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ABSTRACT, A Niven number is a positive integer which is divisible by its digital
sum, & discnasion of the possibility of an asymptotic formula for N(x) 1is given.
Here, N{x) denotes the number of Niven numbers less than x , A partial result
will be presented, This result will be an asymptotic formula for Nk(x) which
denotes the number of Niven numbers less than x with digital sum k ,
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1. INTRODUCTION,

In Kennedy et al [1] , the concept of a Niven number was introduced as any
positive integer n which is divisible by its digital sun s(n) . One of the
first questions about the set, N , of Niven numbers which was investigated was the
status of

o 1.1)
where N(x) denotes the number of Niven numbers less than x , (In what follows,
we will use the convention that if A is a set of integers, then A(x) will be
the number of members of A 1less than x ,) This limit, if it exists, is called
the "natural density" of the set N,

Even though this was answered in Kennedy and Cooper (2] , (the natural density
of N 1is zero), other questions demanded attention. In particular, "Can an
asymptotic formula for N(x) be determined?" That is, does there exist a function

f(x) such that

N(x
Y BRI (1.2)
If such an f(x) exists, then the usual notation to indicate this is,
N(x) ~ £(x) . (1.3)

The following notation will be used to arrive at a partial answer to this
aquestion, Tet &k be a positive Integer, Then k may be wriiten in the form

ko= 275" (1.4)
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where {t, 10) = 1 . We define:
Sy = {x : s(x) = ﬁ} . (1.5)
M= SN, (1.6)
e(k) = max {a, b} ’ (1.7)
and
e(k) = order of 10 modulo t , (1.8)

In what follows, we will develop an asymptotic formula for Nk(x) .
2. AY ASYFPTCTIC FORVULA WHEN k = 2%5°3° ,

Sinh a formula for Nk(x) can easily be found for k of the form 2a5b30
when ¢=0,1, or 2, This is given in Theoren 2,1 with the help of the

following lemma,

2%y 1, Tet k , n be integers, Then

o ns B
< w10 . (2.1)

k

PROC®, Here, the +w rare brackets denote the greatest integer Tunction and

the parem‘theses “snote a binomizl coefficient, Notr that an integer of the forr

f

Z (k) + te(k
\,‘110 N . ) (2.2)

i=0

were o, € {0, i3 Cpt ety ety = ko, e

£ = [—"——‘%&}'—ﬂ (2.3)

is a Niven number with digital sum k , But the sequence

{ci} 1:0 (2.4)

can be rearranged exactly

f+1
( (2.5)

k

ways, and each of these will determine a Niven number with digital sum k ,
Therefore, we have that (2,1) holds,
b,

. a .
THTORAK 2, Tk % o= 205 where o= %y 1, or 2, Then

5 (x) ~ (togx)f/r (2.7)

PROOF, Let n Ye the positive integer such that

10" x € 10™ (2.7

-

Tor k of the given form, ef(k) = 1 , ani it follows frow Tant,[ﬁj that
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n n-m k
5, (10"~ ~n/k! (2.9)
k
for m not dependent on n , By Lemma 1 , we have
n - e(k) n n
<& N (10N £ s, (10%) (2.10)
k
and so,
N (10" A ikt (2.11)

since each side of (2,10) 1is asymptotic to nk/k! . From

N (107 € N, (x) £ Nk(xo"”-) (2.12)

and

5, (107) ~ n*/t o (n41)¥/kt Ao w (107) (2.13)

it readily follows that
v (x) ~ (Log x)/kt (2.14)

hecause n = Elog ﬂN log x .
3, A LOWER BOUND FOR N(x) .

Tt shewld be noted here that Lemma 1 can be used to determine a lower
bound for N(x) . In fact, the search for such a lower bound led to the method
that will give us an asymptotic formula for Nk(x) . To determine this lower
bound, let k = 2" for some positive integer m . Then e(k) =1 and e(k)=nm,
and we have by Lemma 1 that

n
n £ Nn(107) . (3.1)
Thus, 2
n -
N(10%) > N m(10“) > N " 2 2=t (3.2)
2 2

eventually, That is, there exists an integer K such that

m
p(o?) > a2 1, (3.3)

for all n 2 K. Note that the rightmost inequality of (3.2) follows since

(n ; m) (3.4)
2

is a polynomial in n of degree 2", As in the proof of Theorem 2 , we can then
establish that eventually

W) 2 (g x)? L, (3.5) -
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for any integer m , Therefore, for any integer t ,

N(x) 2 (log x)* (.6)

eventually,
L,  AlT 43YMPTCTTC FORWULA FOR Nk(x) .

In what follows, for positive integers k and n , we will denote the
decimal representation of x € [0, 10%) , where [0, 10™) is the set of
nor-negative integers less than 10" , as

n -1 3
xiio . (4.1)
i=20

Kote that initial zeros will be allowed so that x will have n digits, For
each j=0,1, 2, vv., (k)-1 we also define the finite sequences B(x,j) and

T(x) by
e(k) - 1
T(x) = {Xi} . (4.2)
and
f
B(x,j) = {X (k) + 5+ ie(k)} Lo (4.3)
where

£ = {“—‘-5-88‘—] : (8.4

Using (4.2) and (4,3) , we now define the relation = on [0, 10") by:
x = y If and only if T(x) = T(y) and B(x,j) is a rearrangement of the
terms of B(y,j) for each j .

