NORM-PRESERVING L-L INTEGRAL TRANSFORMATIONS

YU CHUEN WEI

Department of Mathematics University of Wisconsin-Oshkosh Oshkosh, Wisconsin 54901 U.S.A.
(Received March 22. 1984)

ABSTRACT. In this paper we consider an L-L integral transformation G of the form $F(x)=\int_{0}^{\infty} G(x, y) f(y) d y$, where $G(x, y)$ is defined on $D=\{(x, y): x \geq 0, y \geq 0\}$ and $f(y)$ is defined on $[0, \infty)$. The following results are proved: For an L-L integral transformation G to be norm-preserving, $\int_{0}^{\infty}\left|G_{\star}(x, t)\right| d x=1$ for almost all $t \geq 0$ is only a necessary condition, where $G_{\star}(x, t)=\lim _{h \rightarrow 0}$ inf $\frac{1}{h} \int_{t}^{t+h} G(x, y) d y$ for each $x \geq 0$. For certain G 's. $\int_{0}^{\infty}\left|G_{\star}(x, t)\right| d x=1$ for almost all $t \geq 0$ is a necessary and sufficient condition for preserving the norm of certain $f \varepsilon L$. In this paper the analogous result for sum-preserving L-L integral transformation G is proved.

KEY WORDS AND PHRASES. $\ell-\ell$ method. L-L integral transformation. Absolutely continuity of integrals. Fubini-Tonelli Theorem.
1980 MATHEMATICS SUBJECT CLASSIFICATION CODE. 44A02, 44A06, $42 A 76$.

1. INTRODUCTION.

The well-known summability method defined by a $\ell-\ell$ matrix $A=\left(a_{n k}\right)$, mapping from ℓ into ℓ, is sum-preserving if and only if for each $k, \sum_{n \geq 1} a_{n k}=1$. In our present study we also discuss conditions under which G defined by $G(x, y)$, mappings L into L, is norm-preserving or sum-preserving.
2. NOTATION.

The notation and terms used are:
The statement that f is Lebesgue integrable on $[0, \infty)$ means that for every $u>0$, if f is Lebesgue integrable on $[0, u]$ and that $\int_{0}^{u} f(x) d x$ tends to a finite limit as $u \rightarrow \infty$.

L - the space of functions that are Lebesgue integrable on $[0, \infty)$ with norm $\|f\|=\int_{0}^{\infty}|f(x)| d x$.
$D-$ the first quadrant of the plane, i.e., $D=\{(x, y): x \geq 0, y \geq 0\}$.
G - an integral transformation, $G: f \rightarrow F$, of the form (*) $F(x)=\int_{0}^{\infty} G(x, y) f(y) d y$, for all $x \geq 0$, where f is defined on $[0, \infty)$ and $G(x, y)$ defined on D.
G - the collection of all G of the form (*).
GL - the subcollection of G such that $F \in L$ whenever $f \varepsilon L$.
L^{∞} - the space of functions which are measurable and essentially bounded on $[0, \infty)$ with norm $\| f_{i}=$ ess $-\sup _{x \geq 0}|f(x)|$

3. MAIN THEOREM

THEOREM 1. If $G \in G L$ and for every $f \in L$

$$
\int_{0}^{\infty}|F(x)| d x=\int_{0}^{\infty}|f(y)| d y,
$$

then for almost all $\mathrm{y} \geq 0$,

$$
\int_{0}^{\infty}\left|G_{\star}(x, y)\right| d x=1,
$$

where $G_{\star}(x, y)=\liminf _{h \rightarrow 0} \frac{1}{h} \int_{y}^{y+h} G(x, t) d t$, for each $x \geq 0$.
PROOF. Suppose that there is a set $A \subseteq\{y \geq 0\}$ satisfying $0<m A<\infty$ such that either $\int_{0}^{\infty}\left|G_{*}(x, y)\right| d x>1$ for all $y \in A$ or $\int_{0}^{\infty}\left|G_{\star}(x, y)\right| d x<1$ for all y εA. Since $G \in G L$, for each $x \geq 0$, it follows from Theorem (T.S.T.), see [1], that for every measurable set A of finite measure, $\int_{A} G(x, y) d y<\infty$, without loss of generality, we can assume that A is a bounded measurable set.
Case i). Suppose that for all y $\varepsilon \mathrm{A}, \int_{0}^{\infty}\left|\mathrm{G}_{\star}(\mathrm{x}, \mathrm{y})\right| \mathrm{dx}<1$. Without loss of generality we assume that for each $\mathrm{y} \varepsilon \mathrm{A}$

