ESSENTIAL SUPREMUM NORM DIFFERENTIABILITY

I. E. LEONARD

Department of Mathematical Sciences Northern Illinois University DeKalb, IL 60115

K. F. TAYLOR

Department of Mathematics University of Saskatchewan Saskatoon, SK S7N OWO

(Received April 26, 1985)

ABSTRACT. The points of Gateaux and Fréchet differentiability in $L_{\infty}(\mu, X)$ are obtained, where (Ω, Σ, μ) is a finite measure space and X is a real Banach space. An application of these results is given to the space $B(L_1(\mu, \mathbb{R}), X)$ of all bounded linear operators from $L_1(\mu, \mathbb{R})$ into X.

KEY WORDS AND PHRASES. Banach spaces, measurable functions, essentially bounded functions, vector-valued functions, essential supremum norm, smooth points. 1980 MATHEMATICS SUBJECT CLASSIFICATION CODE. Primary: 46B20, 46E40 Secondary: 46A32, 28B05.

1. INTRODUCTION.

Let m be the restriction of Lebesgue measure to [0,1] and $L_{\infty}(m,k)$ the Banach space of all measurable, essentially bounded, real-valued functions on [0,1], equipped with the norm $||f|| = \operatorname{ess\ sup\ }\{|f(t)|: t \in [0,1]\}$ (as usual, identifying functions that agree a.e. on [0,1]).

In [4], Mazur proved that given any $f\in L_{_{\infty}}(m,\mathbb{R})$, $f\neq 0$, there exists a $g\in L_{_{\infty}}(m,\mathbb{R})$ such that

$$\lim_{\lambda \to 0} \frac{\|\mathbf{f} + \lambda \mathbf{g}\| - \|\mathbf{f}\|}{\lambda}$$

does not exist. In other words, the closed unit ball in $L_{\infty}(m,k)$ has no smooth points.

In this note, we show that an analogous result holds for $L_{\infty}(\mu, X)$, the space of μ -measurable, essentially bounded functions, whose values lie in a Banach space X - provided that the underlying measure space (Ω, Σ, μ) is non-atomic. We then obtain a complete description of the smooth points of $L_{\infty}(\mu, X)$ in the general case. We show, in fact, that f is a smooth point of $L_{\infty}(\mu, X)$ if and only if f achieves its norm on a unique atom for μ , and its (μ -a.e. constant) value on this atom is a smooth point of X. An application of this result is given to the space of all bounded linear operators from $L_1(\mu,\mathbb{R})$ into a Banach space X, when X has the Randon-Nikodým property with respect to μ .

2. PRELIMINARIES

Throughout this note, X denotes a real Banach space with dual X*. A point $x \in X \sim \{0\}$ is a <u>smooth point</u> of X if there exists a unique $\phi \in X^*$ with $\|\phi\|_1 = 1$ such that $\phi(x) = \|x\|$. The norm function on X is <u>Gateaux differentiable</u> at non-zero $x \in X$ if there exists a $\phi \in X^*$ such that

$$\lim_{\lambda \to 0} \frac{||\mathbf{x} + \lambda \mathbf{h}|| - ||\mathbf{x}||}{\lambda} - \phi(\mathbf{h})| = 0 \qquad (*)$$

for all $h \in X$. The functional ϕ is the <u>Gateaux derivative</u> of the norm at $x \in X$. Mazur, [4], has shown that the following are equivalent:

- (i) x is a smooth point of X.
- (ii) $\lim_{\lambda \to 0} \frac{\|\mathbf{x} + \lambda \mathbf{h}\| \|\mathbf{x}\|}{\lambda}$ exists for all $\mathbf{h} \in X$
- (iii) the norm function on X is Gateaux differentiable at x .

The norm function on X is <u>Fréchet</u> <u>differentiable</u>, at a non-zero $x \in X$, if there exists a $\phi \in X^*$ such that

$$\lim_{\|\mathbf{h}\| \to 0} \left| \frac{\|\mathbf{x} + \mathbf{h}\| - \|\mathbf{x}\| - \phi(\mathbf{h})}{\|\mathbf{h}\|} \right| = 0 \quad . \tag{**}$$

Of course, Fréchet differentiability at a point implies Gateaux differentiability at the point.

