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ABSTRACT. The author uses a new modification of Jacobi-Perron Algo-
rithm which holds for complex fields of any degree (abbr. ACF), and

defines it as Generalized Euclidean Algorithm (abbr. GEA) to approxi-

mate irrationals.

This paper deals with approximation of irrationals of degree

n 2,3,5. Though approximations of these irrationals in a variety of

patterns are known, the results are new and practical, since there is

used an algorithmic method.
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O. INTRODUCTION.
This paper deals with approximation of algebraic irrationals of

degree n 2,3,5.
Most simple rational fractions are approximating irrationals,

especially of the type /D2+I, D+I, and DS+I, with D i, leading

to the most simple form of , and . Though approximations of

these irrationals in a variety of patterns are known, the results under

discussion here are new and practical.

The main algebraic machine-tool which is the starting point and

the main ingredient of this paper is an algorithm which, for algebraic

real numbers, can be regarded as a generalization of Euclidean Algo-
rithm (abbr. GEA).

I. THE GEA

The invention of the Euclidean Algorithm was one of the great

achievements of ancient mathematics. Its special power rests with its

periodicity which, regretfully, holds only in real quadratic fields.

Jacobi [I] generalized it for the cubic real fields, and Perron [2]
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for n-th degree real algebraic fields. Since then, various modifi-

cations of the algorithm was given by prominent authors in the modern

mathematical world. The author [3] used a modification which holds

for complex fields of any degree, abbr. ACF. In the sequel, it will

be called the "Generalized Euclidean Algorithm", abbr. GEA. It pro-
ceeds as follows:

DEFINITION I. Let

a(O) (al(O) a(20) _(0)) En n > 1"’" ’n-I I’
be a fixed, given vector, and

<a--(v)>, v=O,1,...,a(V) m En_l

Let <b’V’>, v=O,1,... b (v) En_I be another sequencerf vectors in

En_l, either given by some rule or calculated from <aVJ> with the

formula

a "’’’ n-l- n-l’

v 0,i,...

we say that the GEA holds for a (0).- b (v) is called the "companion

vector" of a (v).
DEFINITION 2. We form the numbers

A!V) (v)
i i the Kronecker delta (i. 3)

i,v O,l,...,n-i

Let a GEA of a (0) hold. The recursion formula
n-I

A!n+v) ! bV) (v+J) bo(V)=l; v=O,l,
l Ai

j=o

generates the "matricians" of the GEA of a (0). L. Bernstein [4] has

proved the following formulas for the real algebraic fields, and the

author proved [3] that they are also true for the complex fields.

A0(v),A0(V+I),..., A0(v+n-I
Al(V),Al(V+l) ,Aiv+n-l) (_l)v(n-l)
:i;iii;;ii

n-I n-I

n-1
a(v)A(V+J)

arO:, 0 i

l n-i

E a!V)Ao(V+J)
j=o J

i =0,I,...aV) =i,
v=O,1, (1.6)

a sequence of vectors in En_I either given by some rule or calculated

from a (0)

1
(v) ,a(V))a (v) (a v),a2 ,... n-i
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DEFINITION 3. Let the GEA of an a (0) hold If there exist two
numbers, s > O, t > l; s,t e N such that a (s+t) a (t), then the GEA of

this a (0) is called "periodic If contemporarilt rain s m > O,
min t Z > l, then <aVJ>, v 0,1,...,m-l, <aV3>, v=m,m+l,...
m+Z-1 are called respectively the "primitive preperiod" and the

"primitive period" of the GEA of a (0). If m 0, the GEA of a (0) is

called "purely periodic".

m and are called respectively the lengths of the primitive pre-
period and primitive period. |

Perron [5] proved the following theorem which is a generalization

of the original theorem on convergence of simple continued fractions.

