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ABSTRACT. The generalized S,-transform of a member of f of a certain space of
generalized functions is defined as

F(x) - <f(t), K(x, t; p)> , where
o 1
Kix , t; p) = /

Cx+ )Py + vf

dy , p >3,

O0<x<o and o< t<=»,

An inversion theorem for the transform is established interpreting the convergence in
the weak distributional sense.
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1. INTRODUCTION.

Recently, extensions of classical integral transfomations to generalized
functions have camprised an active and interesting area of research. In this paper an
iterated Stieltjes transfomm (S,-transform) is extended to generalized functions by so
called direct approach, and an inversion formula is established. Note that, for
simplicity, throughout the paper the transfom of a function or generalized function
is denoted by F(x), and the actual transform is made evident by the context.

The Stieltjes transfomm of ¢(t) ¢ L (o, ») is defined as

o™ 6(t)
F(x) = fo mdt, X >0 . (1.1)

Widder [10, p. 325] studied various properties of the transform (1.1) and proved
the inversion formula '
lim [Fx)] = ¢
o N, x
for almost all x > o, where the differential operator Lk x is defined as
r

k-1 (k-1)
L F1 = S 0 re 10

Benedetto [1], Zemanian [11, p. 244] and Pandey [7] hawe given the distributional
extensions of the transfom (1 1)following different approaches.

The transfomm (l,1)is generalized as
o _ 9(t) at

_ for p >0 (x >0) . (1.2)
FOO = v 0f
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Pollard [8] defined the operator

k-1 ,p-1 ' (k-1)
. (=1) 2 (2k-1) :Ip) - 2k+p-2 (k) .
I, x o F®) = T T @D Lx Feo I @.3)
and proved the inversion formula
1lim (F(x)) = ¢(x) for almost all x > o .

K » o K0 Xi P

Pathak [8] and Erdélyi [6] extended the transform (1.2) independently and
differently to generalized functions.
The generalized iterated Stieltjes transfomm of ¢(t) ¢ L (o, ) is defined as

Fe) = S (—::'%)p r %}_80 at for p >3 (x> o0) (1.4)

The change in order of integration in (1.4) leads to so called generalized
S,-transform as

F(x)

00 00 1
Sty &t S —m——m—————
0 1] (x+y) P (Y"’t) P

00 4
= J; K(x, t; p) ¢(t) dt ; o > 4. (1.4)
Boas and Widder [2] have studied transforms (1.4) and (1.4)' in great detail for
the case p = 1 and have given corresponding inversion fornulas. Recently the author

[5] considered the classical transforms (1.4) and (1.4)' for the general p > 3 and
proved the inversion formula

lim x o (F(x)). = ¢(x) for almost all x > o (1.5)
k > o M/ ’
where Hk,x;pzl"k, x;p(x'k,X; D)°

The distributional extension of (1.4)' for p = 1 was given by the author [4].

Our main objective in this paper is to extend the transform (1.4)' to generalized
functions, and to prove the inversion formula (1.5) in the distributional sense.

The notation and the temminology of this work will follow that of [3] and [11].
I denotes the open interval (o, =) and all testing functions herein are defined on I.
Throughout the work x, t and y are variables over I. D(I) represents the space of
infinity differentiable functions defined on I having campact support. The topology
of D(I) is that which makes its dual the space D'(I) of the Schwartz distributions.

2. THE TESTING FUNCTION SPACE Sp(I) AND ITS DUAL SF')(I) .

We define Sp (I) as the oollection of all infinitely differentiable functions ¢(t)
defined on I such that
d. k
Y (@) = sw | £(8) (£ o) | <
k o<t <o dat |
foreachk = o, 1, 2, ... , where

p <
&(t)={§ ; 2§§l (2.1

p being a fixed real number greater than i.
We assign to Sp(I) the topology generated by semi-norms {Yk}, thereby making it a
countably multi-normed space. A sequence {¢n (x) } where each ¢n(x) € Sp(I) converges
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in Sp(I) to ¢(x) if Yk(¢n—¢) tends to zero as n > foreachk =0, 1, 2, ... . A
sequence {¢n(x)} is said to be a Cauchy sequence if Yk(¢m-¢n) tends to zero as m and
n approach to « independently of each other for each k = o, 1, 2, ... . It can be
seen that Sp(I) is a Fréchet space, i.e., a camwplete countably multi-normed space.
The dual space S;)(I) oconsists of all continuous linear functionals on Sp (I) and is
equipped with the usual weak topology.

