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ABSTRACT. A study is made of nonlinear waves in plasmas using the formalism of a
special Lorentz transformation for a space-independent frame, S'. This special
transformation is used to transform the space-time dependent equations in a cold,
relativistic, magnetized plasma to the S' frame. Then the transformed equations are
employed to derive the expressions for the Lagrangian &and the Hamiltonian in the S'
frame. The Lagrangian and the Hamiltonian for a strong circularly polarized laser
beam have also been obtained in the S' frame. The exact form of the nonlinear
dispersion relation is derived for circularly polarized waves. Then the results for
the frequency and the wave number shifts of these waves in a cold, magnetized
relativistic plasma are obtained with some discussion on the nature of the frequency
shifts. Finally, numerical results are presented for the radiation of Nd-glass laser
in dense plasmas.
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1.  INTRODUCTION.

Using a special Lorentz transformation (SLT), the space-time dependent variables
of an electromagnetic wave in a plasma in the laboratory frame, S become space
independent in a moving frame, S' when the Tlatter frame moves with a relative
velocity cz/V, V is the group velocity of the wave. Winkles and Eldridge [1] first
employed the SLT to obtain self-consistent solutions of the relativistic Vlasov-
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Maxwell equations, and have shown that a pure transverse wave cannot exist, but the
coupled Tongitudinal field does necessarily appear. They also obtained a nonlinear
dispersion relation correct up to the squares of the field amplitude. Thus the
Lorentz transformation (LT) is found to be very useful because cf the fact that it
can transform a system of nonlinear partial differential equations for a plasme into
a set of ordinary differential equations.

Several &uthors inciuding Clemmow [2-3], Chian and Clemmow [4], Kennal and
Pellat [5], Shih [6], Decoster [7], Lee and Lerche [8-11], Clemmow and Harding [12]
have used the special Lorentz transformation to study nonlinear problems in plasma
dynamics. On the other hand, Akhiezer and Polovin [13], Wong [14], Wong and Lojko
[15] have employed similar transformation relations for the investigation of non-
linear wave propsgation in relativistic plasmas. Recently, Paul and Chakraborty
L16-177 developed the theory of transformations of nonlinear plasma equations, and
extended it tc yield the nonlinear precessional rotation of a&an elliptically
polarized, electromagnetic wave in an unmagnetized, cold, collisionless plasma in
addition to the nonlinear shifts of wave parameters.

The main purpcse of the present work is to develop the work of Winkles and
Eldridge [1. for the transformation of field variables from a laboratory inertial
{frame, S to the space independent frame, S'. Such a study is very useful for the
investigation of several nonlinear effects in plasmas. In particular, the study of
self-action effects including self-focusing, self-steepening, self-phase modulation,
self-precession is expected to be simpler by using the transformation relations for
the S' frame for several reasons. First, some of the field variables become either
constant or zero. For instance, the number density of electrons and the scalar
potential become constant, and the oscillation of the magnetic field vanishes.
Second, some nonlinear terms, which appear in the S frame, vanish in the S' frame.
Consequently, the nonlinear terms are fewer in number in the S' frame than in the S
frame.

Motivated by the above discussions, we shall use the special Lorentz transforma-
tion to transform the space-time dependent equations in a cold, relativistic, magnet-
ized plasma to the S' frame. These transformed equations are then employed to derive
the expressions for the Lagrangian and the Hamiltonian for a strong circularly
polarized laser beam in the S' frame. The exact expression for the nonlinear
dispersion relation is derived for circularly polarized waves. Then the results for

the frequency and the wave number shifts of the waves in a cold, magnetized
relativistic plasma are obtained. Some attention is given tu the nature of the

frequency shift for different intensities cf the wave and the static magnetic field.
Finally, some numerical results for the radiation of Nd-glass laser in dense plasmas
are presented.