$$
\int_{0}^{\infty}\left|G_{\star}(x, y)\right| d x<1-\varepsilon
$$

where ε is a small positive number. Let $f(y)=X_{A}(y)$ then

$$
\begin{aligned}
F(x) & =\int_{0}^{\infty} G(x, y) x_{A}(y) d y \\
& =\int_{A} G(x, y) d y,
\end{aligned}
$$

and

$$
\begin{aligned}
\|F\| & =\int_{0}^{\infty}\left|\int_{0}^{\infty} G(x, y) x_{A}(y) d y\right| d x \\
& \leq \int_{0}^{\infty} \int_{A}|G(x, y)| d y d x
\end{aligned}
$$

Since for each $x \geq 0, G_{*}(x, y)=G(x, y)$ for almost all $y \geq 0$, see $[2$, Theorem 5. P. 255], so it follows from the Fubini-Tonelli Theorem that

$$
\begin{aligned}
\|F\| & \leq \int_{0}^{\infty} \int_{A}|G(x, y)| d y d x \\
& =\int_{0}^{\infty} \int_{A}\left|G_{\star}(x, y)\right| d y d x \\
& =\int_{A} \int_{0}^{\infty}\left|G_{\star}(x, y)\right| d x d y \\
& \leq \int_{A}(1-\varepsilon) d y \\
& =(1-\varepsilon) m A \\
& <m A=\left\|x_{A}\right\| .
\end{aligned}
$$

Hence, for case i), G is not norm-preserving.
Case ii). Suppose that for all y $\varepsilon A, \int_{0}^{\infty}\left|G_{*}(x, y)\right| d x>1$. Without loss of generality, we assume that for each $y \in A$

$$
\int_{0}^{\infty}\left|G_{\star}(x, y)\right| d x>1+\varepsilon .
$$

where ε is a small positive number. Let $f(y)=X_{A}(y)$; then $F(x)=\int_{A} G(x, y) d y$ for all $x \in[0, \infty)$. If $F(x)=0$ for almost all $x \in[0, \infty)$, then

$$
\|\mathrm{F}\|=0<\mathrm{mA}=\left\|\mathrm{X}_{\mathrm{A}}\right\|=\|\mathrm{f}\|,
$$

and we're done.
Suppose that $\mathrm{F}(\mathrm{x}) \neq 0$ for all x in some set with positive measure. Since $G \varepsilon G L$, so it follows from Theorem (T. S. T) by author, see [1], $G_{\star}(x, y)$ is measur-
able on D and $\int_{0}^{\infty}\left|G_{\star}(x, y)\right| d x<M$ for almost all $y \geq 0$, where M is a constant. Thus

$$
\begin{aligned}
& \int_{A} G_{\star}(x, y) d y=\int_{A} G(x, y) d y \text { and } \int_{A} \int_{0}^{\infty}\left|G_{\star}(x, y)\right| d x d y<M m A<\infty, \text { and } \\
& \int_{0}^{\infty} \int_{A}\left|G_{\star}(x, y)\right| d y d x=\int_{A} \int_{0}^{\infty}\left|G_{\star}(x, y)\right| d x d y<\infty . \\
& \text { Given } 1>\varepsilon / 2>n>0, \text { there is an } x_{0}>0 \text { such that } \\
& \qquad \int_{X_{0}}^{\infty} \int_{A}\left|G_{*}(x, y)\right| d y d x<n \cdot m A / 2<\varepsilon \cdot m A / 4 .
\end{aligned}
$$

It follows that there is at least a subset $A_{0} \subseteq A$, having positive measure and for all y εA_{0}, satisfying

$$
\int_{X_{0}}^{\infty}\left|G_{\star}(x, y)\right| d x<\varepsilon / 8
$$

and $\operatorname{rrom} \int_{0}^{\infty}\left|G_{*}(x, y)\right| d x>1+\varepsilon$ for each $y \in A$ that

$$
\int_{0}^{X_{0}}\left|G_{\star}(x, y)\right| d x>1+3 \varepsilon / 4
$$

for all $y \in A_{0}$. Let $E=\left\{(x, y) \varepsilon\left[0, X_{0}\right] \times A_{0}:\left|G_{*}(x, y)\right|<\varepsilon / 2^{4} X_{0}\right\}$ and for any $y \in A_{0}$, let $E_{y}=\left\{x_{1} \varepsilon\left[0, X_{0}\right]:\left(x_{1}, y\right) \varepsilon E\right\}$. Then $0 \leq m E_{y} \leq X_{0}$ for all y εA_{0}.

Since

$$
\int_{A_{0}} \int_{0}^{x_{0}}\left|G_{\star}(x, y)\right| d x d y \leq \int_{A} \int_{0}^{\infty}\left|G_{\star}(x, y)\right| d x d y
$$

so it follows from the absolute continuity of the integral that there is a $\delta>0$ such that for every measurable set $H \subseteq\left[0, x_{0}\right] \times A_{0}$ satisfying $m H<\delta$, and

$$
\iint_{H}\left|G_{\hbar}(x, y)\right| d y d x<n \cdot m A_{0} / 4 \text {. }
$$

If $\int_{A_{0}} G(x, y) d y=0$ for almost all $x \geq 0$, then

$$
\begin{aligned}
\|F\| & =\int_{0}^{\infty}\left|\int_{0}^{\infty} G(x, y) x_{A_{0}}(y) d y\right| d x \\
& =\int_{0}^{\infty}\left|\int_{A_{0}} G(x, y) d y\right| d x \\
& =0<m A_{0}=\left\|x_{A_{0}}\right\|,
\end{aligned}
$$

and we're done. So we suppose that $\int_{A_{0}} G(x, y) d y \neq 0$ for some set of $x \geq 0$ with positive measure. By the Generalization of Luzin's Theorem we can choose a closed set $F \subseteq\left[0, X_{0}\right] \times A_{0}$ such that if $H=\left[0, X_{0}\right] \times A_{0} \sim F$ then $m H<\delta$ and

$$
\iint_{f}\left|G_{k}(x, y)\right| d x d y<n \cdot m A_{0} / 4
$$

and $G_{\star}(x, y)$ is continuous over F. It is clear that $G_{k}(x, y)$ is uniformly continuour on F. Thus we can have a finite number N of subsets A_{i} of $m A_{i}>0$ of set A_{0} such that $F=U_{i=1}^{N}\left[0, X_{0}\right] \times A_{i}$ and within each strip $\left[0, X_{0}\right] \times A_{i}$ for each $x \in\left[0, X_{0}\right]$ the value of $G_{\star}(x, y)$ are close to one another. More precisely, for $\left(x, y^{\prime}\right),\left(x, y^{\prime \prime}\right) \in\left[0, X_{0}\right] \times A_{i}$ and $\left(x, y^{\prime}\right),\left(x, y^{\prime \prime}\right) \notin E$, $\left|G_{*}\left(x, y^{\prime}\right)-G_{\star}\left(x, y^{\prime \prime}\right)\right|<\varepsilon / 2^{5} X_{0}$. Then for each A_{i} there are three sets A_{i}^{+}, A_{i}^{-}and E_{y} of $x \in\left[0, X_{0}\right]$, such that

$$
\begin{aligned}
& G_{\star}(x, y)>0, \quad \text { if }(x, y) \varepsilon F \cap\left(A_{i}^{+} \times A_{i}\right) \\
& G_{\star}(x, y)<0, \quad \text { if }(x, y) \varepsilon F \cap\left(A_{i}^{-} \times A_{i}\right),
\end{aligned}
$$

and

$$
\left|G_{\star}(x, y)\right|<\varepsilon / 2^{4} X_{0}, \quad \text { if } \quad(x, y) \varepsilon E_{y} \times A_{i} .
$$