In our terminology this would yield

THEOREM 1. Let a GEA of some a(O) m En_l hold. If the components
of all companion vectors are positive and the GEA of this a (0) is

periodic then

A!v
ai(0) lim i O i (i 7)A(V)v o

where A)v)
{

(i 0,1,...,n-l; v 0,i,...) are the matricians of the

EA o a()
A!V)
1The fractions "v) are called the "convergents" of the GEA of

a(0). | A

The reader should note that if the GEA of some a (0) is periodic
(v)then there exists an a in this GEA such that the GEA of a "v" is

purely periodic. With this in mind the author [3] has proved
THEOREM 2. Let

w an n-th degree integer (n > 2),
and a t0) a fixed vector such that

a (0) (al(O) (w) ap(O) (w) (O)(w))"’" ’n-I
a(0)(w) algebraic integers (i 1 n-l)

In this context we shall need the formula which was also used by the
author in her paper [5 ], viz.

and units, namely the v-th powers of

A0(+ +al(0 )A0(+ +i +a(20)A0(++2) +a(0)(++n-l)+... n_l++,0

Let the GEA of a (0) be purely periodic with length of the primitive
period Z. Let the components of the companion vectors be algebraic
integers Then

A0(V+ +al(0)A0(V+ +l +a2(0)A0(v+2)+ n-10 }+a (O)A(v+n-i) (I. i0)

v 1,2,...
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k

i=l an-i +’" n-l’O

If the GEA of a (0) in En_I is purely periodic with length of the

primitive period Z, then it follows from (i. ii)
z-I n-i

e _(i) - (O)Ao(+j)an_1 a. e a unit
i=o j=o 0

() _(o)since in this case an_I an_I.
We also have the formula, in virtue of (I. i0)

ef Ao(f +al(O )Ao(fZ +i +... +an_l(O)Aof+n-i

f 1,2,...

(i. 12)

(I.3)

2. APPROXIMATION OF IRRATIONALS- CASE n 2

Though this case is well known from the expansion of real quad-

ratic irrationals as simple continued fractions, we shall include it

in our discussion.

Let

w 2+i, D N, w a quadratic irrational.

That w is irrational (for D > O) is banal.

We choose the fixed vector

a (0) w + D,

(2.1)

(2.2)

since here n-i i. Thus al(0)- an-l’-(O) and we shall generally denote

a (v) =av, v=O,l,... av=av(w) for all GEA of a (0). (2.3)

In conformity with (2.3) we shall also denote

b (v) bv, v O,1,

For the calculation of the companion vectors we use the rule

b (v) bv av(D), v O,1,... (2.4)

and have

b0 (w+D)w=D 2D (2.5)

hence, by (2.1)

aI (w+D)-aD]-l.1 (w-D)-I w+D (2.6)

since (w-D)-I (w+D) from w2-D2 i. Thus

a0 aI av, v 0,i,... (2.7)

and the GEA of a0 w+D is purely periodic with length of the primitive

period I. Further, in this case,

[av] [w+D] [w]+D 2D bv (2.8)

the GEA of w+D coincides with the Euclidean algorithm, and we have, in
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the notation of continued fractions

aO w+D ’ ].
For the calculation of the matric+/-ans of a (0) we have from (1.3) and

A0(O) l, A0(1) 0, AO(n+2) A0(n) + 2DA0(n+l)
AI(0) O, Al(1) l, Al(n+2) Al(n) + 2DAl(n+l)

n 0,I,
Formula (I. 6) yields

Al(V) + (w+D)Al(V+l)
w+D

A0(V) + (w+D)A0(V+l)

and comparing in (2.10) coefficients of w (namely the highest

irrational power of w), we obtain

(2.9)

(2. lO)

(2. ll)

(2.12)

3. EXPLICIT REPRESENTATION OF THE MATRICIANS
We shall give an explicit representation of AoV) (v=2,3,...).

By formula (2.12) which, because of (2.11) will also provide an

explicit representation of Al[V)" (v=2,3,...), we obtain from (2.8),
by means of Euler’s function

14x: 4+ 4x+ l Aox-l=O =2

l=O

1 + 2 (A;i) + 2DA;i+l))xi+2
l=O

Hence

_-,+ x 2 ,o’>x’ + ox 2 Ao-+’x’+i=o l=O

1 + x2 2 A0(i)xi+2Dx (-A0(0) + 2 Ao(i)xi)"
l=O l=o

(1-x2- 2Dx). Ao(i)xi 1 2Dx,
l=O

2 Ao(i)xi ,,i, 2Dx

i=o 1 (x2 + 2Dx)
=l +

2

1 (x2 + 2Dx)
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i=2 z=o

2

(x2 + 2Dx)

k=o

(x sufficiently small)
Choosing i n, we obtain by comparison of coefficients of xn

(yI+y2) Y2 2Yl+Y2A(n+2)
YI’Y2 (2D) x0

But 2yI + Y2 n, Yl + Y2 n-Yl’

AO(n+2) 2 (n-Yl /Yl
(2D)n-2Yl

AO(n+2) 2 (n-i)i (2D)n-2i
i=o

n 0,1,...
We obtain from (3.1), for n ----> 2n-2

n-1

AO(2n) 2 (2n-.2-i),, (2D)2n_2_2i
l=O

n 1,2,...