2. BASIC EQUATIONS AND ASSUMPTIONS.

We make the following assumptions:

(i) The plasma is cold, homogeneous and stationary, and is subject to & strong
radiation with intensity less than 3x1022 watts/cmz resulting in electron velocity
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becoming relativistic. The icn motion is negligibly small in comparison with the
electron motion.

(ii) The forces due to other sources including gravitational and ponderomotive
forces are also regligible.

With these assumptions, the basic equations of plasma in the S-frame are given

by
D+ (y9)ip=-eE -2 (vxH (2.1)
DN + ye(Ny) = 0 (2.2)
vxE=-1pH (2.3)
- - C -
_ 1 4ne
Exﬁ-—EDE-T(N!) (2.4)
ToE = - dre (N-N.) (2.5)
g-H =0 (2.6)
v2 -3 )
where B =MV, y = (1 - —?) 2, D= T (2.7abc)
c

and Ni and N are the number densities of ions and electrons, m, and -e are
the rest riass anc charge of an electron, and other parameters have their usual
meanings.

3.  SPACE-INDEPENDENT FRAME AND TRANSFORMATION OF GUANTITIES 10 IT.
The Lorentz transformation from the S-frame to the S'-frame moving with a
relative velocity V0 parallel to the z-axis is given by

1 i L} 2 ) L} [} L}
t= (" + V2 /e N, 2= (2 4+t Wos x=x' 5y =y (3.1)
1 vo
where y = '—-—2—%, BO = - (3.23b)
(1-8,)

We follow Decoster [7] to obtain
8o = tanh ¥, (3.3)
and find from the relations (3.1) that
Yo T cosh Yor Byvo T sinh ¥o s

\ z'
t = t' cosh Yo * ¢ sinh ¥, (3.4abc)

) + 1 3
z = 2' cosh Yo ct' sinh Yo s

x=x',y=y"'.
It is obvious that o is the hyperbolic angle for the S'-system relative to the
S-system. The reverse transformation from S' to S 1is obtained by changing the
sign of V0 or wo’ that is,

Vo oz
t' =t cosh Wo c sinh VO s
z' =z cosh ¥, - ct sinh Y (3.5abc)
Xt =x, yt=y
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These relaticns show that the wave phase

= - : |- - (:) . '
wt-kz = (w cosh ¥, ke sinh vo)t (k cosh ¥, c sinh wo)z , (3.6)

where k and w are the constant wave number and wave frequency respectively of an
electromagnetic wave.

Following Winkles and Eldridge [1] we consider the transformation from S to
S' at the velocity V0 = kcz/w to obtain the phase velocity

Vo= w/ko= A (3.7)
Then (3.6} reduces to
wt - kz = w (1-8)% -t (3.8)

This transformaticn enables us to change the field variables from the space-time
dependent S frame to the space-independent S'-frame cf primed variables. It is to
be noted here that for transverse waves, the phase velocity V( = w|k); > ¢ and so
Vo < ¢. Therefore the velocity of S' relative to S is not unphysical.
Feplacing t' by T we can write
w'T = wt - kz
Vool (3.9ab)

2
o = w (1-8))} = w (15t = wyy
v (3.10ab)

2 )
vo = 1/(1- %7) = 1/(1- Z%—)

2
wt - kz = ¢ (1-55)3 .7

(3.11ab)
Y
3 - 3 3 ... 93
3t~ Yo 5T * 2z vV aT
Akhiezer et al. [18] considered a linear transformation rule
ol = wt - kz, V = w/k, (3.12ab)

to solve the plasma equations (2.1) to (2.6) neglecting collision effect for some
ronlinear problems. Boyd and Sandersen [19] considered the special value, V =¢
for some investigations.

The transformation of some field variables from the S-frame to the S'-frame is

given by
vy = v;/yo(l + sové/c) = (cv;)/(c cosh ¥ + v, sinh wo) .
vy = v}/yo(1+aov;/c) = (cv;)/(c cosh v + v sinh ¥ ) , (3.13abc)
v, = (v, + BOC)/(1+B°v;/C) = c(v) cosh ¥ +c sinh ¥ )/ (c cosh y  + v, sinh ¥,)
E = volEp * BOH9) = B, cosh y + H& sinh v, ,
E, = volEy - Bofly) = Ey cosh vy - H sinh v, (3.14abc)
Ez = E;
H, = YO(H; - BoE}) = (Hy cosh ¥, - E& sinh wo) (3.15abc)
”y A ; +8,E) = H; cosh vy + E sinh ¥y,

= H
H_ = Hz
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The transformation of mass is
m=m yo(l + Bovz/c) (3.16)

as may be seen frum Hughes and Young [20, pi&-19] where m (but not m) 1is the
rest mass. The momentum components are transformed into the form

= =m! [ C = m'y! = p!
Py = mv, = m'y (148 v /c) (ccosh ¥+ vy sinh ¥ ] ~ mive = P A
P = = y' = '
y Sy = vy Py , U (3.17abc)
c(v! cosh ¥_+ c sinh v )
= =m' ' Z 0 0
P, =mv, = m'y (14Byv,/c) (ccosh ¥+ v sinh ¥ ]
=Py vy tmicBiyy = vy (Py +mVoy') /
Gefining now the momentum like quantities q and q' as
2
a= M2 Z+pht g = 2+ pd), (3.18ab)
2,2 22
mV' m_c
q|2 = m2C2 + 0 0 2.2 (3.19)

= =m'"c
) (v
where V' is the velocity of the S'-frame relative to the rest system So. So we
have

O
"

P, cosh ¥ +q' sinh ¥ (3.20)

o
n

=m' 0 =m' '
mc =m yoc(1+6°vz/c) m yo(c + Bovz)

' [ =q' '
yo(q + PzBo) q' cosh ¥ + P, sinh Y, (3.21)
If N, N', N0 are the symbols for the number density in the three systems S, S', S
respectively, then again following Hughes and Young [20] we get

0

N = N (v (3.22)
S0 we can write
N = m N /(1) = N (3.23)
Similarly, we can also write
mN=mN (3.24)
NMo_om_mc_g' (3.25)

Since A and ¢ form a four vector (A is vector potential and ¢ is the scalar
potential), and we can write

Az = Yo(Aé+5o¢') = A% cosh Yot ¢' sinh L A = &i}

¢ = Yo(BoAé +¢') = ¢' cosh W°+ A; sinh Yo (3.26ab)
The reverse transformation is obtained by replacing Y by Y,
Equation (3.21) gives
N, = N' sech ¥' = constant (3.27)

and (3.25) can be written as

N = N'g/q" = N, q cosh ¥'/{q ccsh (‘i"-\l')—Pz sinh (¥'-¥)} (3.28)
Here Y is the hyperbnlic angle for the S-system relative to the So frame and V¥'
is the same for the S' system. Therefore, in the S-system, the number density is
not constant, and the electron and ion densities are not necessarily equal.



604 S. N. PAUL, B. CHAKRABORTY AND L. DEBNATH

4,  TRANSFORMATIOM CF FIELD EQUATIONS TC THE SPACE INDEPENDENT FRAME

Using the transfcrmation relations of section 3, we obtain from (2.1) for the
x-component

v
Yoll- 75) 37 = {rgV=V* (vg-1)vi} (57)/V(1+8 v3/c)

= -eyo(E;+BOH§) + (e/c)(v;+VO)YO(H'+BOE;)/(1+B°v%/c) - ev}H;/yoc(l+Bov£/c)