Hence, if $(x, y) \in F \cap\left[0, X_{0}\right] \times A_{i}$, then

$$
\left.\int_{0}^{x_{0}}\right|_{0} ^{\infty} G(x, y) x_{A_{i}}(y) d y\left|d x=\int_{0}^{X_{0}}\right| \int_{A_{i}} G(x, y) d y \mid d x
$$

$$
=\int_{0}^{X_{0}}\left|\int_{A_{i}} G_{*}(x, y) d y\right| d x
$$

$$
=\int_{A_{i}^{+}}\left|\int_{A_{i}} G_{\star}(x, y) d y\right| d x+\int_{A_{i}^{-}}\left|\int_{A_{i}} G_{\star}(x, y) d y\right| d x
$$

$$
+\int_{E_{y}}\left|\int_{A_{i}} G_{*}(x, y) d y\right| d x
$$

$$
=\int_{A_{i}^{+}} \int_{A_{i}} G_{\star}(x, y) d y d x+\int_{A_{i}^{-}}\left(-\int_{A_{i}} G_{\star}(x, y) d y\right) d x
$$

$$
+\int_{E_{y}}^{1}\left|\int_{A_{i}} G_{*}(x, y) d y\right| d x
$$

$$
=\int_{A_{i}} \int_{A_{i}^{+}} G_{*}(x, y) d x d y+\int_{A_{i}} \int_{A_{i}^{-}}\left(-G_{\star}(x, y)\right) d y d x
$$

$$
+\int_{E_{y}}\left|\int_{A_{i}}^{1} G_{\star}(x, y) d y\right| d x
$$

$$
=\int_{A_{i}} \int_{A_{i}^{+} \| A_{i}^{-}}\left|G_{\star}(x, y)\right| d y d x+\int_{E_{y}}\left|\int_{A_{i}} G_{\star}(x, y) d y\right| d x
$$

$$
=\int_{A_{i}^{+} U_{A_{i}^{-}}^{-}}^{1} \int_{A_{i}}\left|G_{\star}(x, y)\right| d y d x+\int_{E_{y}}\left|\int_{A_{i}} G_{\star}(x, y) d y\right| d x
$$

$$
=\int_{0}^{X_{0}} \int_{A_{i}}|G(x, y)| d y d x-\int_{E_{y}} \int_{A_{i}}|G(x, y)| d y d x+\int_{E_{y}}\left|\int_{A_{i}} G_{\star}(x, y) d y\right| d x
$$

$$
=\int_{0}^{X} \int_{A_{i}}\left|G_{\star}(x, y)\right| d y d x-\left\{\int_{E_{y}}\left[\int_{A_{i}}\left|G_{\star}(x, y)\right| d y-\left|\int_{A_{i}}^{G_{\star}}(x, y) d y\right|\right] d x\right.
$$

$$
\geq \int_{A_{i}} \int_{0}^{X_{0}}\left|G_{\star}(x, y)\right| d x d y-2 \int_{E_{y}} \int_{A_{i}}\left|G_{\star}(x, y)\right| d y d x
$$

$$
>(1+3 \varepsilon / 4) \mathrm{mA}_{i}-\varepsilon \cdot \mathrm{mA}_{i} / 8 \quad\left(\text { since } \mathrm{mE}_{\mathrm{y}}<\mathrm{X}_{0}\right)
$$

$$
\text { If } m\left\{H \cap\left[0, X_{0}\right] \times A_{i}\right\}=0 \text { for some } A_{i} \varepsilon\left\{A_{i}\right\}_{1}^{N} \text {, then for such an } A_{i} \text {, }
$$

$$
\|F\|=\int_{0}^{\infty}\left|\int_{0}^{\infty} G(x, y) x_{A_{i}}(y) d y\right| d x
$$

$$
=\int_{0}^{\infty}\left|\int_{A_{i}} G(x, y) d y\right| d x
$$

$$
=\int_{0}^{X_{0}}\left|\int_{A_{i}}^{1} G_{\star}(x, y) d y\right| d x+\int_{X_{0}}^{\infty}\left|\int_{A_{i}} G_{\star}(x, y) d y\right| d x
$$

$$
\geq \int_{0}^{x_{0}}\left|\int_{A_{i}} G_{\star}(x, y) d y\right| d x-\int_{0}^{x_{0}^{0}}\left|\int_{A_{i}} G_{\star}(x, y) d y\right| d x
$$