(3.1)

(3.2)

and for n => 2n-1

n-1

A0(2n+l) 2
1--o

2n-l-i) )2n-i-2ii (2D

n 1,2,...

We shall verify formulas (3.2), (3.3), comparing the results with

these from (2.8).
We obtain from the latter

A2) l, A3) Al) + 2DA2) 2D,

A4) A2) + 2DA3) 1 + 4D2;

A5) A3) + 2DA4) 4D + 8D3;

A6) A4) + 2DA5) 1 + 12D2 + 16D4.
From (3.2) we obtain for n 1,2,3

A2) I, A4) 1 + 4D2; A6) I + 12D2 + 16D4.
From (3.3) we obtain for n 1,2,3

0

( 2n-l-i )A3) 2 i (2D) (2n-l-2i) 2D
l=O
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i (2D) (2n-l-2i) (12) 2D + (2D) 3
l=o

A0(5) 4D + 8D3.
2

AO(7) (5i) (2D)5-2i= (32)2D + (14)(2D)3+ (2D)5,
l=O

A0(7) 6D + 32D3 + 32D5.
From (3.8) we obtain

6D + 32D3 + 32D5.
4. THE C0NVERGENTS OF

We obtain from formula (i.7), since in our case n 2,

Al(V)
a (0) al(0) lim

v ->co Av’)

Al(m+l)
w+D m+lj’ m 1,2,...

A

With formula (2.11), we obtain from (4.1)

w+D
A0(m) + 2D AO(m+l)

2D +
AO(m)

A0(m+l) Ao(m+I)
w’- D +

A0(m+l )

We investigate the special case D 1 and obtain from (4.3)
1m 2, i + 1.5
2m 3, / i + 1.4

m 4, / i + - i. 416

12m 5, / 1 + 1.413
29m 6, / 1 + 7-- 1.414

(4.1)

(4.2)

(4.3)

Thus for m 5,6 we already obtain quite a tolerable approximation for

As is known, V occupies an exceptional place in number theory.

We set D 2, and obtain, with formula (3.6)

w v 2 + (4.4)
AO(m+l

We obta+/-n from the previous calculations of the matricians with D--2:
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we obtain the approximation values

4 17 3052 + , 7--’ 1294

F 2. 235, 2. 236, 2. 236.

a good approximation of /. That (Ao(m),Ao(m+l)) 1Thus 2. 236 is

follows from (i. 5).
5. THE CASE n 3

We denote again

w =3+ (5.)

and choose the fixed vector

a (0) (w+2D, w2+Dw + D2). (5.2)

With a (0) (al(0)(w),- a(20)(w)),- we again apply the rule for calcu-

lating the components of the companion vectors

bi(V) ai(V)(D), i 1,2; v 0,i,...

We proceed with the GEA of a (0)

b (0) (D+2D, D2 + D.D + D2)
b (0) (3D, 3D2). (5.3)
a(1) (w+2D_3D)-l(w2+Dw+D2_3D2,1)

(w-D)-I(wa+Dw_aD2,I)
(w-D)-I((w-D)(w+2D),I),

a(1) (w+2D,w2+Dw+D2) a (0). (5.4)

By (5.4) the GEA of a (0) ((w+2), w2+wD+D2), w D3+I is purely
periodic and the length of its primitive period 1. We shall

proceed to calculate the matricians of the GEA of this a0).
We have with b (0) b (v) (3D,3D2), v 1,2,...