Yy
B! - - J ' - Z - [ ' '
. Boc By Ly V=V +(y -1)v ) ) eHy{Vo(yO 1)+(8,v,-1)v, ) eV H, (4.1)
c(1+80v5/c) c(1+60v;/c) yoc(1+eov;167
This equation can be simplified to the form
aP; eH' V ( ) Vv;
3 S VR e e AP M ;
o o Yo {YOV-V°+(Y0-1)VZ}
.oV H
Yy cly V-V +{y _-T)v } (4.2)
oo 'o 0'o0 2
Similarly from (2.1) the equation for P& becomes
P! eh' V Vv!
L = - eE! + X [V (v -1) - z ]
aT y = ey V-VJ |'0o' "o 3 _ 1Yyt
o o Yo {YOV V°+(v0 l)vz}
' 2‘: Vé-k( VI (4.3)
Yot Yo Yo" Yo z
Now, the equation for P, obtained from (2.1) is
aPZ+ mV o' EVIEZ * Bo(é ) v (8 Xﬂ')z:’ (4.4)
37  "o'o oT YO{YOV -V, (Yo - 1)»1}
where
ot 2 av! 36!
A T e G G TS A C R (4.5)
c c
Since B = B/(P2 + micz)*, and P2+ mgc2 = mﬁczvz, we obtain
8 | o0 P(P-2p/aT)
T meyaT T T 323 (4.6)
0 mc Y
Therefore,
ag'  (P'-ap'/aT)  P'é(predp'/al) . w2 e
(B'om) = —= - = p'e 4.7
< a7 (mocv')z (mocy')4 m§c27'4 T
Hence
P! v P! eV{E! + 8 (B'E') + (B'xH') }
STE * % (B 57) = — %Y v = R 4:17;'}2 (4.8)
m.C Y' oo 5} 0 z

Multiplying (4.2) by P (4.3) by
after simplification

P; and (4.8) by P; and then adding, we get
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[ 1 ) 1 ) 1] 2
(Pt - 3P )= eV(PxEx + nyy){yo(yov - VO) + vz(yo Yt 1)}
1\ Nl
- AT YO(V + vz;{YOV - V0 + Tyo - l)vz}
) eVP;E;
R e R CoE Y

2000ty s 2 4 3
eVE(P xH" ) tv (V- y Vo + v V) + Wy (v V- V)

3 [ ]
YoV + vy V= VYV - Vo + (v - Dvy)

eV(P'xv') H,

BTN I R CAS VIS (4.9)
Therefore, the equation for Pé becomes
aPé . eVEz
T IBRSAER N (yo - 1) vz}
1 (] l ) 2 7 2
. e(PiES + Exfy){V(YoV =V - Vo) H v (Vlvg -y + 1) - VD)
1 - T - - T
moYoY VO(V vzl{yoV VO + (yo 1)VZ}
. . eVPZEZ
mYeY VolvgV = Vo * (yg - v}
Vot vy 6 .5 4 2
. e(P'xH )ZV 1vz(V + Vyo - VOYO) + YO(YOVO- Vo) }
5 ' )
cmov v Vo (V + v )y gV - VvV = Vo + vy - 1)y}
eVV (P'xv')_H!
+— o- - z2 (4.10)
mC oYY {yov - Vo + (yo - l)vz}
The equation of continuity (2.2) assumes the form
2 (N Yo a Ny S8y *Bg)
Yo 57(’;4) v 57{;71 . TT—:—EZEET} =0 (4.11)
It can be written as
. N1 -8S
Yo 3_1‘ [_—_——B ] = 0. (4.12)
0
And so, N' = No’ where N0 is a constant. (4.13)
Equation for H;, obtained from (2.3), is given by
1 a 1 ] )
- 7 3TEy - M) = g Tplk, - 8 E) (4.19)
It can bhe written as
aH!
1 X _
(EE - BO)ET_ =0 (4.15)
So, H, = constant (4.16)
And the equation for H;, obtained from equation (2.3), is given by
RV
3 \ 0
Er(1 - 2 ' AT
STlE(L - ) + Hote, - D1 = 0 (4.17)
Hence, H' = constant
: (4.18)

