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ABSTRACT. At the conference of the Indian Mathematical Society held at Allahabad

in December 1981, S. P. Mohanty and A. M. S. Ramasamy pointed out that the three

numbers I, 2, 7, have the following property: the product of any two of them

increased by 2 is a perfect square. They then showed that there is no fourth

integer which hsares this property with all of them. They used Pell’s equation

and the theory of quadratic residues to prove their statement. In this paper,

we show that their statement holds for a very large set of triads and our proof

of the statement is very simple.
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i. INTRODUCTION.

DEFINITION. Given any integer k, three numbers aI, a2, a
3

are said to form

a k-triad, if the numbers

ala2 + k, ala3 + k and a2a3 + k (I.I)

are all perfect squares.

An ascending sequence of integers

a I, a2, a3, a
n

is said to be a k-triad sequence if every three consecutive elements of the sequence

form a k-triad.

Evidently, if (I.i) is a k-triad sequence, then

a2, a3, a
4

a
n

(1.2)

is also a k-triad sequence.

This elementary statement will prove useful to us in our work.
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2. CONSTRUCTION OF SEQUENCES (I.i).

In what follows, small letters denote integers and c.’s are positive.
i

Given any integer k, we can choose two integers aI and a2, a
2

> al,
such that ala2 + k is a perfect square:

2
ala2 + k c I

The problem of constructing the sequence (I.I) then reduces to finding

a number a
3

such that both

ala3 + k and a2a3
+ k will be squares.

2 2
Let ala3 + k x a2a3 + k y

Set x a + Cl, y a
2 + c I

Then from (2.2) we have

(a
2 al)a3 (y x)(y + x)

(a
2 -al)(aI + 2c I + a2);

so that a
3

aI + a
2
+ 2c I

We assert that this value of a
3

actually satisfies our requirements. In

fact, we have

Similarly

ala3 + k al(aI + 2c I + a2) + k

2
a + 2alcI + (ala2 + k)

2 2
a + 2alc + c I

(a + ci)2

+ k (a
2
+ Cl )2a2a3

2
Writing c

2 a2a3 + k, we have

c
2

a
2
+ c I

Notice that (2.3) provides a formula for writing the third element of a

k-triad sequence interms of al, a
2

and c I.
Applying this procedure to (1.2), we get

a
4

a
2
+ a

3 + 2c
2

a
2
+ (a

I + a
2
+ 2cI) + 2(a

2
+ c I)

a + 4a
2
+ 4c

Treating this as a formula for the fourth element of a k-triad sequence and

applying it to (1.2), we get

a
5

a
2
+ 4a

3 + 4c
2

4aI + 9a
2
+ 12c I

The process can be repeated until the desired number of elements of (I.I) has

been obtained.

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)
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Then assuming that

we obtain

aj ujaI + vja2 + wjcI

aj uja2
+ vja3 + wjc2

uja2 + vj(aI + a
2
+ 2c I) + wj(a2 + c I)

vja + (uj + vj + wj)a2 + (2vj + wj)c
This gives us the following recurrence relations:

uj+I v
j,

v
j+

u. + v. + Wo, wj +I
Identically:

uj+I 0 0 u.

vj+ I I I v

wj+ 0 2 I wj
or

uj 1 -I uj+1

vj i 0 0 jv+I

wj 0 LWj+l

Using the same technique, from (2.5), we obtain

2v. +w.

In general,

Assuming that

c
3

a
3
+ c

2

(a
I + a

2
+ 2cI) + (a

2 + c I)
a + 2a

2 + 3c

c. =a. +c.
j-I

cj rjaI + sja2 + tjc I

there is no difficulty in obtaining the recurrence relations:

r +I
0 I 0 I rls +I I I s

t 0 2 it_
+I

and

rj 1 1 -I rj+1

sj 0 0 sj+

tj 2 0 I tj+
While relations (2.9) and (2.12) enable us to find expressions for ao’S and

c.’s as takes value in ascending order of magnitude, the relations (2.10)

and (2.13) enable us to extend them in the opposite direction.

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)
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Our k-triad sequence can thus be defined for all integral values of the

subscript; therefore, the sequence of c.’s is defined for all integral

values of the subscript.

3. IDENTIFICATION OF THE COEFFICIENTS u, v, w AND r, s, t.

We hardly would expect that the Fibonacci sequence has anything to do with

the coefficients u, v, w and r, s, t introduced in the preceding section. But

the unexpected happens.