AO(0)=I’ Ao(1)=nO,I,...Ao(2)=O’ Ao(n+3)=AO(n)+3DAo(n+I)+3D2Ao(n+2) I (5.5)

X AO(n)xn=AO(O)+AO(1)x+AO(2)x2+X A0(n+3)xn+3
n=o n=o

1 + x3 X AO(n+3)xn
n=o

I +x3 X (AO(n)+3DAo(n+l)+3D2Ao(n+2))xn
n=o
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n=o n=o n=o

-l+x3 AO(n)xn I- 0(0) O(n)x ++ 3Dx2 A + A
n=o n=o

+ 3D2x <-Ao(O)-Ao(1)x + A0(n)xn
n=o

l+ (x3+3Dx2+3D2x) A0(n)xn- 3Dx2- 3D2x,
oo

2 I1- (3D2x+3Dx2+x3) ]AO(n)xn I- 3D2x- 3Dx’2,
n=o

2 A0(n)xn
n=o

1 (3D2x,. +.. 3Dx2

1 (3D2x + 3Dx2 + x3)

2 A0(n)xn 1 +
x3

n=o 1- (x3 + 3Dx2 + D2x)
and as before

2 A0(n+3)xn

__
x3+ 3Dx2+ 3D2x)k (5.6)

n=o o

for sufficiently small x.

Comparing coefficients of xn on both sides of (5.6) we obtain

A(n+3) +y2 (Yl+Y2+Y3)0 3yI +Y3=n Yl’ Y2’ Y3
(3D)Y2 3D2 Y3

y2 ( )Y2+Y3Dy2+2y3A(n+3) YI+Ya+Y3 3 (5.7)
3Yl+ +Y3=n Yl’Y2’Y3

n O,1,...; (00) i.

From (5. F) the matricians are easily calculated, finding yl,Y2,y3 from
the simple linear equations 3yI + 2y2 + Y3 n. One proceeds in a

lexiconographic order. We have

n 0; Yl =y2 =y3=O; A0(3) l;

n I; Y3 =I’ Yl =y2 =01 AO(4) 3D2;
n 2; Yl =O=y3’ Y2 =l; Yl =y2=0’ Y3 =2;

AO(5) 3D + 9D4;
n 3; Yl=l’ Y2=0, Y3=0; Yl=O’ Y2=l, Y3=l;

Yl =y2 =0’ Y3 =3;

A0(6) 1 +2-32D3 + 33D6,
A0(6) 1 + 18D3 + 27D6.
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n 4; Yl=l’ Y2=O, Y3=l; YI=O’ Y2=2, Y3=O;

AO7)" 2.3D2 + I. 32D2 + (32-). 3D(3D2)2 + 34D8-
A7)" 15D2 + 811>5 + 8ID8.

One could verify these results by means of formula (5.5).
this we obtain

AO(8) AO(5)+ 3DAo(6)+ 3D2Ao(7)= 3D + 9D4 +

+ (l+lSD3+27D6)3D+3D2(15D2+81D5+81D8)
6D + I08D4 + 324D7 + 243DI0.

AO(9) AO(6)+ 3DAo(7)+ 3D2Ao(8)
1 + 18D3 + 27D6+ 3D(15D2+ 81D5 + 81D8) +

+ 3D2 (6D + 108D4 + 324D7 + 243DlO)
AO(9)- l+81D3+594D6+1215D9+ 729D12.

It would be an interesting problem whether calculating preference
should be given to formula (5.5) or (5.7).

We shall shortly discuss the number of solutions of

Yl n;

Yl n-l;

Yl n-2;

3Yl + 2Y2 + Y3 3n

Y2 Y3 O;

Y2=l, Y3=l;
Y2 3, Y3 O;

Y2 l, Y3 4;

Yl n-3; Y2 =4’ Y3 =l;

Y2 =2, Y3=5;
Y2 O, Y3 9;

1 solution

Y2 O, Y3 3;

Y2 2, Y3 2;

Y2=O, Y3=6;
Y2 3, Y3 3;

Y2 l, Y3 7;

2 solutions

4 solutions

5 solutions

Thus the number of solutions of 3yI + 2y2 + Y3 3n equals

S3n 1 + (2+4) + (5+7) + (8+10) + (ll+13) +..- (n numbers)

S3n (1+4 + 7+-o-)+(2+5+8+11+...)
*, + ([ -,} ]- + + ([ ]- .,} ]

Thus, approximately

S3n - [ 3_2 1"
For n 2, S6 7 3.22

’2 =6.

From the other side, A(O3n) contains exactly 2(n-1)+l 2n-1

summands, as the reader can easily verify.