Let (Ω, Σ, μ) denote a finite measure space. A mapping $f: \Omega \rightarrow X$ is called μ -<u>measurable</u> (or <u>strongly measurable</u>) if

- (i) $f^{-1}(V) \in \Sigma$ for each open set $V \subseteq X$, and
- (ii) f is essentially separably valued; that is, there exists a set N $\in \Sigma$ with $\mu(N) = 0$, and a countable set H $\subseteq X$, such that f($\Omega \sim N$) $\subseteq \overline{H}$.

The <u>Lebesgue-Bochner function space</u> $L_{\infty}(\mu, X)$ is the real vector space of all μ -measurable, essentially bounded, X-valued functions defined on Ω . $L_{\infty}(\mu, X)$ is a real Banach space when equipped with the norm

 $\|f\|$ = ess sup $\{\|f(\omega)\|: \ \omega \in \Omega\}$ (as usual, identifying functions which agree μ - a.e.) .

A set $A \in \Sigma$ is an <u>atom</u> for the measure μ if and only if $\mu(A) > 0$, and for any $B \in \Sigma$, with $B \subseteq A$, either $\mu(B) = 0$ or $\mu(B) = \mu(A)$. The measure space (Ω, Σ, μ) is called <u>non-atomic</u> if there are no atoms for μ in Σ , and <u>purely atomic</u> if Ω can be expressed as a union of atoms for μ . We will write $\Omega = \Omega_{c} \cup \Omega_{d}$, with $\Omega_{c}, \Omega_{d} \in \Sigma$, for the (essentially unique) decomposition of Ω into its non-atomic and purely atomic parts. Since μ is a finite measure, there exists an at most countable pairwise disjoint collection $\{A_{i} : i \in I\}$ of atoms for μ such that $\Omega_{d} = \bigcup_{i \in I} A_{i}$. We note that if A is an atom for μ and $f \in L(\mu, X)$, then f is constant μ - a.e. on A, and this constant is called the essential value of f on A. If X_1, X_2, \ldots, X_n are Banach spaces, and $1 \le p \le \infty$, then the ${}^{2}_{p} - \underline{product}$ $(X_1 \oplus X_2 \oplus \ldots \oplus X_n)_p$ is the product space $X_1 \times X_2 \times \ldots \times X_n$ equipped with the norm

$$\|(x_1, x_2, \dots, x_n)\|_p = (\|x_1\|^p + \|x_2\|^p + \dots + \|x_n\|^p)^{1/p}$$

for $1 \leq p < \infty$, and

$$\|(x_1, x_2, \ldots, x_n)\|_{\infty} = \max(\|x_1\|, \|x_2\|, \ldots, \|x_n\|)$$

for $p = \infty$.

We will need the following lemmas in the discussion of the smooth points of $L_{_{\rm L}}(\mu,X)$.

LEMMA 2.1: If X_1, X_2, \ldots, X_n are Banach spaces, then (x_1, x_2, \ldots, x_n) is a smooth point of $(X_1 \oplus X_2 \oplus \ldots \oplus X_n)_{\infty}$ if and only if there exists a j_0 , $1 - j_0 \leq n$, such that

(i) $||x_{j_0}|| > ||x_j||$ for $j \neq j_0$, and (ii) x_{j_0} is a smooth point of X_{j_0} .

LEMMA 2.2: Let X be a Banach space, and (Ω, Σ, μ) a finite measure space. If $(\Omega_d, \Sigma_d, \mu_d)$ and $(\Omega_c, \Sigma_c, \mu_c)$ are the purely atomic and non-atomic measure spaces, respectively, in the decomposition of Ω ; then $L_{\infty}(\mu, X)$ is isometrically isomorphic to $(L_{\infty}(\mu_d, X) \oplus L_{\infty}(\mu_c, X))_{\infty}$.

The proof of the second lemma is routine, while the proof of the first lemma uses the fact that $(X_1 \oplus X_2 \oplus \ldots \oplus X_n)_{\infty}^*$ is isometrically isomorphic to $(X_1^* \oplus X_2^* \oplus \ldots \oplus X_n^*)_1$, see [3].

The next two lemmas are straightforward generalizations of results in Kothe [2], we sketch the proof of the first lemma.

