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ABSTRACT. A study is made of pot;linear waves in plasmas using the formalism of a

special Lorentz transformation for a space-independent frame, S’. This special

transformation is used to transform the space-time dependent equations in a cold,

relativistic, magnetized plasma to the S’ frame. Then the transformed equations are

employed to derive the expressions for the Lagrangian and the Hamiltonian in the S’

frame. The Lagrengian and the llamiltonian for a strong circularly polarized laser

beam have also been obtained in the S’ frame. The exact form of the nonlinear

dispersion ’elation is derived for circularly polarized waves. Then the results for

the frequency and the wave number shifts of these waves in a cold, magnetized

relativistic plasma are obtained with some Discussion on the nature of the frequency

shifts. Finally, numerical results are presented for the radiation of Nd-glass laser

in dense plasmas.
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1. INTR0UCTION.

Using a special Lorentz transformation (SLT), the space-time dependent variables

of at, electromagnetic wave in a plasma in the laboratory frame, S become space

independent in a moving frame, S’ when the latter frame moves with a relative

velocity c2/V, V is the group velocity of the wave. Winkles and Eldridge [I] first

emplo)ed the SLT to obtain self-consistent solutions of the relativistic Vlasov-



600 S. N. PAUL, B. CHAKRABORTY AND L. DEBNATH

Maxwell equations, and have shown that a pure transverse wave cannot exist, but the

coupled longitudinal field does necessarily appear. They also obtained a nonllnear

dispersion relation correct up to the squares of the field amplitude. Thus the

Lorentz transformation (LT) is found to be very useful because of the fact tF.at it

can transform a system of nonlinear partial differential equations for a plasma into

a set of ordilary differential equations.

everal eLthors including Clemmow [2-3], Chiap. and Clemmow [4], Kennal and

Pellat [5], Shih [6], Decoster [7], Lee and Lerche [8-11], Clemmow and Harding [12]
halve used the special Lorentz transformation to study nonlinear problems in plasma

dynamics. On the other hand, Akhiezer and Polovin [13], Wong [14], Wong and Lojko

[15] have employed sir.ilar transformation relations for the investigation of non-

linear wave prepagation in relativistic plasmas. Recently, Paul and Chakraborty

L16-17 developed the theory of transformations of nonlinear plasma equations, and

xtended it tc yield the nonlinear precessional rotation of an elliptlcally

polarized, electromagnetic wave in an unmagnetized, cold, collisiunless plasma in

addition to the nonlinear shifts of wave parameters.

The main purpose of the present work is to develop the work of Winkles and

Eldridge [i] for the transformation of field variables from a laboratory inertial

rame, S to the space independent frame, S’. Such a study is very useful for the

investigation of several nor, linear effects in plasmas. In particular, the study of

self-action effects including self-focusing, self-steepening, self-phase modulation,

self-precession is expected to be simpler by using the transformation relations for

the S’ frame for several reasons. First, some of the field variables become either

constant or zero. For instance, the number density of electrons and the scalar

potential become constant, and the oscillation of the magnetic field vanishes.

Second, some nonlinedr terms, which appear in the S frame, vanish in the S’ frame.

Consequently, tt, nonlinear terms are fewer in number in the S’ frame than in the S

frame.

Notivated by the above discussions, we shall use the special Lorentz transforma-

tion to transform the space-time dependent equations in a cold, relativistic, magnet-

ized plasma to the S’ frame. These transformed equations are then employed to derive

the expressions for the Lagrangian and the Hamiltonian for a strong circularly

polarized laser beam in the S’ frame. The exact expression for the nonlinear

dispersion relation is derived for circularly polarized waves. Then the results for

the frequency and the wave number shifts of the waves in a cold, magnetized
relativistic plasma are obtained. Some attention is given tu the nature of the

frequency shift for different intensities of the wave and the static magnetic field.

Finally, some numerical results for the radiation of Nd-glass laser in dense plasmas

are presented.

2. BASIC EQUATIONS AND ASSUMPTIONS.

We make the following assumptions"

(i) The plasma is cold, homogeneous and stationary, and is subject to a strong

radiation with intensity less than 3x1022 watts/cm2 resulting in electron velocity



NONLINEAR WAVE PROCESSES IN PLASMAS USING LORENTZ TRANSFORMATION 601

becoming relativistic. The icn motion is negligibly small in comparison with the
electron motion.

(ii) The forces due to other sources including gravitational and ponderomotive
forces are also negligible.

With these assumptions, the basic equations of plasma in the S-frame are given
by

e[D + (v_.v_)j -eE_ E (v_ H_) (2.1)

DN + _v.(Nv_) 0 (2.2)

v_ x E_ -D H_ (2.3)

4e(Nv) (2.4)!xH_: -D _E-
_v.E_ 4e (N-Ni) (2.5)

v.H 0 (2.6)

2
where moY_V y (I , D _= (2.7abc)

c

and N d,d N are the umber densities of ions and electrons, m and -e are
the rest ,ss and charge of an electron, and other parameters have their usual
meanings.

3. SPACE-INDEPENDENT FRAME AND TRANSFORMATION OF GUANTITIES lO IT.
The Lorentz transfornmtion from the S-frame to the S’-frame moving with a

relative velocity V parallel to the z-axis is given by

t (t’ + VoZ’/C2)o z (z’ + Vot’)Yo, x x’ y y’ (3.1)

Vowhere y 2 1/2’ 6o - (3.2ab)
(-Bo)

We follow Decoster [7] to obtain

Bo tanh o
and find from the relations (3.1) that

Yo cosh Vo’ oo sinh Vo
zt t’ cosh o + -sinh Vo

z z’ cosh o + ct’ sinh o
x ’, y y’

(3.3)

(3.4abc)

It is obvious that v is the hyperbolic angle for the S’-system relative to the
o

S-system. The reverse transformation from S’ to S is obtained by changing the

sign of Vo or Vo’ that is,

zt’ t cosh o s inh o
z’ z cos, h o ct s inh ’o

x’ x,y =y

(3.5abc)
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These relations show that the wave phase

sinh o)Z’ (3 6)t-kz ( cosh o kc sinh o)t -(k cosh o c

where k and are the constant wave number and wave frequency respectively of an

electromagnetic wave.
Followir,g Winkles and Eldridge [1] we consider the transformation from S to

S’ at the velocity Vo kc2/ to obtain the phase velocity

V /k c2/Vo (3.7)

Then (3.6) reduces to

t kz (1-Bo)2 t’ (3.8)

This transformation enables us to change the field variables from the spac-time

aependent S frame to the space-independe,t S’-frame of primed variables. It is to
be noted here that for transverse waves, the phase velocity V( Ik) > c and so

< c Therefore the velocity of S’ relative io S is not unphysical.V
0

Feplacing t’ by T we can write

T t kz

Vz z v v ._T_T
Yo @t

c 2(1-o)1/2 (1-V-E){
2

2 c2 Vo
Xo 1/(1- -2) 1/( I- T)

c

c 2t kz (1--) T
V"

8 Yo 8
at- o ’ -F

IYo

(3.9ab)

(3.10ab)

(3.1lab)

9iven by

vx Vx/o(l’ + BoV/C) (cv’)/(Cx cosh vo + vz sinh o
Vy Vy/Yo(l+BoV/C) (cv)/(c cosh o+ vz sinh o (3.13abc)

v z (v z’ + BoC)/(l+^v/c)u c(V’z cosh o + c sinh o)/(c cosh o + Vz sinh o
Ex Yo (E’x + BoH)) E’x cosh o + H’y sinh o
[y o ([’y go’)x [’y cosh o sinh o (3 14abc)

Hx Yo (H’x goEy’) (H’x cosh o E’y snh o (3.15abc)

H Yo(H’ + BoE) H’ cosh o + E’ sinh oy y y x

H H’z z

Akhiezer et l. [18] considered a linear transfomtion rule

T t kz, V u/k, (3.12ab)

to solve the plasma equations (2.1) to (2.6) neglecting collision effect for some

nonlinear problems. Boyd and Sandersen [19] considered the special value, V c

for some investigations.

The transformation of some field variables from the S-frame to the S’-frame is
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The transformation of ,ass is

m m’Yo(1 + oVz/C) (3.16)

as may be seen from Hughes and Young [20, pi8-19] where mo (but not m) is the
rest mass. The momentum colr,ponents are transformed into the form

Px mVx m’o (I+BoV/C) (c cosh $ v’ m"’
o z sinh o Vx P’

c(v’z cosh o + c sinh VoPz mVz m Yo(1BoV’z/C) (:. Eosh o + v sinh 40
p, + (P + moVoY’)z Yo m CBoY0 Yo

(3.17abc)

Defining now the momentum like quantities q and q’ as

q (m c 2 + p2)1/2, q’ (m c2 + p,2)1/2 (3.18ab)

2mV ’2 mc 2c2q,2 moC22 + m’ (3.19)(l-V’2/c 2) (l-V’2/c2)
where V’ is the velocity of the S’-/rame relative to the rest system S

O
So we

have

Pz P’z cosh o + q’ sinh o (3.20)

q mc m’YoC(l+BoVz/C) m Yo(C + BoVz)
yo(q + P’Bo) q’ cosh + P sinh v

z o o

If t, N’, No are the symbols for the number density in the three systems S, S’, S
O

respectively, then again following Hughes and Young [20] we get

N’ No/(l-V’/c) (3.22)

so we can write

moN’ moNo/(1-V’C/c)1/2 n,’ No (3.23)

Similarly, we can also write

moN m N
O

(3.24)

I’ m’ m’c q’ (3.25)N m mc q

Since A_ and form a four vector (_A is vector potential and is the scalar

potential), and we can write

Az Yo(Az+o A’z cosh o/ ’ sinh o’ A_+/- +/-

yo(BoA’z + ’ cosh Vo+ A’z sinh o (3.26ab)

The reverse transformation is obtained by replacing o by -o
Equation (3.21) gives

N N’ sech V’ constant (3.27)
o

and (3.25) cdn be written as

N N’q/q’ N
O

q cosh ’/{q cosh (v’-v)-Pz sinh (T’-v)} (3.28)

Here ? is the hyperbolic angle for the S-system relative to the S
O

frame and v’

is the same for the S’ system. Therefore, in the S-system, the number density is

not cor,stant, and the electron ar.d ion densities are not necessarily equal.
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4. TRANSFORMATION CF FIELD EQUATIONS TO THE SPACE INDEPENDENT FRAME
Using the transformation relations of section 3, we obtain from (2.1) for the

x-component
v’ aP’x aP’

Yo(- v1 Tt- YoV-Vo+ (o-)’ (rt)/v(+o’/)
-eYo(E+BoH) + (e/c) (V’z+Vo )Yo(H+oE’)/(l+oV’z/C)x -v’H’yz/YoC( l+BoVz’/c)

Boc E x’ YoV-Vo+(Yo. l)V’}z eH>,{Vo(Yo-I)+( BYo-l)v}’ e V’y H’z (4.1)
" C)c +B’o v.’/’c c(I+Bov’/C)z oC +oVz/

This equation can be simplified to the form

Px eE’ Y Vo {YoV -l)v}aT x c-YoV-Vo (Y-l) Yo Vo+(Yo
eV v’ H’

YoC{ynV_ z
,} (4.2)

-Vo+(yo 1)vz

Similarly from (2 1) the equation for P’ becomesy

_Oi eE + x Vo(Yo_l)DT YoV-Vo’)
Yo {YoV-Vo+(Yo 1)v}

eV v’ H’+ x z
YoC{YoV_Vo+(Yo_ l)V,z}

(4.3)

Now the equation for P’ obtained from (2 I) is
Z

+ Bo(B"E’) + (.B’xH’)zaP @Y’ eV{Ez -,} (4.4)@--+ mV- Yo{YoV Vo + (Yo 1)z
where

)Y’ 1/2(1 v’2

__
av_’__) 3/2 (_ )(v_,. B-T y’3(B_’--- (4.5)

c c

Since B p/(p2_ + m2oC2)1/2, ar,d p2 + m2oc2 mc2y2, we obtain

aB_ aP. P_(_P.aP_/aT)
(4.6)-T moC, T m-3oC2,3

Therefore,

aB’ (P’-aP’/T) P’(P’.aP_’/aT) 1
(’"@--)-

(moCY, )2 (moC )4 moc22y,’4
(P_----) (4.7)