From

(5.8)
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order to calculate A3n)t by. formula (5. 5), one has to calcu-In
late the preceding 3n matricians A0), Ao(1),.. ,A3n-l), so the

number of these manipulations equals 3n(2n-1). The author therefore

conjectures, that it is preferable to calculate the matricians, from

a time and operation saving profit view, by formula (5.7).
We shall now calculate the matricians Av and Aov, expressing

them as linear functions of Ao(t). We have, ith a(1)= a (0)

(w+2D,w2+Dw+D2), and in virtue of formula (1.6)

Al(n) + (w+2D)Al(n+l)+ (w2+Dw+D2)A1(n+2)
w+2D (n+l) + (w2+Dw+D2)AO(n+2)Ao(n) + (w+2D).0

(w+2D)A0(n) + (w+D)Ao(n+I)+ (w2+Dw+D2)AO(n+2) I (5.9)

Al(n) + (w+D)Al(n+l) + (w2+Dw+D2)Al(n+2).
Comparing the coefficients of the powers of the irrational w2 on both

sides of (5.9), we obtain

A(n+2) a(n+l) + 3DA(n+2)
1

In the same way we obtain from

(w2+Dw+D2)(AO(n) + (w+2D)Ao(n+I)+ (w2+Dw+D2)AO(n+2))
A(2n) + (w+2D)A2(n+I) + (w2+Dw+D2)A2(n+2)

A(n+2) Ao(n) + 3DA0(n+I) + 3D2Ao(n+2)2

3
6. THE CONVERGENTS OF /D+l

3
We obtain in case n 3 with w vD3+l,

al(O) w+2D, a(20) w2+Dw+D2,
and by formulas (1.7), (5.10), (5.11)

Al(n+l AO(n) + 3DAo(n+l
w+2D lim lim

AO (n+l)n -> co n+l) n -> oo

3D + lim
n->co

AO(n)
w D + lim .in+l. (6.1)

n->oo A

Substituting in (6. l) the values for the matricians Ao(V) from (5.7),
we obtain with n n+3

(5. o)

(5. ll)
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w=D+ lim
n-@ co

(yY+y2+y3),y2,y3 3
y2+y3 DY2+2Y3

3Yl+2y2+y3=n

Y2+Y3 DY2+2Y3Yl Y2 Y3
3Yl+2Y2+Y3=n+l

(6.2)

(6.2) is a very interesting and simple formula for calculating the

convergents of 31. We further obtain by the same method

(n+2)
2w2+Dw+D2 lim (n+2)n- co 0

A0(n) + 3DAo(n+I)+ 3D2Ao(n+2)
lim
n - co A0(n+2

Ao(n) Ao(n+I)
3D2 + lim ’n (n+2) + 3D lim (n+’2)n-@ co

0 n- co A0

(n+l)
w2+D(D + lim 0

n-@ oo An+2’)

A0(n) AO(n+l)
2D2 + lim + 3D lim

n-@ oo A0(n+2) n-@ co A0(n+2)
0
(n)

02 D2
A A n+l)

w +lim A0(n + 2D lim ,A0(+2n - co +2) n -@co

2 D2w + lim
n-% co

+ 2D

Z ( iI’+y2+y’ Y2+Y DY2+2Y
}Yl+2Y2+Y3=n-1

Yl’Y2’Y3) }

=n_3(yY+y2+y3) 3
y2‘y3 #2+2Y3

3Yl+2y2+y3 ’Y2’Y3

(Yl+y2+y3,y2,y3) 3Y2+Y3 D
y2+2y3

3Y1+2Y2+Y3=n-1

(el +Y2+Y3 ) Y2+Y3 DY2+2Y3
-n 2 Yl’Y2’Y3 3

3YI+2y2+y3-

(6.3)

(9)

This limiting expression for w2 takes on a special simple form for D 1.

For D= 1 the matricians, which were calculated previously, became
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With those values we obtain from the formula (5.11)

=I +lim
n->oo

1 + 1 + 1 + -6’ 1 + -7’ 1 + 1 + 2620’

1.3, 1.25, 1.26, 1.26, 1.26, 1.26.

Thus 1.26 is quite an exact approximation. We have

2 1.263 2.000376.
We further obtain from the first line of (6.3) with D 1

Ao(n) 2AO(n+l)i + Ao(n+2) +

3 I 1 3 24 12 921 + I- + ’ l+ 1--g + -g, I + - +

46 354 177 13621 + 8 + 85-8-f’ 1 + 2- + 2620"
3 3
W 1.58, 1.59, 1.59, 1.59, 1.58. Thus v 1.59 is a satisfying

approximation.