LEMMA 2.3: Let X be a Banach space and let $\ell_{\infty}(X)$ denote the space of bounded sequences in X with the supremum norm. If $x = \{x_n\}_{n>1} \in \ell_{\infty}(X)$, $x \neq 0$, then x is a smooth point of $\ell_{\infty}(X)$ if and only if there exists a positive integer n_0 such that

(i) $\|\mathbf{x}_n\| > \sup \{\|\mathbf{x}_n\| : n \neq n_0\}$, and (ii) \mathbf{x}_n is a smooth point of X.

PROOF.

Let $x = \{x_n\}_{n \le 1} \in \ell_{\infty}(X)$ be a smooth point, we may assume that $||x|| = \sup_{\substack{n \ge 1 \\ n \ge 1}} ||x_n|| = 1$ If there exists a subsequence $\{x_n\}_{k \ge 1}$ such that $\lim_{k \to \infty} ||x_n|| = 1$, we can demonstrate the existence of distinct elements of $\ell_{\infty}(X)^*$ which support the unit ball at x, by the following modification of the argument given in Köthe [2] for $\ell_{\infty}(x)$.

We consider the disjoint sequences $\{x_n\}_{j \ge 1}$ and $\{x_n\}_{j \ge 1} \}$. For each

$$j \ge 1, \text{ let } \phi_j \text{ and } \psi_j \text{ be elements of } X^* \text{ such that } \|\phi_j\| = \|\psi_j\| = 1 \text{ with}$$

$$\phi_j(x_{n_{2j}}) = \|x_{n_{2j}}\| \text{ and } \psi_j(x_{n_{2j-1}}) = \|x_{n_{2j-1}}\|.$$

$$\text{ Define } \phi_j \text{ and } \psi_j \text{ on } \ell_{\infty}(X) \text{ by } \phi_j(y) = \phi_j(y_{n_{2j}}) \text{ and } \psi_j(y) = \psi_j(y_{n_{2j-1}}) \text{ for all } y = \{y_n\}_{n\ge 1} \in \ell_{\infty}(X) \text{ and } j \ge 1 \text{ ; then } \phi_j, \forall_j \in \ell_{\infty}(X)^* \text{ and } \|\phi_j\| = \|y_j\| = 1 \text{ for all } j \ge 1.$$

 $\|\Psi_{j}\| = \|\Psi_{j}\| = 1 \text{ for all } j \ge 1.$ Let Φ and Ψ be w*-accumulation points of the sequences $\{\Phi_{j}\}_{j\ge 1}$ and $\{\uparrow_{j}\}_{j\ge 1}$ respectively, then by construction we have $\|\Phi\| = \|\Psi\| = 1$ and $\Phi \neq \Psi$, but $\Phi(x) = \Psi(x) = 1 = \|x\|$. This contradicts the fact that x is a smooth point of $\ell_{\infty}(X)$. Thus, we have shown that if $x = \{x_n\}_{n\ge 1}$ is a smooth point of $\ell_{\infty}(X)$, then $\lim_{n\to\infty} \|x_n\| \le \|x\|$, and therefore there must exist a positive integer n_0 such that $n\neq 0$ if there exists another integer $m_0 \neq n_0$ with $\|x_{m_0}\| = \|x\|$, let Φ , $\Psi \in X^*$ with $\|\Phi\| = \|\Psi\| = 1$ and $\Phi(x_n) = \Psi(x_m) = \|x\|$. Now define Φ , $\Psi \in \ell_{\infty}(X)^*$ by $\Phi(y) = \phi(y_{n_0})$ and $\Psi(y) = \psi(y_{m_0})$ for $y = \{y_n\}_{n\ge 1} \in \ell_{\infty}(X)$, then Φ and Ψ are distinct support functionals to the ball in $\ell_{\infty}(X)$ at x. Again, a contradiction. We have established that if x is a smooth point of

 $\ell_{_{\infty}}(X)$, then (i) must hold. A similar argument shows that (ii) must hold as well.

Conversely, if $\mathbf{x} = \{\mathbf{x}_n\}_{n \ge 1} \in \ell_{\infty}(X)$ and (i) and (ii) hold, then for any $\mathbf{y} = \{\mathbf{y}_n\}_{n \ge 1} \in \ell_{\infty}(X)$, $\mathbf{y} \neq 0$, we have $||\mathbf{x} + \lambda \mathbf{y}|| = ||\mathbf{x}_{n_0} + \lambda \mathbf{y}_{n_0}||$ for all $\lambda \in \mathbb{R}$ satisfying $|\lambda| < \frac{1}{||\mathbf{y}||} (||\mathbf{x}|| - \sup\{||\mathbf{x}_n|| : n \neq n_0\})$. Therefore,

$$\lim_{\lambda \to 0} \frac{\|\mathbf{x} + \lambda \mathbf{y}\| - \|\mathbf{x}\|}{\lambda} = \lim_{\lambda \to 0} \frac{\|\mathbf{x}_{n} + \mathbf{y}_{n}\| - \|\mathbf{x}_{n}\|}{\lambda}$$

which exists by (ii); thus, x is a smooth point of $\ell_{\infty}(X)$. This completes the proof of the lemma.

An argument similar to the above gives the following:

LEMMA 2.4: Let (Ω, Σ, μ) be a finite measure space which is purely non-atomic, and let X be a real Banach space, then $L_{\infty}(\mu, X)$ has no smooth points.

3. MAIN RESULT

In this section, we characterize the smooth points of the space $\ L_{_{\infty}}(\mu,X)$.

THEOREM 3.1: Let (Ω, Σ, μ) be a finite measure space, X a Banach space, and f $\in L_{\infty}(\mu, X)$ with f $\neq 0$; then f is a smooth point of $L_{\infty}(\mu, X)$ if and only if there exists an atom A_0 for μ such that

- (i) $\|f\| > \operatorname{ess sup} \{\|f(\omega)\| : \omega \in \Omega \sim A_0\}$, and
- (ii) \mathbf{x}_0 is a smooth point of X , where \mathbf{x}_0 is the essential value of f on \mathbf{A}_0 .

PROOF.

or

Suppose $f \in L_{\infty}(\mu, X)$, $f \neq 0$, is a smooth point of $L_{\infty}(\mu, X)$, then Lemma 2.4 implies that Σ contains at least one atom for μ . Let $\Omega = \Omega_{c} \cup \Omega_{d}$ be the decomposition of Ω into its non-atomic and purely atomic parts. Since, by Lemma 2.2, $L_{\infty}(\mu, X)$ is isometrically isomorphic to $(L_{\infty}(\mu_{c}, X) \oplus L_{\infty}(\mu_{d}, X))_{\infty}$, then Lemma 2.1 and the fact that f is a smooth point of $L_{\infty}(\mu, X)$ imply that either

1°.
$$\|f\|_{\Omega_{c}} \| > \operatorname{ess sup} \{ \|f(\omega)\| : \omega \in \Omega_{d} \}$$
, and

$$\begin{array}{c} f \big|_{\Omega} & \text{is a smooth point of } L_{\omega}(\mu_{c},X) \\ c \end{array}$$

$$\begin{array}{l} 2^{\circ} \cdot \ \left\|f\right|_{\Omega_{d}} \| \ \geq ess \ sup \ \left\|f(\omega)\right\| \ : \ \omega \in \Omega_{c}^{-} \right\} \ , \ \text{ and} \\ f\left|_{\Omega_{d}} \quad \text{is a smooth point of} \ \ L_{\omega}(\mu_{d}, X) \ . \end{array}$$

Now, case 1° is ruled out by Lemma 2.4, since $(\Omega_c, \Sigma_c, \mu_c)$ is a finite non-atomic measure space. Therefore, $\|f\|_{\Omega_d} \| \ge ess \sup \{\|f(\omega)\| : \omega \in \Omega_c\}$, and $f|_{\Omega_d}$ is a smooth point of $L_{\omega}(\mu_d, X)$.

Let
$$\Omega_{\mathbf{d}} = \bigcup_{\mathbf{i}} A_{\mathbf{i}}$$
, where $\{A_{\mathbf{i}} : \mathbf{i} \in \mathbf{I}\}$ is a pairwise disjoint collection of $\mathbf{i} \in \mathbf{I}$

atoms for μ , since μ is finite, then either I is finite or countably infinite. If I is finite, then $L_{\infty}(\mu_{d}, X)$ is isometrically isomorphic to $(X_{1} \oplus X_{2} \oplus \dots \oplus X_{n})_{\infty}$, with $X_{j} = X$ for $j = 1, 2, \dots, n$: while if I is countably infinite, then $L_{\infty}(\mu_{d}, X)$ is isometrically isomorphic to $\ell_{\infty}(X)$. In either case, it is easily seen (from Lemma 2.1 or Lemma 2.3) that there exists an atom A_{0} for μ with

- (i) $\|f\| > \operatorname{ess sup} \{\|f(\omega)\| : \omega \in \Omega \sim A_0\}$, and
- (ii) $x_{\mbox{0}}^{}$ is a smooth point of X , where $x_{\mbox{0}}^{}$ is the essential value of f on $A_{\mbox{0}}^{}$.

Conversely, suppose that $f \in L_{\omega}(\mu, X)$ and there exists an atom A_0 for μ in Σ such that (i) and (ii) hold. Let $\omega_0 \in A_0$ with $f(\omega_0) = x_0$; then from (i) we have $\|f\| = \|f(\omega_0)\|$. Let $\delta = \|f(\omega_0)\| - \operatorname{ess} \sup \{\|f(\omega)\| : \omega \in \Omega \sim A_0\} > 0$, and let $g \in L_{\omega}(\mu, X)$. If $\lambda \in \mathbb{R}$ with $0 < |\lambda| < \frac{\delta}{2\|g\|}$; then

$$\begin{split} \|f(\omega) + \lambda g(\omega)\| &\leq \|f(\omega)\| + |\lambda| \|g(\omega)\| < \|f(\omega_0)\| + |\lambda| \|g(\omega)\| - \delta \\ \mu - a.e. \quad \text{on} \quad \Omega \sim A_0 \text{, and hence} \\ \|f(\omega) + \lambda g(\omega)\| &\leq \|f(\omega_0)\| + |\lambda| \|g\| - \delta \\ \mu \text{ a.e. on} \quad \Omega \sim A_0 \text{.} \end{split}$$

Therefore,

$$\|\mathbf{f}(\omega) + \lambda \mathbf{g}(\omega)\| < \|\mathbf{f}(\omega_0)\| - \frac{\delta}{2}$$

 μ - a.e. on $\Omega \sim A_0$, whenever $0 < |\lambda| < \frac{\delta}{2||g||}$. This implies that ess sup { $||f(\omega) + \lambda g(\omega)|| : \omega \in \Omega \sim A_0$ } = $||f(\omega_0)|| - \frac{\delta}{2}$

whenever $0 < |\lambda| < \frac{\delta}{2||\mathbf{g}||}$. On the other hand,

$$\||\mathbf{f} + \lambda \mathbf{g}\| \ge \||\mathbf{f}\| - |\lambda| \|\|\mathbf{g}\| > \|\mathbf{f}(\boldsymbol{\omega}_0)\| - \frac{\delta}{2}$$

whenever
$$0 < |\lambda| < \frac{\delta}{2||g||}$$
.

These fore,

$$\begin{split} \|\mathbf{f} + \lambda \mathbf{g}\| &= \mathbf{ess} \ \mathbf{sup} \ \{\|\mathbf{f}(\omega) + \lambda \mathbf{g}(\omega)\| : \omega \in \mathbf{A}_0\} \end{split}$$
 whenever $0 < |\lambda| < \frac{\delta}{2\|\mathbf{g}\|}$.

Now, f and g are constant μ - a.e. on A_0 , so there exists an $\omega_1 \in A_0$ such that $f(\omega) + \lambda g(\omega) = f(\omega_0) + \lambda g(\omega_1) \mu$ - a.e. on A_0 ; and hence $\||f + \lambda g\| = \||f(\omega_0) + \lambda g(\omega_1)\|$ when $0 < |\lambda| < \frac{\delta}{2\|g\|}$. Therefore,

$$\lim_{\lambda \to 0} \frac{\|\mathbf{f} + \lambda \mathbf{g}\| - \|\mathbf{f}\|}{\lambda} = \lim_{\lambda \to 0} \frac{\|\mathbf{f}(\omega_0) + \lambda \mathbf{g}(\omega_1)\| - \|\mathbf{f}(\omega_0)\|}{\lambda}$$

and the latter limit exists since $f(\omega_0)$ is a smooth point of X; hence f is a smooth point of $L_{\omega}(\mu, X)$. This completes the proof of the Theorem.