Recall that the Fibonacci sequence is defined by the recurrence relations:

f0 0 fl I, f f + m > 2
m m-2 fm-i

This definiton can be extended to negative integral subscripts by noting

that
m+l

f (-i) f
-m m

From results (2.3), (2.6) and (2.7), it will be seen that for the values

3, 4 and 5;

aj f2 f2.
2 al + a2 + 2fj f c Ij-1 -2 j-1

so that for these values of j,

uj f2. v f2.
j-2 j-I wj 2fj_2 fj-I

From (2.9), we will now have

2 f2. f2.Uj+l fj-I Vj+l j-2
+ + 2fj fj-i -2 -I

(fj-2 + fj-i )2 f2.
and wj+ 2f 2. fj_j-I

+ 2f
j-2 i

2f.j_l (fj-i + fj-2 2fj_l f’j

(3.1)

(3.2)

We now leave it to the reader to complete the induction and show that

aj f2 f2.
j-2 al + a2 + 2fj fj c

]-I -2 -i i

for all integral values of j.

(3.3)

It is no more difficult to prove that for all integral values of

cj fj_2fj_lal + fj_ifja2 + (f2_j fj-2fj-I )el
4. S! OF CONSECUTIVE a’s.

From (2.11), we have

cj cj_ 1 a.

Hence we have an interesting summation formula
n

a. c c n > m
j=m+l n m

This provides a good check on the values of a.’s and c.’s.
5. A GENERALIZATION OF THE STATEMENT OF MOHANTY AND RAMASAMY.

Our generalization can be stated in the form of the following.
THEOREM. If al, a2, a3 is a k-triad and k 2 (mod 4), then there is no

integer a for which

(3.4)

(4.1)
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ala + k, a2a + k, a3a + k

are all perfect squares.

We need two lemmas for the proof of our theorem.

LEMMA I. Only two of the three numbers aI, a2, a
3

are odd.

PROOF. If a and a
2

are both even, let

2
ala2 + k c

I

This implies that c I
is even. Modulo 4, we have

2 0 (mod 4)

This is impossible. Hence both a I
and a

2
cannot be even.

If a and a are of opposite parity, then since
2

a
3

a + a
2
+ 2c I

a
3
must be odd, and our lemma holds.

If a and a
2

are both odd, then a
3

is even.

This completes the proof of our lemma.

LEMMA 2. The difference of the two odd elements of the given k-triad

is congruent to 2 (mod 4).

PROOF. First let aI and a
2

be the odd elements of the k-triad. Then

0 or 2 (mod 4).a
2

a I
But a

2
aI cannot be congruent to 0 (mod 4). Suppose a

2
aI

H 0 (mod 4) and

let

a
2

a + 4d for some integer d.

2
Since ala2 + k c

I
c I

must be odd.

As ala2 al(aI + 4d) E a I (mod 4)

we will have

I + 2 c I (mod 4).

This is impossible. Hence

a
2

a
I

2 (mod 4)

Next let aI and a
3

be the two odd elements of the k-triad. Then a
2

is necessarily
2

even. Again since ala2 + k c I c I must be even. We must, therefore, have

a
2 + 2 0 (mod 4)

Hence a
2 2 (mod 4)

Now a
3

a + a
2 + 2c and c is even.

Hence a
3

aI 2 (mod 4).

The case in which a
2

and a
3

are the odd elements, can be dealt with in the

same manner and the lemma is proven.

PROOF OF THE THEOREM. Since the existence or non-existence of the number

a does not depend on the order in which the three expressions are taken, we

can assume that a I is the even and a
2

and a
3

the odd elements of the given

k-triad.
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For some positive integers x, y, z, let

2
ala + k x (i)

2
a2a + k y (ii)

2
a3a + k z (iii)

From (i) it is evident that x is even. Replace x by 2g, a (which is even)

by 2h, and k (which is congruent to 2 (mod 4)) by 2q where q is odd. Then,
(i) takes the form

2ha + q (2g) (iv)

Since q is odd and the right-hand side is even, h and a must both be odd.

This implies that y and z are both odd. Now substracting (ii) and (iii),
we have

2 2
0 (mod 4). (v)(a

3 a2)a z y

Since a
3

a
2

2 (mod 4), (v) implies that a is even. This contradicts

the earlier statement that a is odd. Hence a does not exis and we are

through.

-4 -3 -2 -I 0 i 2 3 4 5 6

a. -67 -25 -i0 -3 -i 2 5 15 38 I01 263 690

c. 41 16 6 3 2 4 9 24 62 163 426 1116

f. -3 2 -I I 0 I i 2 3 5 8 13

u 64 25 9 4 i I 0 i I 4 9 25

v 25 9 4 i I 0 i I 4 9 25 64

w. -80 -30 -12 -4 -2 0 0 2 4 12 30 80

r. -40 -15 -6 -2 -I 0 0 i 2 6 15 40

s. -15 -6 -2 -i 0 0 I 2 6 15 40 104

t. 49 19 7 3 i i i 3 7 19 49 129

k 6, aI 2, a
2 5, c I 4
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