For D 2 w2
3 3---3

Thus also can be easily and perfectly approximated by formula

(. ).
7. THE CASE n 5

We denote again

w 5+i
and choose the fixed vector

a (0) (w+4D, w2+3wD+6D2, w3+2w2D+3wD2+4D3 (7.2)
4 3223 4w +Dw +D w +D w+D ).

With a(O)= (al(O)(w), a(20)(w), a3(O)(w), a(40)(w)) we again apply the

rule for calculating the components of the companion vectors
(v) V)(D), i 1,2,3,4; v 0,i,bi a

i
We proceed with the GEA of a (0) and have

b (0) (D+4D,D2+3D2+6D2,D3+2D3+3D3+4D3,D4+D4+D4+D4+D4)
b (0) (50, lOO2, lOO3, 5D4)

a(1) (w+4D_SD)-I (w2+3wD+6D2_IOD2,
3 2 2 3 34 3 23 4w +2w D+3wD +4D-lOD ,w +Dw +D2w +D w+D-SD4 l)

a (I) (w-D)-I ((w-D) (w+4D), (w-D) (w2+3wD+6D2),
43 22 34(w-D)(w3+2w2D+3wD2+4D3 (w-D)(w +w D+w D +wD +D )),

a() (o)a (7.4)
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Since (w-D) (w3+w3D+w2D2+wD3+D4) wS-D5 1.

purely periodic with lengths of primitive period Z 1.

culate the matricians of a (0).

Thus the GEA of a(O) is

We shall cal-

With (3.6) we have

Ao(O) 1 AO(1)= AO(2)= AO(3)= AO(4) O.

Ao(n+5) Ao(n)+SDAo(n+I)+IOD2Ao(n+2)+IOD3Ao(n+3)+SD4Ao(n+4) (7.5)

n O,l’,...
Proceeding as in cases n 2,3 using Euler’s functions, we obtain

I AO(n)xn 1 + AO(n+5)xn+5
n=o n=o

=l+

_
(AO(n)+SDAo(n+I )+IOD2Ao(n+2 )+lOD3Ao(n+3 )+SD4Ao(n+4))" xn+5

n=o

x5 2 AO(n)xn + 5D(-I + 2 AO(n)xn)x4 +
n=o n=o

+ lOD3x3(-1 + 2 AO(n)xn)+lOD3x2(-1 + AO(n)xn) +
n=o n=o

+ 5D4x( -I + 2 A(n)xn);
n=o

1 (x5+5Dx4+10D2x3+10D3x2+SD4x) ] A(n)xn
n=o

(SDx4 + lOD2x3 + lOD3x2 + 504x),

2 A0(n+5)xn
n=o I (x5+5Dx4+lOD2x3+lOD3x2+5D4x)

2 xS+SDx4+IOD2x3+IOD3x2+SD4x)"
k=o

Hence

Yl’ Y2’ Y3 Y4’ Y5 (5D)Y2(lOD2 (10D3)Y4(SD4
5YI 3+2Y4+Y5=n

> (Yl+Y2+Y3+Y4+Y5) 5Y2+Y3Yl’ Y2 Y3 Y4 Y5 +Y4+Y52Y3+Y4Dy2+2y3+3y4+4y5
5Y1+4Y2+3Y3+2y4+Y5=n
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5 4

Yl ’Y2’Y’Y4 ’y

5 Yi+l=n
l=O

n 0,I,

+l2y3+Y4J2+2Y3+3Y4+4y5

(7.6)

Formula (7.6) is, indeed, a bit frightening, but it calculates

explicitly any A0(n+5) (n =0,1,... just by solving the linear

equations (5-i)Yi+1 n.
l=o

We shall calculate a few matricians from formula (7.6). When one

of the Yi-S will not be mentioned, its value is understood to equal

zero.

n l; Y5 i, AO(6) 5D4;
n 2; i) Y4 I; ii) Y5 2; AO(7) IOD3 + 25D8;
n 3; i) Y3 I; ii) Y4 Y5 l; iii) Y5 3,

A0(8) 10D2 + IOOD7 + 125D12;
n 4; i) Y2 I; ii) Y3 Y5 i; iii) Y4 2; iv) Y4 l, