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ABSTRACT. The family UBC(R) of meromorphic functions of uniformly bounded characte-

ristic in a Rieman surface R is defined in terms of the Shimizu-Ahlfors characte-

ristic function. There are some natural parallels between UBC(R) and BMOA(R), the

fsmily of holomorr.hc f11nctonz of bounded mesn oscilltion in R. After a survey

some open problems are proposed in contrast with BMOA(R).
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I. INTRODUCTION

In a series ppers [19] [Pl], [3] [5] I have been studying functions

of uniformly bounded characteristic. After a survey I propose some questions which I

have been unable to answer. The adOective "unsolved" in the present title, therefore,

means more precisely "unsolved by the present author".

Let R be a Riemann surface which has the Green functions gE(z,w) with poles

w in R. As usual, each point of R is identified with its local-parametric image

in the complex plane. By D we always mean a subdomain of R such that the closure

D U 8D is compact and the boundary 8D consists of a finite number of mutually dis-

joint, analytic, smple and closed curves in R. For a point w of D we set

r exp{lim(gD(z,w) + loglz w I) },
z-w

where z w within the parametric disk of center w.

Let D
t

{z g D; gD(z,w) log(r/t)}, 0 < t < r. For f meromorphic in R

we consider the second-order differential f#(z)edxdy, where f# If’I/(l + Ill2).
The Shimizu-Ahlfors characterztc function of f is defined for a pair w, D with

wg D by
r

i- t- [f #T(D,w,f) (z)2dxdy]dt"
0 D

t



478 S. Yamashlta

T(r,f) T(D,w,f),

the usual Shimizu-Ahlfors characteristic function of f. Returning to general R we

now set

T(R,w,f) lim T(D,w,f)
w6D+E

this means that given E > 0 we may find a compact set K c R (w 6 K) such that

IT(R) T(D) < g for all D D K with the obvious change in case T(R) . It is

.nown that

T(R,w,f) n-ill f#(z)2gR(z,wldxdy w 6 R,
R

-if#Green potential of the measure (z)2dxdy in R.

If T(R,w,f) < for a w R, then T(R,w,f) < for all w R. We call f

to be of bounded characteristic, f BC BC(R) in notation, if T(R,w,f) < for

; (hence for each) w R. Thus, f BC if and only if f is Lindelfian and mero-

morphic in R in the sense of Maurice Heins.

By definition, f is of uniformly bounded characteristic, f UBC m UBC(R) in

notation, if

T(R,f) sup T(R,w,f) < .
w6R

Each meromorphic f in R can be expressed as a quotient f fl/f2 of holomorphic

functions fl and f2 with no common zero in R. Therefore,

is a finite-valued subharmonic function in R because A(z)dxdy hf#(z)2dxdy. If

f BC, then

^(w) @(w) 2TCR,w,f), w 6 R, (i)CR
A

where @R is the least harmonic majorant of in R, the smallest 8nong all the

harmonic majorants of @ in R. Therefore, the function T(R,w,f) of w is the

potential part of the F. Riesz decomposition of @ in R. Apparently, f 6 UBC if
A

and only if @R exists (namely, f BC) and the potential part is bounded in R.

In the special case R we can choose as D the non-Euclidean disks

-I
of center w 6 and the radii tanh r, 0 < r < i, so that

T((w,r),w,f) T(r,fw) (2)

where f (z) f((z + w)/(l + wz)), z 6 4.
w

It is not difficult to observe that f 6 UBC(R) fop 6 UBC(A),
where p: R is the universal covering projection. Actually, T(R,p(a),f)
T(, a,fop). This fact reduces many problems on UBC(R) to those on UBC(), yet,
in some cases, there are subtle differences; see the problem (I) below, for example.

Hitherto we have been concerned with meromorphic functions f in R. If f is
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,ot .... ’tee further, ther, we can propose cimilar considet’ati Jns on re:,!ncing f# by

If’l. Thus, beginning wiLh

T*(D,w,f) -lfrt-l[ff If’(z)12dxdy]dt,
0 D

t
we obtain T*(R,w,f) and others. If T*(R,w,f) < for a w 6 R, then f 6 H2(R),

^ in R, so that, T*(R,w,f) isthat s, II t st mono maont (Ifl>
finite for all w 6 R. The converse is also true. To observe these we remember that

if f 6 H2(R), then

)R(w) -]fl (w) 2r*(R,w,f), w e R, (3)

an analogue of (1) holds [21], [23]. The left-hand side of (3) coincides with

(If f(w) 2)^(w), w 6 R.

The obvious analogue of (2), together with (3), yields in A the identity

if

A(Ifw f()le)A(0) e*(A,f).
A ho!omorphic function f in R is called BMOA, f BMOA BMOA(R) in notation,

T*(R,f) sup T*(R,w,f) <
w6R

the notion of BMOA(R) was first introduced by Thomas A. Metzger, and the present au-

thor extended it to many-valued functions [23]. In case R A, this coincides with

the known class BMOA(A). The inclusion formula BMOA(R) c UBCA(R) is obvious,

where UBCA(R) is the family of all the holomorphic functions in UBC(R). This is a

consequence of the obvious inequality T(R,f) T*(R,f), yet a better estimate

T(R,f) 2-11og{2T*(R,f) + 1}

can be proved. There exists f UBCA(A) BMOA(A).

It is known that if f 6 BMOA(A), then f is Bloch, f B(A) in notation, in

the sense that

sup( Izl)If’(z)l <
zA

Similarly, it is known [19] that if f 6 UBC(A), then f is normal in the sense of

Olli Lehto and Kaarlo I. Virtanen, f 6 N(A) in notation, that is,

sup(l Izl2)f#(z) < .
zA

Both B(A) and N(A) can be extended to B(R) and N(R) because R has the hyper-
bolic metric. The inclusion formulae BMOA(R) c B(R) and UBC(R) c N(R) are pro-per in the case R A. (See the papers [i] [18],[22], [25], on normal meromorphic
functi6ns and the related topics.) Algebraically, BMOA(R) is closed for summation,
while UBC(R) is not; UBC resembles N at this point.