It can be checked that the space D(I) is contained in SD(I) , and the topology of
D(I) is stronger than that induced on it by Sp(I) . Hence the restriction of any
fe S")(I) to D(I) is in D'(I).

It can also be checked that if f(t) is a function defined on I such that

o |£(t) .
L T o dt <=

then f(t) generates a regular generalized function on Sp (I) by
{E 0> = [T £® ¢(0) at; 6 e S (D .

3. THE GENERALIZED S, TRANSFORM OF GENERALIZED FUNCTIONS.
Let /” ; Sdy = K (x tip), forx t>o0 (p>1.
" x+ )y +b)
The generalized S;-transform of £ ¢ S(') (I) is defined as a function F(x) obtained

by applying f(t) on the kernel K(x, t; p), i.e.,
F(x) = <f(t), K(x, t; p)> , X >o0. (3.1)

In order that (3.1) be meaningful, we need show that for a fixed x > o, K(x, t; p)
is a member of the testing function space Sp(I) . We prowe this as following theorem.

THEOREM 1. For fixed x > o and p > 4, K(x, t; p) belongs to Sp(I).

PROOF. That K(x, t; p) is infinitely differentiable function of t for x > o and
p > 3, is dbvious. Now we show that Yk(K(x, t; p)) is finite for any k = o, 1, 2, ...

A simple computation shows that

4.k w Ppltsyip)
(g9 [K(x, & )] =/ 5 TR dy , where
C x+y)iy +t)
- _ k-1 i k-i . . .
L‘\(t, y: ) = T‘i=o Ciy t , Ci being certain constants depending on p.
Now for any i such that o < i < k-1,
i k-i . s 1 ]
_Z_t_r < (_X_)l(%)k'l —r >
(y+e) PT yrth Tyttt (ytt) (y+t)
Therefore,
|65 TRk, & 23] < & Sy,
U (x+y) " (y+t)
_ k-1
where A = L __ lCi .
00 1 o 1
Now sup I dy < sup S —
o<t<e * (x+y)Py+pf o<t=1l? (xy)iy+t)®

+  sup e S
l1<t<ow® (x+y)p(y+t)p
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+ s e s ¥
e L (x+y)°<y+t)°

1<tc<
1+
[-L+/ dy]+ sup [—
< swp PP © PP
o<ts1l t R x't
Therefore,
s e €D % 6 0l < A swt? [Zo+ 2]
o< t<w o<ts1xt 20-1
+ A sup S

1<t<o xPtP 20-1

< aL+d
%P 2p-1

which is bounded for fixed x > o and p > 3.

This campletes the proof of the thearem.

The next theorem gives the differentiability of the transform.

THEOREM 2. let f ¢ S£'>(I) and let F(x) denote the generalized S,-transform of f
as defined by (3.1). Then F(x) is infinitely differentiable function for x > o, and
that

(k) ak
F(x) = <f(t), —x Kix, & p)> , k=0,1, 2, ...
9x

The proof follows from the standard technique [11, p. 146], and is therefare
omitted.

In order to prove an inversion theorem for the transfomm (3.1), we need prove
following lemmas.