Hence

aP’ V aP’ eV{ + o("E’) + (B’xH’) z}
+ (p’ 3-) Ez (4.8)

moC2Y’ Yo{YoV Vo + (o l)Vz}

Multiplying (4 2) by P’ (4 3) by P’ and (4.8) by P’ and then adding, we get
x’ y z

after simplification
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eV(PE + P’E’yY)(Yo(Yov Vo) + Vz’(Yo2 Yo + 1)}

Yo (v + Vz’l{YoV Vo + (Yo "llVz}
eVP’E’z z

+ (Yo )v}Xo{YoV Vo

eV2(-P’xH- )z z YoVo YoV) + VYo’v’(V 2 + 4 3(yoV_ Vo)}
3 v’oc(v+ z)(Yov-vo){Yov-vo+ (Yo- )V’z}

eV(P’xv’_ )zHz
CXo{oV Vo + (Yo 1)Vz}

Therefore, the equation for P’ becomesz
aP’ eVE’z z
@T yo{Yov V

0
+ (YG I) V z}

2

+ e(P’E’x.Lx + F"E’){V(yVyY YoVo Vo) + Vz(V(Yo Yo + 1) Vo )}

+-(Yo _)v’}moYoY Vo(’V Vz){YoV Vo
eVP’E’z z

3 + (Yo 1) ’}moYoY’Vo{YoV Vo vz
6 5 4 Vo)2e(P_’xH_ )zV2{Vz(V + Vyo oYo + yo(YoVo

5 ,Vo(V + ’)(Yov Vo){YoV Vo + (Yo 1)v}c moYoY vz

eVVo(P’xv’) H’

moC3YoY’{Yov Vo (Yo 1)Vz}
The equation of continuity (2.2) assumes the form

YoF(E’) Yo ,N’y c( + o
y V-- B--y (I + 60Bz’’)} 0

It can be written as

B
N’ (I

Yo So
] O.

And so, N’ No, where N
O

is a constant.

Equation for H’ obtained from (2 3) is given by
X

iB 1@ E’V B-T(Ey oHx -T(Hx So y)
It can he written as

So So)- 0

So, H’ constantx
And the equation for H, obtained from equation (2.3), is given by

rE, oV
@-rL X( ___) + H,(B V

y -)] =0
Hence, H’ constantYThe x-component of equation (2.4) is

(4.9)

(4.zo)

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)
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2 2 4eNov,YO ) YO ) + + X
V’- B-r(Hy + BoEr) -T(Ex BoHy) cYo(1 + oB) (4.19)

@E’ 4eN v’x o x (4.20)Or yo (I’ + oBz
Similarly, the y- and z-components of equation (2.4) become

4eNov
aT ’o (1 + BoBz

and

(4.21)

BE’ 4eNo(V’ / Vo)
B-T- Yo + ,oz (4.22)

We shall now expand I/(I + goz) in powers of gz Since vz 0 when

v z -vo, we put vz -Vo
+ 6v to avoid a physical impossibility, lherefore,

2 2 6Vz 46v2_
Yo(l + .BoBz Yo[l yo(-V- + yo--/ ... (4 23)

So, the veioc! ty components become

2;v’z v 2vx VxYo[l Yo(T + yo4(T ...] (4.24)

22(T + y(TVy Vyyo[1 Yo

2 6v, 42-v,[1 yO(-V-) + yo(--V-) 2
Vz YO Z

...] (4.25)

...] (4.26)

where v’ and v’ are the first order velocity components in the directions paral-x y
v’ is the second order velocity component alonglel to OX and OY respectively 6 z

-OZ in the S’-frame.

The continuity equation (2.2) gives

N N
O

+ 6N’ No/( Yo6Vz2’/V) (4.27)

and so 6N’ oYoVz/V (4.28)

where No is a constant, and higher powers of v are neglected.

Therefore, equations (4.20)-(4.22) for the electric field components become

2BEx 4e (No + N’ )vx Yomoe
-T Yo (I + BoBz) e vx (4.29). m 2

Yo op v’ (4 30)aT e y

BE YmP 6 (4 31)@r e Vz
where =p (4Noe2/mo)1/2, =p being the electron plasma frequency. Again from the

transfornwtion relations (3.14abc) and (3.15abc), neglecting the transverse magnetic

field components in the S’-frame, we obtain from the transfermation relations

Ex YoE, Ey yoE’ Ez E’ (4.32abc)y’ z
Hx -YoBoE, Hy -YoBoE, Hz Hz Ho (4.33abc)
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5. THE LAC-RANGIAN AND HAMILTONIAN IN THE SPACE-INDEPENDENT FRAME
Following Lcndau and Lifshitz [21], the expressions for the Lagrangian and

Hamiltonian in plasmas in the laboratory frame are given by

E2
p

e H.I: -No[moC2(i .,,,1/2 + (A_ v_) + eel +
8 (5.1)

c

moV e’ NoV-[ -2 A_] (5.2)
( -)

where th(. ector aF,d scalar potentials A and respectively are defined by

H curl A (5.3)

E c at + v_ (5.4)

div. A_ -t" (5.5)

The Lorentz gauge condition (5.5), when transformed to the space-independent frame,

ives
2 2

YOv sT (A’z + o’) YOc aT (’ + oAz’) (5.6)

cancel from both sides, and since a constant poten-Si,ce the ter,ts contai,ing $I
z

ti is neglected here, it turns out that

’ O. (5.7)
lherefore, in the c’-frame., the Lagrangitn and the Hamiltonian are found to be

2 2 4
Yo Yo 2 Z,2)(1 5v’ + sv’ +:-No[moC2{1- c(V+v-+ :’Vz - z V2 z

2 4

-Y 6v z
Yo 2 1 2+eYo(1 +V- 5v’z ){ (A+v_+ A_v+) + YoAz5Vz +

2
Yc 2)(E+E + ,2 (5 8)+eYoSoAz]’ + (I B

0
Ez

2 2 4
Yo Yo 2 2 - A’]Yo 2 ’2)(I av + 5v’ + eYoBo zH’ No[moC2{! c--(v+v_ + oVz -- - z

2o 2 ,2 (5 9)-- (i o)(E+E_) Ez

where A.. A’x iAy’ E+_ E +/- iE’y, v V’x iV’y.
For a circularly polarized laser beam, we put

[x a cos e, E’y a sin o, E’z 0 (5.10abc)

’T the subscripts + andwhere a is the constant amplitude of the wave and o +
signs indicate tle left and right circular polarized components respectively. In

+iothis case, E+ ae- and the solution of the plasma field equations (3.1abcd)-

(3.9ab) is exact.

For a circularly polarized wave (5.8) and (5.9) reduce to

e2a22 e2a 2 ya2 2
Z’ -No[moC2(1 4 2 +----] + T(I c (5.11)

pmoC mop
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2 a2e2a22 "1/2 Yo c2N’ No[moC2(1 4 2 ") ] ’8 (I V--) (5.12)
mpmoC

lhe results for the Lagrangian and Hamiltonian in the laboratory inertial frame are

obtained simply by changing to +/-/Yo in (5.11) and (5.12), where
2 2 2 k2 2)o I(+/- +/-c

Following the method of averaged Lagrangian developed by Whitham [22-25] and

exterlded by Dysthe [26], Das and Sihi [27-29] and others, the Lagrangian derived in

this section can be used for finding the nonlinear effects including the shifts of

wave parameter in the space-independent frame and then in the laboratory frame with

the help of the transformation relations in Section 3.

6. NONLINEAR DISPERSION RELATION

For a purely transverse circularly polarized wave,

E.+_ a exp(+/-iB) and E z O. (6.1)

So, we have

_Vo -V (6.2)Pz’ O, V’z + 6Vz
From (4.1, (4.3), (2.7abc), (3.13abc), and (3.17abc), we obtain

ieVv+/-HoP -eE -+ (6.3)
X3oC(V VO)

2
YomompE e v (6.4)

(v;- v’)]P_ moV_/[1 + 2 (6.5)
c c

P’ iP’ E’ E’ + iE’, v’ iv’ and a dot denotes the (eriativewhere P+/- x y’ x Y v+ x y’
with respect to time.

Using (6.1) in (6.3) to (6.5), the nonlinear dispersion relation for the left

and right circular polarization components in the space-independent frame can be

obta ned

,2 V =’+_ 2 +/-
o +/-

0 (6.6)

[I e2a22]1/242 2

p Y(V V)
pmoC

where o eHo/moC. Replacing ’+ by +/yo, the dispersion relation (6.6) in the

laboratory frame becomes

o. c6.7)

m4m 2
p oc

In the absence of magnetic field, (6.7) becomes

m2 k2c2 m2(1 + 2)- (6 8)p o

where is the dimensionless amplitude parameter ea/momC. It is to be mentioned
o
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that (6.8) is identical to the results of Paul and Chakraborty [16-17]. Expanding

the right-hand side of (6 8) in power of 2 and retaining only +he first two terms
0

of binomial expansion we obtain the results of Arons and Max [30] if their symbols
are adopted.

7. FREQUENCY AND WAVE NUMBER SHIFT OF AN ELECTROMAGNETIC WAVE
Nonlirearity in plasmas produces many interesting results in the medium and on

the waves. Electromagnetic wave would have shifts in the wave parameters (wave
number and frequency) as a result of nonlinear interactions in plasmas [31-41]. We

shall derive here the expressions for the shifts of frequency and wave number of a

circularly polarized wave propagating through a cold, magnetized relativistic plasma.
(a) Frequency Shifts:

For the temporal evolution problem, we can write

o + 6 (7.1)k+ k and +
where 6m are the increments of frequencies of the left and right circular polar-

ization components of the wave. Therefore, neglecting higher powers of 6m+, we

find that frequency shifts of the two polarization components are

2 I o
m11+ m- ij

+ P (7.2)

P

where m+_02- k2c2. (7.3)

(b) Wave number shifts:

In the spatial evolution problem, we write

o+ m, k+ k+ + 6k+ (7.4)

where ak+ are the increments of wave numbers of the left and right circular polar-
ization components of the wave. Therefore, neglecting higher powers of 6k/; the

expressions for the wave number shift of the two polarization components can be

derived as

2 m2 o
m2 + m m--

k+ P 2] (7.5)
a 2 o

P

2 ko2 2where
_*

c (7.6)

8. DISCUSSIONS AND CONCLUSIONS

From (7.2) and(7.5) it is observed that the intensity of the wave and static

magnetic field have important roles to create the shifts of the wave parameters. It
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is seen that {i) when m > kc and m the LCP components of the wave do haveo
a frequency shift when its intensity a f v (n2/m2), but the fFequency shifts of

the RCP components exist only when a is greater or less than /(.p/)x
(/2- 2)1/2 and (ii) when m > kc and m m the frequency shift of LCPp
components

W
becoane nonzero when e f ( /)1/2 buz the RCP components always haveo

frequency shifts for all possible values of . The nature of the frequency shifts

o RCP and LCF components of the electromagnetic wave can be well understood from

Table and Figures I-3.

Fig. Frequency shift of the LCP Fig. 2 Frequency shift of the RCP

component V.S. Intensity ef the Yvecomponent V.S. Intensity of the wav
when > kc and o)" (when > kc and o).

Fig. 3 Frequency shift of the LCP
component V.S. Intensity of the wave
(whenm > kc and

9. NUMERICA[ ESTIMATION
For the radiations of Nd-glass laser having wave length 1.06 um, frequency

1.78 x 1015 c/s, Power 1016 watts/cm2 (which is less than the threshold power
generate self-action effects) passing through a dense plasma (No !020/c.c.), the
frequepcy shift of LCP components 1.01 x 1015 c/s and that of RCP components
-8.6 x I014c/s when i.e Ho 108 gauss

Under the situation m the frequency shift of the LCP and RCP compo-P’ 12nents become 4.42 x 1012 c/s and 4.31 x 10 c/s respectively when Ho 105 gauss.
For magnetic field 106 gauss, the frequency shift of the LCP and RCP components
become 3.48 x 1012 c/s and 5.22 x !012 c/s respectively.
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O

0
3

10. CLOSING REMARKS
Transformation of field variables from the laboratory frame to the space-

independent frame is applicable only for a single electromagnetic wave because the

2IVcondition required for this transformation, i.e., Vo kc/ c is not satis-
fied for two or more waves interacting in plasma.

To derive the results for the shifts of wave parameters with the help of special
Lorentz transfor.ation, field variables should be transformed to the space-
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independent frdme at the beginning, and then one should proceed with the calculatior,.

If equations are solved in the laboratory frame before transforming them to the space

independent frame and transformations are used only in the subsequent steps, correct

results would not appear in the space-independent frame.
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