$$
(x, y) \varepsilon F \quad(x, y) \varepsilon H
$$

$$
=\int_{0}^{X} 0\left|\int_{A_{i}} G_{\star}(x, y) d y\right| d x
$$

$$
>(1+3 \varepsilon / 4) \mathrm{mA}_{i}-\varepsilon m A_{i} / 8
$$

$$
>m A_{i}=\left\|x_{A_{i}}\right\|, \quad \text { and we're done. }
$$

If $m\left\{H \cap\left[0, X_{0}\right] \times A_{i}\right\} \neq 0$ for all $A_{i} \varepsilon\left\{A_{i}\right\}_{1}^{N}$, then there is at least an A_{i} such that

$$
\int_{H \cap\left[0, X_{0}\right.} \int_{\times A_{i}}\left|G_{\star}(x, y)\right| d y d x<\left(n \cdot \mathrm{~mA}_{0} / 4\right) \cdot \mathrm{mA}_{i} / \mathrm{mA}_{0}
$$

and for such an A_{i},

$$
\begin{aligned}
& \|F\|=\int_{0}^{\infty}\left|\int_{0}^{\infty} G(x, y) x_{A_{i}}(y) d y\right| d x \\
& =\int_{0}^{X} 0\left|\int_{0}^{\infty} G_{\star}(x, y) X_{A_{i}}(y) d y\right| d x+\int_{X_{0}}^{\infty}\left|\int_{0}^{\infty} G_{\star}(x, y) X_{A_{i}}(y) d y\right| d x \\
& \geq \int_{0}^{X_{0}}\left|\int_{A_{i}} G_{\star}(x, y) d y\right| d x-\int_{0}^{X}{ }_{0}\left|\int_{A_{i}} G_{\star}(x, y) d y\right| d x \\
& (x, y) \in F \quad(x, y) \in H \\
& \geq \int_{0}^{X}{ }_{0}\left|\int_{A_{i}} G_{*}(x, y) d y\right| d x-n \cdot m A_{i} / 4 \\
& (\mathrm{x}, \mathrm{y}) \in \mathrm{F} \\
& \geq(1+3 \varepsilon / 4) \mathrm{mA}_{\mathrm{i}}-2 \varepsilon \mathrm{~mA}_{\mathrm{i}} / 8 \\
& =(1+\varepsilon / 2) \mathrm{mA}_{i} \\
& >m A_{i}=\left\|X_{A_{i}}\right\|
\end{aligned}
$$

Hence, case (ii) we have proved that G is not norm-preserving and so the proof is complete.

Theorem 1 shows us that if $G \in G L$, for almost all $y \geq 0, \int_{0}^{\infty}\left|G_{\star}(x, y)\right| d x=1$ is a necessary condition for $\int_{0}^{\infty}|F(x)| d x=\int_{0}^{\infty}|f(y)| d y$ whenever $f \in L$. The next example will tell us that for almost all $y \geq 0, \int_{0}^{\infty}\left|G_{*}(x, y)\right| d x=1$ is not a sufficient condition for $\int_{0}^{\infty}|\mathrm{F}(\mathrm{x})| \mathrm{dx}=\int_{0}^{\infty}|\mathrm{f}(\mathrm{y})| \mathrm{dy}$ for every f εL.

But the following theorem will show that for certain $G^{\prime} s, \int_{0}^{\infty}\left|G_{*}(x, y)\right| d x=1$ is a necessary and sufficient condition for preserving the norms of certain $f \varepsilon L$.

Example. Define

$$
G(x, y)=\left\{\begin{array}{ll}
-1 / 4 x^{1 / 2}, & \text { if } x \in(0,1) \\
1 / 2 x^{2}, & \text { if } x \in[1,)
\end{array} \quad \text { for all } y \geq 0\right.
$$

and

$$
f(y)= \begin{cases}-2 /(y+1)^{2}, & \text { if } y \in[0,1) \\ 10 /(y+1)^{2}, & \text { ıf } y \in[1, \infty)\end{cases}
$$