LEMA 1. Let Hk, x: o denote the second iterate of I'k, X: p which is defined
by (1.3). Then

© 1 2P Lx-1)12 K20-3 ko v
Hk X; P 0 (x+y)p(y+t)p (k-Z) 0 (X+y)

2k+p- 1(y+t)

PROOF. In view of successive differentiation and simple computation it follows
that

-1 k+p-2 k
Ktp-2 & (k) P
T(p)Cx g )17 = (- XL (2k+p-1) _zEL" , so that
dx 1 (x+y)p (x+y) +o-1
1 1, 2P ey KUTAE 3.2
' — 1 — -
X; P (x+y)p k!(k-2)! (x+y)2k+° 1
k+p-2 k
=4 X
(x+y)2k+p—1
Therefore,
k+p—2 k
L, x ofom—l—ﬁdy = q ey dy (3.3
e (x+y) " (y+t) O (xty) KT y+0)P

2k+p-1 dy
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Note that the differentiation under the integral sign in above integral is permissible.
Next we want to show that

~ xk+p—2yk - xk+2p-3 k+1-p 1
. — ay = ST X L (——dy, (3.4)
Lkl X; P 0 (x+y) 2k+p 1 (y+t) 9 0 (x+y) 2k+p 1 Lkl Y: P (Y+t) p

The substitution y = xu in the right hand side of the above equality leads to the
integral

k+1-p
1
foo U,_F . ( ) du
0 (l‘H.l) +p 1 Lkr xu; p ()Ql+t)p
k+1-p 1
_ @ U p-1 (___5) du
fo (1+u)§E+o-l u Ik, x; o (xutt)
k
- g — (3.5)
Ik, X; P o (l+u)2k+p-1 (xu+t)p P)
as the differentiation under the integral sign is permissible. Taking the
substitution xu = y in the last integral, (3.5) equals to
-2 k
Lk fw xk+p 2y
» X5 P o (x+y)2k+p-1(y+t)p
which is the left hand side of (3.4), establishing the equality (3.4).
Now applying the result (3.2) in the right hand side of (3.4) we get,
1
. ( . )R —
Ikr X; P Ikl X; P o (xw)p(yﬂ)p
2k-1
2 k+2p-3 k . y©
= X t S — —- dy. (3.6)
% D gy BT (g ZFOT
This campletes the proof of the lemma.
IFMA 2, If n >m 21, then
;o™ 4~ Im Lo
O ()" "™ r(n)
This is the familiar formula for the beta function.
LEMMA 3. Let the expression (3.6) be denoted by Fk(t, X; p). Then
wak(t, X; p) &x > lask +» o«
0
for all t > o. 2k-1
2 . k k+2p-3 @ ~
PROGF. [ F (t, x; p) dx =d° /  t% 2P 3 & s° X dy
L Fx 4 / PR P

2 ke 2l - 42073
"kt (y+t) 2X+o-1 ¥4 (scy) 26¥071 B

(By changing the order of integration
which is obviously permissible).

- [2"'1(2k-1): 12 T(k+20-2) T(k=p+1) T (k+p-1) T (k)
KTkk—2)T T (2k+o-1) 17 ’

(Bylem\az, for k > 2).
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Using Stirling's approximation formula, it follows that the last expression
converges to 1 as k + «,
= ryY .
LEMMA 4. Let Gk(y) = /; Fk (1, x; p) dax.

Then
lim Gk(y) = o forosy«<1l, (3.7)
k > x

and
lim Gk(y) =1 for y > 1. (3.8)
k > >

PROCF. The proof follows along the lines of [2, Lemma 8.2], and is therefore
omitted.

Now we prove the inversion theorem for the transform (3.1) which will be the main
result of the paper.

THEOREM 3 (Inversion). Let f ¢ S' (I) and let F(x) be the generalized S, transform
of f as defined by (3.1). Then for any ¢ € D(I), lim <Hk x; F(x), ¢(x)> <f ¢>

k » =
where

B oy p F®) = L o0 @ L. F).

(k-1)

=1 or 1y
2 (2k-1) T (p) (x)

- 2 . 2k+p=2, 2k+p-
: G T e

} (2k-1) , (k) ;

]

the differentiation herein referring to distributional differentiation.
PROCF. A smple camputation shows that the operator Hk %3 can be represented

2p—2 i
as P4k-2; o (x )r e
d, _ 4k 2
P4k-2; 0 (x—i) = ):i a; (p) (x: ) r 2y (p) being certain constants depending on o.