The x-component of equation (2.4) is
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2 2 ,
Y Y 4neN v!
-7 Bplhy ¢ B Ey) = - g Syl 4 B + — (4.19)
vV ot c 3T x oy cy + B8,
oF! 4neN v!
or X = —n-——ry° X . (4.20)
T Yol * BoBy
Similarly, the y- and z-components of equation (2.4) become
E;i 4neN°v'
-y (4.21)
8 Toll + BBy
and
3F, . 4neN0(vé + Vo) (2.22)
BN 6 BEINTED B :
T Yoll + kb,
wWe shall now expand 1/(1 + sos;) in powers of p . Since v, = 0 when
V, T Vo We put v, = -Vo + dvé to avoid a physical impossibi1ity. Therefore,
sV
1 2 2,72 z2,2 -
v = v [l - vy (=7) + ( ) H (4.23)
Tivesn " Y [1-y
Yo 1+ BOBZ 0 o'V
So, the veiocity components become
sv! sv!
-yt 2 4 4 2,2 b
Ve © VXYO[I - YO(T) + YO(T) L (4.24)
6V' ov.!
- 4,”"z\2_
v, = Yoll - Yo - —2) + Yol -] (4.25)
_ 2., 2,82, . 4,822
v, = YOGVZ[I - Yo(—v—) + Yo(—v') -...] (4.26)

where v; and v; are the first order velocity components in the directions paral-
lel to OX and OY respectively, cvé is the second order velocity component along
-0Z in the S'-frame.

The continuity equation (2.2) gives

N = N + 8N' =N /(1 - yodv /) (4.27)

and so SN' = oyocv /N (4.28)

vhere No is a constant, and higher powers of 6v£ are reglected.
Therefore, equations (4.20)-(4.22) for the electric field components become

L] ) L] ) 2
aEx 4 4ne (h + SN )v Y m

= ooe .,
T TIE 8‘7 "Te Yxo (4.29)
aF! yomow
STX —e—B V‘y » (4.30)
3E' YoM
ST— ——E GV N (4.31)

where wy = (4uN°e2/mo)i, w. being the electron plasma frequency. Again from the
transformation relations (3.14abc) and (3.15abc), neglecting the transverse magnetic
field components in the S'-frame, we obtain from the transfcrmation relations

Ex = yoE;, Ey E} E = E; (4.32abc)

Hx = -Y,B Ey = -y OBOEX’ HZ = HZ = HO (4.33abc)
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5.  THE LACRANGIAN AND HAMILTONIAN IN THE SPACE-INDEPENDENT FRAME
Following Lendau and Lifshitz [21], the expressions for the Lagrangian and
Hamiltonian in plasmas in the labcratory frame are given by

Z 2 2
Y U Al SO 2, E°-H
£ = -NOUHOC (i - Wi + E(é . !) + ey + 5 (5.1)
mO- € pn
t = N - = - "
k I‘\O\_/[*(—-—vz—\—s c /_\_[ £ (5.2)
1 =5/
c2
where the vector and scalar potentials A and ¢ respectively are defined by
H=curl A (5.3)
1 22
E=-ctt W (5.4)
- = . L1ag
div. A = - c 5t (5.5)

The Lorentz gauge condition (5.5), when transformed to the space-independent frame,
gives
2
R R I H A ) (5.6)
VoaT Mz T Bo? c ol 0z :
Since the terms containing Aé cancel from both sides, and since a constant poten-
tiai is neglected here, it turns out that

¢' = 0. (5.7)
Therefore, in the S'-frame the Lagrangien and the Hamiltonian are found to be
Y2 Y2 Y4
- 2 o 2.2 To v, fo 20 (O
' o= ~No[moc {1 - c2(v+v_+ YobVy (1l - VooVt V2 8, S R

2 4
Y Y
+eyo(l - VQ avé +v-% 6v£2 -...){%(A+v_+ A_v+) + ygkéévé} +

-

4

Y
rev 8 AL] + g2l - B2)(EE) + E)2 (5.8)
Y2 Y2 Y4
H' = No[mocz{l - Z%(v+v_ + ygévéz)(l - VQ v, * ;% évéz-...)z}_% + ey BoA ]
”cza 2 2

o (1 - eo)(E+E_) - g (5.9)

where A, = Al 2 iA}, E, = E; + iE;, v, st iv&.