2. PROBLEMS
Now, the problems

(I) For 6 * {Izl } we let n(e,f) be the number of the roots of the

equation f in R. Suppose that there exists an integer k 0 such that

cap{a 6 *; n(a,f) k} > 0,

where "cap" denotes the elliptic capacity. Is it true that f 6 UBC(R) ? This is
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valid for R in case k O, and is valid for R A and k >: 0. Th# ,.b ..m

unsolved for k > 0 on general R. Earlier and well-known conclusion is that

Be(R).

(II) Let A(R,f) be the spherical area of the image f(R) of R, that is, the

prjection to * of the Riemannian image of R by f. Is there a constant k > 0

swh that

T(R,f) < kA(R,f) (5)

Since A(R,f) <w always holds if the sphere is considered to have the radius

1/2, the answer is "no" in general. We must therefore add the condition that A(R,f)
< ; in this case T(R,f) < is obvious; see (I). The celebrated Herbert J.

Alexander-B. A. Taylor-Joseph L. Ullman inequality teaches us that for holomorphic f,

T*(R,f) <_- (2w)-IA(R,f),
where, in this case, A*(R,f) is the Euclidean area of f(R). See the problem (VII)

below.

(III) As usual, let 0
X

be the family of open Riemann surfaces R of class 0
G

or of those which are hyperbolic with X(R) () It is easy to observe that

OUBCA c OBMOA
To prove that the inclusion is proper we make a few modifications to the argument in

[23]. Let E be a compact set of linear measure zero, yet of positive capacity, ly-

ing on the real axis. Let a E and let h(z) i/(z a), z 6 We show that

R * h(E) is of OH2 (hence of OBMOA) yet R 0UBCA First, the function

z is of UBCA(R) because it omits the set h(E) of positive capacity, so that R

g OUBCA Next, let f 6 H2(R). Then foh 6 H2( E). Since E is removable for

H2, fh, and hence f must be a constant. Therefore, R 6 OH2 The problem is to

c 0
X
cfind a reasonable X for which OUBCA

# #
OBMOA

(IV) If f UBC(R), then f UBC(RI) for each subdomain R1 of R. Consider
the converse in the special case R A. Let
0 < r < . Let f be meromorphic in A such that for each w A we may choose
0 < r < i such that f UBa((w,rl). Is it tre that f UBC(A) The correspond-
ing problem for BOA is solved in the positive in [21; the extensions to the border-
ed Riemann surfaces un&er the obvious technical conditions are now easy.

(V) Each f UBC(A) has, as a member of BC(A), the expression: f (BI/B2)Fwhere B
1

and B
2 are Blaschke products with no common zero an F is holomorphican zero-free in A. We observe that F UBC(A). Conversely suppose that F UBC(A)

for f BC(A). Is it true that f UBC(A) ? The answer is "no" 19. Actually,
there exists a nonnormal Blaschke quotient BI/B2 we have only to let F i. What
is a reasonable condition for BI/B2 UBC(AI ? An attempt is proposed in [25 in
terms of uniformly separated sequences.

(VI) For W we set

if w=O.
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The length of the arc SAN SZ(w) is (w) 2w(l lwl). A measure
is called a Carleson measure if sup (Z(w))/(w) < , where w ranges over A. It
is known that f 6 BMOA(A) if and only if 1 Izl2)If’(z)12dxdy is a Carleson
measure (in the differential form). I proved [2hi that if f 6 UBC(A), then

df(z) (i Izl2)f#(z)2dxdy
is a Carleson measure, and gave a partial answer for the converse. 17qe

df is CrZeson mesure. f 6 UBC(A) ? I note that a difficulty lies in the
fact that f#2 is not subharmonic in general.

(VII) Let UBC0(R be the family of meromorphic functions f in R such that
T(R,w,f) 0 as w 3R, namely, given e > 0 we may find a compact K c R such
that T(R,w,f) < e for w E R K this can be read in case R A, T(l,fw) 0
as lwl i the holomorphic analogue is VMOA(R) obtained on replacing T by T*
in the above. It is not difficult to prove that UBC0(R) c UBC(R) and VMOA(R)
BMOA(R). Furthermore, we see

fP UBC0(A) f 6 UBC0(R) and fop 6 VMOA(A) f 6 VMOA(R),

because the projection of a closed disk in A is compact in R. Are the

uZ{ ? We remark that the following are known:

ffAf#(z)2dxdy < f UBC0(A); and ffAIf’(z)12dxdy < f VMOA(A);

see [19] and [2]. Are the eztenson8 te for R ? Metzger, in a communication,
informed me some partial answers on the VMOA part. I do not know further information.

Finally we note that the hyperbolic analogue of UBC(R) is possible; see [21],
[26], and a forthcoming paper [27]. Let f be holomorphic and bounded, Ill < i, in

R, and let log(l If12). Then is subharmonic with Az)dxdy

hlf’(z)12/(l If(z)12)2dxdy. The analogue of (i), and others, are true on replacing

f# by the hyperbolic derivative If’I/(l If12). We note that (f,0) tanh-llfl
is the non-Euclidean hyperbolic distance of f and O, and (f,0) is subharmonic

with 2(f,0) + log h. It is a future task to find some problems on this

family.

The present article depends on the lecture on February , 1985, at Mie University,

Tsu, Mie, Japan, where slightly abstract treatment beginning with the F. Riesz decompo-

sition of subharmonic function was discussed.
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