Now the theorem is proved by justifying the following steps:

(P, 53 0 700 000 ) = (F2ped) Fo, 00 )

= 1732 ped) Fl 600 ax (3.9)
0

_ 4a 2p-2

= I7Pxg) FOI] x olx) ax (3.9)"

= /7F) [P(-x% A1) %72 (%)) & (3.10)

L=

(@), Rix, £5 0) ) [Plxg -1) ¥ 400) o

= {£®), 17K, 5 o) Plx -1 P72 4001 d:}(a.u)

> {E®), 000 ), askew (=R, ). (3.12)
The step (3.9) is obvious in view of Theorem 2 and the fact that

xzo"2 P(x ) F(x)

generates a regular distribution in D'(I). The step (3.9)' is actually the same as
(3.9). The step (3.10) is obtained by applying integration by parts in (3.9)'
successively and using the fact that the limit terms in the integral vanish. The step
(3.10)' is the same as (3.10) in view of definition of F(x). That (3.10)' equals to



ITERATED STIELTJES TRANSFORM OF GENERALIZED FUNCTIONS 431

(3.11) can be proved b’ the technique of Riemann sums [11, Lemma 5.6.2, p. 148]. In
order to show that (3.!1) » (3.12) as k + », we need to prove that for any non-negative

inteter n
® 2p-2
E®) (€21 7K, o) Pexg - 6P 900) ax - ¢(6)]
+ 0 as k » » uniformly for all t > o, where £(t) is defined by (2.1).
Now,
(t3 ) 7 Kix, t; p) P(-x— -1) (x ¢(x)) ax (3.13)
0

© . .a _ 2p-2
f'; (ti) [K(x, t; p)] P( de 1) (x ¢(x)) dx

o d . — g - 20—2
.I'o (—xd—x + 1-2p) [K(x, t; p)] P( X3 1) (x $(x)) dx

LKl t5 ) (e + 2-20) [Pl -1 6P 900

(By integration by parts)
2072 4 (x)) ax

o d d
fo K(x, t; p) P(= = -1) (x& + 2=2p) (x

2p=2

= 17K, £ 0) Plxi D PP (xS 000 ax.

Hence applying (tz% ) successively on the integral in (3.13), we get for any non-
negative integer n,

(5" £ Re, £ ) P -1 620 40) ax

_ > . _.a _ 2p-2 . d.n
= fo K(x, t; p) P(xz -1) [x (xzz)" 000 ] ax

17 PG Kix, £ 0] xP72 )™ 000 ax

(By integration by parts)

T ) Kix, 5 0)] )P 060 ax

o

= [7B o KO £ 0] )" 600 ax

= J; F (&, x5 0)( $(x) dx (By Lemma 1)

Xﬁ;)
Hence by Lemma 3, as k + =, it follows that

(£ " Kix, 5 0) Plxgk -1 6272 ) ax - o (0)]

= I7F e, % 0) [ 6 - (62" s8] ax.

Denote (x%)n $(x) by ¥(x) ¢ D(I). Now it suffices to prove that
0 LT F (e, xi ) W) - p(e)] ax (3.14)

converges to zero as k » « uniformly for all t > o.

From the definition of Fk(t, X; p) as given by (3.6), it is easy to check that
Fk(t, x; p) is a homogeneous function of t and x of degree-l. The homogeneity of
Fk(t, X; p) and the substitution x = ty in the integral in (3.14) lead to

£ LTF L, x5 0) [Wixt)- y(t)] ax. (3.15)

Now breaking the integration in(3.15)into the intervals (0, 1-n), (1-n, 1+n) and
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(1+n, «), where n is a fixed positive number less than %, one can easily prove in view
of Lemma 4 and [10, Lemma 5, p. 287), that (3.15) approaches to zero as k > «
uniformly for all t > o.

This completes the proof of the theorem.

REMARK, In the present work, we have developed the entire theory for the
transform defined by (1.4)'. The extension of the transform defined by (1.4) to
generalized functions is still open. The difficulty faced in such an extension has
been indicated in [4, p. 384] for the case o = 1.
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