COROLLARY 3.2: Let (Ω, Σ, μ) be a finite measure space, X a Banach space and $f \in L_{\infty}(\mu, X)$ with $f \neq 0$; then the norm function on $L_{\infty}(\mu, X)$ is Fréchet differentiable at f if and only if there exists an atom A_0 for μ such that

- (i) $\|f\| > ess \sup \{\|f(\omega)\| : \omega \in \Omega \sim A_0\}$, and
- (ii) the norm function on X is Fréchet differentiable at x_0 , where x_0 is the essential value of f on A_0 .

This follows immediately from the proof of Theorem 3.1.

4. REPRESENTABLE OPERATORS ON $L_1(\mu, \mu)$

If X is a Banach space and (Ω, Σ, μ) is a finite measure space, then X is said to have the <u>Radon-Nikodým property</u> with respect to μ if and only if for every countably additive X-valued measure m: $\Sigma \rightarrow X$ which is of bounded variation and absolutely continuous with respect to μ , there exists a g e $L_1(\mu, X)$ such that $m(E) = \int_{E} g(\omega) d\mu(\omega)$, for $E \in \Sigma$.

A bounded linear operator $T : L_1(\mu) \rightarrow X$ is said to be <u>representable</u> if and only if there exists a $g \in L_m(\mu, X)$ such that

$$T(f) = \int_{\Omega} f(\omega) g(\omega) d\mu(\omega)$$

for all $f \in L_1(\mu, \mathbb{R})$.

Let $B(L_1(\mu,\mu\lambda),X)$ denote the Banach space of all bounded linear operators from $L_1(\mu,\mu\lambda)$ into X. For each $g \in L_{\infty}(\mu,X)$, define $\sigma(g) \in B(L_1(\mu,\mu\lambda),X)$ by

$$\sigma(\xi)(f) = \int_{\Omega} f(\omega)g(\omega)d\mu(\omega) , \quad f \in L_1(\mu, \mu; \lambda)$$

It follows from the results in Diestel and Uhl [1, p. 63], that if X has the Radon-Nikodým property with respect to μ , then σ is a linear isometry of $L_{\infty}(\mu,X)$ onto $B(L_{1}(\mu,\mu),X)$. Using this fact and Theorem 3.1, we get the following characterization of the points of Gateaux and Fréchet differentiability of the norm function on $B(L_{1}(\mu,\mu),X)$.

438

THEOREM 4.1: Let X be a real Banach space and (Ω, Σ, μ) a finite measure space such that X has the Radon-Nikodým property with respect to μ . Let T $\in B(L_1(\mu,\mu),X)$ with T $\neq 0$. The norm function on $B(L_1(\mu,\mu),X)$ is Gateaux (Fréchet) differentiable at T if and only if there exists an atom A_0 for μ such that $0 < \mu(A_0) < \mu(\Omega)$, and

(i)
$$||T|| = \frac{1}{\mu(A_0)} ||T(\chi_{A_0})|| > \frac{1}{\mu(\Omega \lor A_0)} ||T(\chi_{\Omega \lor A_0})||$$
, and

(ii) $T(\chi_{A_0})$ is a point of Gateaux (Fréchet) differentiability of the norm of X

REFERENCES

- DIESTEL, J., and J.J. UHI, Jr., Vector Measures, <u>Mathematical Surveys</u>, Vol. <u>15</u>, American Mathematical Society, 1977.
- KOTHE, G., <u>Topologische linear Räum I</u>, Die Grundlehren der Math. Wissenschaften, Band 107, Springer-Verlag, Berlin, 1966. English translation: Die Grundlehren der Math. Wissenchaften, Band 159, Springer-Verlag, New York, 1969.
- LEONARD, I.E., and K.F. TAYLOR, Supremum Norm Differentiability, <u>International</u> J. Math. & Math. Sci., Vol. <u>6</u>, No. 4(1983), 705-713.
- MAZUR, S., Über konvexe Mengen in linearen normierten Räumen, <u>Studia Math</u>.
 4 (1933), 70-84.