It is clear that = 1is an equivalence relation on [0, 10n) « For x a
member of [0, 10" , 1let <xp denote the equivalence class containing x ,
The following lemma will be used to help count the number of Nivern nmbers with
digital sum ¥,

a3, Tet v,y € [0, 10") . Then x =y iaplies that o(v) = s(y)
ard x = oy (vl FY,
PROCF, Since x = y , we have that T(x) = T(y) and 3{(x,) ‘s a rearrange-

ment of the texrms of E(y,j) for each 3=0,1, 2, ,o., e(k) =1 , Thus

ax)-1 a(x)-1
7(.7 = yi ("‘05)
=0 i=0
arA
a{v)-1 (3 e(k)-1 £3) (4.6)
z XT0e) + 5+ te(k) = z Telk) + 3 + telk)
j=0 i=0 j=0 i=0
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where for each j ,

; n=-e(k)~1-3

f(J) = [ e(k) ] N (4.7)

Yence, by adding corresponding sides of (4,5) and (4.6) , we have that s(x) = s(y).
Note also that for each j ,

100(K) + 3+ re(k) = 4o (k) + 5 + te(k) (4 (4.8)

for any pair of non-negative integers r and t ., Thus, x = y (mod k) ,
EMA L, Let x € [0, 10") . Then x € N if and only if <xD S N, .
PROOF, Since x € <X , it is immediate that <xD & N, implies that
¥ T~.’,ﬁ. Jonversely, suppose that y € <x> ., Then x = .~ and by Lemma 3 ,

T o= xfe

t = 5{x) =s(y) and y= x = 0 {mod k) ., Therefore, y € N, and we have that
<x> < Ny o

Note that Lemma 4 states either an equivalence class contains only Niven numbers,
or it contains only non-Niven numbers,

For a finite sequence

jul

{=},_, (®.9)

of digits, let

a, = #{1a =t} , (4.10)
for t=0,1, 2, vo., 9. Here, the # symbol denotes the cardinality of the
set, For example, if t = 3 , then d3 is the number of terms of the sequence
equal to 3 , Therefore, the number of finite sequences which can be formed by
rearranging the terms of (4,9) 1is given by the multinomial coefficient

m+1
. (4.11)

dgy gy ey dg
We will use this fact to develop an asymptotic formula for Nk(x) for any integer
k.
1zmea 5, Let x € N\ [0, 10") . Then #<x» is a polynomial in f
of degree less than or equal to k where

f= [1'—5%3'—] . (4.12)

PROOF, Note that each y € <x» may be found by rearranging the terms of
B(x,j) for various jJ's , Let

4,(N=#{0< 1 £ X3(k) + § + te(k) = "} . (k.13)
By the previous discussion, the number of such y's which can be formed by these

rearrangements is given by

f+1 ] (4.14)
do(j)v dl(j)o ceey d9(j)
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But each factor of this product is a polynomial in f of degree

idi(j) , (415)

i=1
and so, #<x» is a polynomial in f of degree

e(k)-1 9
4, (5) (®.16)
j=0 i=1

which is less than or equal to k ,
THEOREM €, Let n, k be positive integers, Then

k

Nk(io") A~ cn (%.17)

for a constant c¢ whizh depends upon ¥ ,
PROOF, Since

N (10") = Z#(x) , (4.18)
where the sum is taken over the collection of equivalence classes induced by =
on N, N (o, 10") , we have that Nk(ion) is a polynomial in f of degree
not exceeding k by Lemma 5 , Thus, all we need to do in order to show that
Nk(1o") has degree k 1is to construct a Niven number, x, with digital sum k
such that x) is a polynomial in f of degree k , Such an x 1is

k-1 _
10e(k) + 1e(k) . (®.19)
i=0
Here,
f
#<x> = ’ (u.20)
k

which is a polynomial in f of degree exactly k , Thus,

N, (10") Ncifk (4,21)

for some ¢y which is dependent on k , Since

f= [:ﬂ—‘%%'—] , (#.22)

we have that f /™ nfe(*) and therefore, Nk(ion)l“J en® where o = cl/(e(k))k .
Finally, using an argument similiar to that in the proof of Theorem 2 , we
have the following corollary,
COROLLARY 7, Let k, x be positive integers, Then

N, (x) A c(log %)k (%.23)

where c¢ depends on k ,
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Se CONCLUSION,

Thus, a partial answer concerning an asymptotic formula for N(x) has been
presented, As was shown by Theorem 2 , exact values of the constant c can be
found for certain integers k , 1In fact, given a particular k , it is indeed
possible to determine the exact form that ¢ will be, This would involve an
investigation of the partitions of k with summands less than or equal to 9,
and the number of solutions to certain dlophantine congruences, We feel that
this is a subject for future stuiy, The determination of an asymptotic formula
cor N(x) , however, will he left an an open problem,
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