Then

$$
\begin{aligned}
\int_{0}^{\infty}|f(y)| d y & =\int_{0}^{1} 2 /(y+1)^{2} d y+\int_{1}^{\infty} 10 /(y+1)^{2} d y \\
& =-\left.2(y+1)^{-1}\right|_{0} ^{1}-\left.10(y+1)^{-1}\right|_{1} ^{\infty} \\
& =-1+2+5=6
\end{aligned}
$$

and

But

$$
\begin{aligned}
\int_{0}^{\infty}\left|\mathrm{G}_{*}(\mathrm{x}, \mathrm{y})\right| \mathrm{dx} & =\int_{0}^{1} 1 / 4 \mathrm{x}^{1 / 2} \mathrm{dx}+\int_{1}^{\infty} 1 / 2 \mathrm{x}^{2} \mathrm{dx} \\
& =2 \mathrm{x}^{1 / 2} /\left.4\right|_{0} ^{1}-1 /\left.2 \mathrm{x}\right|_{1} ^{\infty} \\
& =1 / 2+1 / 2=1
\end{aligned}
$$

$$
\begin{aligned}
F(x) & =\left\{\begin{array}{ll}
\int_{0}^{\infty} G(x, y) f(y) d y \\
\int_{0}^{\infty}\left(-1 / 4 x^{1 / 2}\right) f(y) d y, & \text { if } x \in(0,1) \\
& = \begin{cases}\int_{0}^{\infty}\left(1 / 2 x^{2}\right) f(y) d y, & \text { if } x \in[1, \infty)\end{cases}
\end{array}, .\right.
\end{aligned}
$$

where

$$
\begin{aligned}
-\int_{0}^{\infty}\left(1 / 4 x^{1 / 2}\right) \mathrm{f}(\mathrm{y}) \mathrm{dy} & =-1 / 4 \mathrm{x}^{1 / 2}\left[\int_{0}^{1}-2 /(\mathrm{y}+1)^{2} \mathrm{dy}+\int_{1}^{\infty} 10 /(\mathrm{y}+1)^{2} \mathrm{dy}\right] \\
& =-1 / 4 \mathrm{x}^{1 / 2}\left[-\left.2(-1)(\mathrm{y}+1)^{-1}\right|_{0} ^{1}+10\left(-\left.1(\mathrm{y}+1)^{-1}\right|_{1} ^{\infty}\right]\right. \\
& =-1 / 4 \mathrm{x}^{1 / 2}[1-2+5] \\
& =-1 / \mathrm{x}^{1 / 2}, \text { if } \mathrm{x} \varepsilon(0,1),
\end{aligned}
$$

and

$$
\begin{aligned}
\int_{0}^{\infty}\left(1 / 2 x^{2}\right) f(y) d y & =\left(1 / 2 x^{2}\right)\left[\int_{0}^{1}-2 /(y+1)^{2} d y+\int_{1}^{\infty} 10 /(y+1)^{2} d y\right] \\
& =\left(1 / 2 x^{2}\right)(1-2+5)=2 / x^{2}, \quad \text { if } x \in[1, \infty)
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\int_{0}^{\infty}|\mathrm{F}(\mathrm{x})| \mathrm{dx} & =\int_{0}^{1} 1 / \mathrm{x}^{1 / 2} \mathrm{dx}+\int_{1}^{\infty} 2 / \mathrm{x}^{2} \mathrm{dx} \\
& =\left.2 \mathrm{x}^{1 / 2}\right|_{0} ^{1}+\left.2(-1) \mathrm{x}^{-1}\right|_{1} ^{\infty} \\
& =2+2 \\
& =4 \neq 6=\int_{0}^{\infty}|\mathrm{f}(\mathrm{y})| \mathrm{dy} .
\end{aligned}
$$

THEOREM 2. Suppose that $G(x, y)$ is a nonnegative function on D and $\mathrm{G} \varepsilon \mathrm{GL}$; then the folowing are equivalent;
i) $\|F\|=\|f\|$ whenever $f \varepsilon L$ and $f(y) \geq 0$ on $[0, \infty)$;
ii) $\|F\|=\|f\|$ whenever $f \varepsilon L$ and $f(y) \leq 0$ on $[0, \infty)$;
iii) $\|F\|=\|f\|$ whenever $f \varepsilon L$, if $F(x)=\int_{0}^{\infty} G(x, y)|f(y)| d y$;
iv) $\int_{0}^{\infty} G_{\star}(x, y) d x=1$, for almost all $y \geq 0$.

PROOF. Since $\|f\|=\int_{0}^{\infty}|f(y)| d y, \quad F(x)=\int_{0}^{\infty} G(x, y) f(y) d y$ and

$$
\|F\|=\int_{0}^{\infty}|F(x)| d x
$$

it is clear that i) is equivalent to i). We now prove that i) is equivalent to iv). Assuming that $G(x, y) \geq 0$ on D and $f(y) \geq 0$ for all $y \varepsilon[0, \infty)$, we have $f(y) G(x, y) \geq 0$ on D. Hence

$$
F(x)=\int_{0}^{\infty} G(x, y) f(y) d y \geq 0
$$

so

$$
|F(x)|=F(x)
$$

Therefore

$$
\|F\|=\int_{0}^{\infty}|F(x)| d x=\int_{0}^{\infty} F(x) d x,
$$

and

$$
\|F\|=\int_{0}^{\infty} \int_{0}^{\infty} G(x, y) f(y) d y d x
$$

By the Fubini-Tonelli Theorem and for each $x \geq 0, G_{x}(x, y)=G(x, y)$ for almost all $y \geq 0$,

$$
\|F\|=\int_{0}^{\infty} f(y) \int_{0}^{\infty} G_{\star}(x, y) d x d y
$$

Hence,

$$
\begin{aligned}
&\|\mathrm{F}\|=\|\mathrm{f}\| \\
& \text { if and only if } \\
& \int_{0}^{\infty} G_{\star}(\mathrm{x}, \mathrm{y}) \mathrm{dx}=1 \quad \text { for almost all } \mathrm{y} \geq 0
\end{aligned} .
$$

Next we prove th (iii) is equivalent to iv). Let

$$
\begin{aligned}
& f^{+}=\left\{\begin{array}{ccc}
f(y), & \text { if } & f(y) \geq 0 \\
0, & \text { if } & f(y)<0
\end{array}\right. \\
& f^{-}=\left\{\begin{array}{rrr}
-f(y), & \text { if } & f(y)<0 \\
0, & \text { if } & f(y) \geq 0
\end{array}\right.
\end{aligned}
$$

Since $G(x, y) \geq 0$ on D, so whenever $f \varepsilon L$

$$
\begin{aligned}
& \mathrm{F}^{+}=\int_{0}^{\infty} G(x, y) \mathrm{f}^{+}(\mathrm{y}) \mathrm{dy} \geq 0, \text { for all } \mathrm{x} \geq 0 ; \\
& \mathrm{F}^{-}=\int_{0}^{\infty} G(\mathrm{x}, \mathrm{y}) \mathrm{f}^{-}(\mathrm{y}) \mathrm{dy} \geq 0, \text { for all } \mathrm{x} \geq 0 ;
\end{aligned}
$$

and

$$
\mathrm{f}(\mathrm{y})=\mathrm{f}^{+}-\mathrm{f}^{-},
$$

if $\quad F(x)=\int_{0}^{\infty} G(x, y)|f(y)| d y$, then

$$
|F(x)|=F^{+}+F^{-} .
$$

It follows from i) that

$$
\begin{aligned}
\|F(x)\| & =\int_{0}^{\infty}|F(x)| d x \\
& =\int_{0}^{\infty}|f(y)| d y
\end{aligned}
$$

if and only if

$$
\int_{0}^{\infty} G_{*}(x, y) d x=1 \text { for almost all } y \geq 0
$$

We are also interested in the analogous sum-preserving question for $\mathrm{L}-\mathrm{L}$ integral transformations, viz., when is $\int_{0}^{\infty} F(x) d x=\int_{0}^{\infty} f(y) d y$ whenever $f \varepsilon L$?

Next we give the definition of sum-preserving for L-L integral transformations and a result concerning it.

DEFINITION. The integral transformation $G \varepsilon G L$ is said to be sum-preserving if and only if

$$
\int_{0}^{\infty} F(x) d x=\int_{0}^{\infty} f(y) d y
$$

for all $f(y) \varepsilon L$, where $F(x)=\int_{0}^{\infty} G(x, y) f(y) d y$.
COROLLARY. Suppose that $G(x, y)$ is a nonnegative function on D and $G \in G L$;
then G is a sum-preserving transformation whenever $f \varepsilon L$ if and only if $\int_{0}^{\infty} G_{*}(x, y) d x=1$ for almost all $y \geq 0$.

