

4. CONCLUDING REMARK.

To conclude the paper we make the following remark about the operator Th
discussed above. It is easy to see that we do not need at all to assume existence of
a (locally compact) topology on the space X (discussed at the beginning of this
paper). Letyu be a positive rA-valued measure defined on some g-ring of subsets of
X. If h is any trpu -measurable essentially bounded real valued function on X then
,on L Gea,

Th(zi./,i@ ai) = Zi(wih)@ai (3.16)

the corresponding operator T

is also self-adjoint, A-linear and bounded. The fact that Th is bounded can be

verified in the same way as above using the algebra B of all essentially bounded

trp -measurable complex-valued functions on X.
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