For a circularly polarized laser beam, we put
£, =acose, E; =asine, £, =0 (5.10abc)

where a is the constant amplitude cf the wave, and 6 = w;T, the subscripts + and

- signs indicate the left and right circular polarized components respectively. In
- +i6

this case, &, = ae” ~, and the solution of the plasma field equaticns (3.1abcd)-

(3.9ab; is exact.
For a circularly polarized wave (5.8) and (5.9) reduce to

ezazm'2 i 2.2 y2a2
£ = N Incf(1 - og) + S0 (1 - &) (5.11)
wm C m

po o“p
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4 2 e232w;2 -3 Yg a2 CZ
= No[moc (1 - 777 ) ] - s (1 - —?) (5.12)
w. m-c v
po
The results for the Lagrangian and Hamiltonian in the laboratory inertial frame are
obtained simply by changing w! to /Y in (5.11) and (5.12), where
2 _ 2,2 22 = =0
Yo“":/("’t'kzc ).
Following the method of averaged Lagrangian developed by Whitham [22-257 and
extended by Dysthe [26], Das and Sihi [27-29] and others, the Lagrangian derived in

this section can be used for finding the nonlinear effects including the shifts cf

wave parameter in the space-independent frame and then in the laboratory frame with
the help of the transformation relations in Section 3.

6.  NONLINEAR DISPERSIGN RELATION
For a purely transverse circularly polarized wave,

E, = a exp(xi6) and Ej = 0. (6.1)
So, we have
Pé =0, VZ = -VO + GV; = -VO (6-2)
From (4.1}, (4.3), (2.7abc), (3.13abc), and (3.17abc), we obtain
. ieVv H,
P! = el : (6.3)
: - YiC(V - V)
2
. Y muw
B = 2Ry, (6.4)
) ' Vﬁ (vy +v!) )
Pt = movt/[l - ? + —-—CZ—] (6.5)
where P; = P; 2 iP}, E; = E; + iE}, v; = v; + iv}. and a dot denotes the derivative

with respect to time.

Using (6.1) in (6.3) to (6.5), the nonlinear dispersion relation for the left
and right circular polarization components in the space-independent frame can be
obtained

w'é ) Ve !
——2—2-—2-—‘ - wt ot 1—' =0, (6.6)
e“a“w} H P YO(V - Vo)
- wlmzc2
po

where 90 = eHo/moc. Replacing w; by wt/Yo’ the dispersion relation (6.6) in the
laboratory frame becomes

2 2.2
w, - kic
2 Wl - KBAHt -0 . (6.7)
22,2 22|} P oo #
e“a®(uw} - kic%)
1- + +
- 372
wpMoC
In the absence of magnetic field, (6.7) becomes
w? - k%2 - wg(l + ug)'* (6.8)

where @ is the dimensionless amplitude parameter ea/mowc. It is to be mentioned
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that (6.8) is identical to the results of Paul and Chakraborty [16-17]. Expanding
the right-hand side of (6.8) in power of ag and retaining only the first two terms
of binomial expansion we obtain the results of Arons and Max [30] if their symbols
are adopted.

7.  FREQUENCY AND WAVE NUMBEK SHIFT OF AN ELECTROMAGNETIC WAVE

Nonlirearity in plasmas produces many interesting results in the medium and on
the waves. Electrcomagnetic wave would have shifts in the wave parameters (wave
number and frequency) as a result of nonlinear interactions in plasmas [31-41]. We
shall derive here the expressions for the shifts of frequency and wave number o7 a
circularly polarized wave propagating through a cold, magnetized relativistic plasma.