PROOF. Since $f \in L, f=f^{+}-f^{-}$, where

$$
\begin{aligned}
& f^{+}=\left\{\begin{array}{ccc}
f(y), & \text { if } & f(y) \geq 0 \\
0, & \text { if } & f(y)<0, \\
f^{-}= & \begin{array}{rrr}
-f(y), & \text { if } & f(y)<0 \\
0, & \text { if } & f(y) \geq 0,
\end{array}
\end{array} . \begin{array}{rl}
&
\end{array}\right]
\end{aligned}
$$

and

$$
\int_{0}^{\infty} \mathrm{f}(\mathrm{y}) \mathrm{dy}=\int_{0}^{\infty} \mathrm{f}^{+} \mathrm{dy}-\int_{0}^{\infty} \mathrm{f}^{-} \mathrm{dy}
$$

Then

$$
\begin{aligned}
F(x) & =\int_{0}^{\infty} G(x, y) f(y) d y \\
& =\int_{0}^{\infty} G(x, y)\left[f^{+}-f^{-}\right] d y \\
& =\int_{0}^{\infty} G(x, y) f^{+}(y) d y-\int_{0}^{\infty} G(x, y) f^{-}(y) d y
\end{aligned}
$$

and

$$
\begin{aligned}
\int_{0}^{\infty} F(x) d x & =\int_{0}^{\infty}\left[\int_{0}^{\infty} G(x, y) f^{+}(y) d y-\int_{0}^{\infty} G(x, y) f^{-}(y) d y\right] d x \\
& =\int_{0}^{\infty} \int_{0}^{\infty} G(x, y) f^{+}(y) d y d x-\int_{0}^{\infty} \int_{0}^{\infty} G(x, y) f^{-}(y) d y d x
\end{aligned}
$$

By the Fubini-Tonelli Theorem

$$
\int_{0}^{\infty} \int_{0}^{\infty} G(x, y) f^{+}(y) d y d x=\int_{0}^{\infty} f^{+}(y) \quad \int_{0} G_{\star}(x, y) d x d y ;
$$

and

$$
\int_{0}^{\infty} \int_{0}^{\infty} G(x, y) f^{-}(y) d y d x=\int_{0}^{\infty} f^{-}(y) \quad \int_{0}^{\infty} G_{\star}(x, y) d x d y
$$

Thus

$$
\int_{0}^{\infty} \int_{0}^{\infty} G(x, y) f^{+}(y) d y d x=\int_{0}^{\infty} f^{+}(y) d y ;
$$

and

$$
\int_{0}^{\infty} \int_{0}^{\infty} G(x, y) f^{-}(y) d y d x=\int_{0}^{\infty} f^{-}(y) d y
$$

if and only if

$$
\int_{0}^{\infty} G_{*}(x, y) d x=1 \text { for almost all } y \geq 0
$$

Therefore

$$
\int_{0}^{\infty} \mathrm{F}(\mathrm{x}) \mathrm{dx}=\int_{0}^{\infty} \mathrm{f}^{+} \mathrm{dy}-\int_{0}^{\infty} \mathrm{f}^{-} \mathrm{dy}
$$

if and only if

$$
\int_{0}^{\infty} G_{\star}(x, y) d x=1 \text { for almost all } y \geq 0
$$

i.e.,

$$
\int_{0}^{\infty} F(x) d x=\int_{0}^{\infty} f(y) d y
$$

if and only if

$$
\int_{0}^{\infty} G_{\star}(x, y) d x=1 \text { for almost all } y \geq 0
$$

The proof is completed. REFERENCES

1. WEI, Y.C. A property of L-L integral transformation, (will be published).
2. NATONSON, I.P. Theory of functions of a real variable. Vol. 1, Frederick Unger Publishing, 1961.
3. SUNOUCHI, G.I. and TSUCHIKURA, T. Absolute regularity for convergent integrals, Tohoku Math. J. (2) 4 (1952), 153-156.
4. TATCHELL, J.B. On some integral transformation, Proc. London Math. Soc. (3) 3 (1953), 257-266.
5. HARDY, G.H. Divergent series, Clarendon Press, Oxford, 1949.
6. FRIDY, J.A. Absolute summability matrices that are stronger than the identity mapping, Proc. Amer. Math. Soc. 47 (1975), 112-118.