(a) Frequency Shifts:
For the temporal evolution problem, we can write

k, =k and w, = + du, (7.1)
where dw, are the increments of frequencies of the left and right circular polar-
ization components of the wave. Therefore, neglecting higher powers of duw, , we

find that frequency shifts of the two polarization components are

22 2
2 uwl_ﬂo fg
w11+ 7 Ve T2
‘w lm1
bw, = - P“ (7.2)
) 0 ¢ - Qo
Zwi1+—7+w—-
w 1
P
2 0% 22
where wy = w, - kc". (7.3)
(b) Wave number shifts:
In the spatial evolution problem, we write
w, = w, k, = kO + sk, (7.4)

where &k, are the increments of wave numbers of the left and right circular polar-
ization cBmponents of the wave. Therefore, neglecting higher powers of &k the
expressions for the wave number shift of the two polarization components can be
derived as

.
+9

2 uzmg_ﬂo w2

wpll+ —= % 2 -5

mp 2 ws,
8k, = - v (7.5)

o, , %% %

2k_CI+-7+m—

w 2

P
2 2 o2

where wy = W - k1 co. (7.6)

8.  DISCUSSIONS AND CONCLUSIONS
From (7.2) and(7.5) it is observed that the intensity of the wave and static
magnetic field have important roles to create the shifts of the wave parameters. It
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is seen that (i) when w > k¢ and w = 90, the 2ch components of the wave ?o have
a frequency shift when its intensity o # V2 (wp/w ), but the frequency shifts of
the RCP  components exist only when a is greater or less than /Z(wp/w)x
(wzlw2 - 2)%, and (ii) when w > k¢ and w = w_, the frequency shift of LCP
cozponents becuine nonzero when o # (ﬂo/w)é, but the RCP components always have
frequency shifts for all possible values of a. The nature of the frequency shifts
0% RCP and LCF components of the electromagnetic wave can be well understood from
Table 1 and Figures 1-3.

dwy dw-

2

A "2
o 2wp]w? i (%P?"z)

—_— =X EE—— °:T\\\\\\\~\\~_,.

. : p
Fig. 1 Frequency shift of the LCP Fig. 2 Frequency shift of the RC
component V.S. Intensity of the wave

|

|
: |
| ]
| |
| |
1 ]
| |
| |
1 |
| [

component V.S. Intensity of the wave

(when w > k¢ and ¢ = ﬁo)’ {wheri w > k¢ and = Qo),
|
|
|
dws :
|
|
|
|
] 1/
' o= w)
—_—

Fig. 3  Frequency shift of the LCP
component V.S. Intensity of the wave
(when y > k¢ and o = mp).

9. NUMERICAL ESTIMATION

For the radiations of Nd-glass laser having wave length = 1.06 um, frequency =
1.78 x 1015 c¢/s, Power = 1016 watts/cm2 (which is less than the threshold power to
generate self-action effects) passing through a dense plasma (NO = 1020/c.c.), the
trequency shift of LCP components = 1.01 x 1015 ¢/s and that of RCP components =
-8.6 x 1014c/s when w = Qo’ i.e., Ho = 108 gauss.

Under the situation w = w_, the frequency shift of the LCP and RCP compo-
nents become 4.42 x 1012 c/s and 4,31 x 1012 ¢/s respectively when Ho = 105 gauss.
For magnetic field = 106 gauss, the frequency shift of the LCP and RCP components
become 3.48 x 1012 ¢/s and 5.22 «x 1012 c/s respectively.
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CLOSING REMARKS

10.

Transformation of field variabies from the laboratory frame to the space-

-

cordition required for this transformation, i.e., Vo = kc/w = ¢/V is not satis-

fiec for two or more waves interacting in plasma.

~

independent frame is applicable only for a single electromagnetic wave because the

To derive the results for the shifts of wave parameters with the help of special

Lorentz

the space-

to

should be transformed

variables

fiela

ransformation,

+
%
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independent frame at the beginning, and then one should proceed with the calculation.

1f equations are solved in the laboratory frame before transforming them to the space

independent frame and transformations are used only in the subsequent steps, correct

results would not appear in the space-independent frame.

11.

L10]

(113
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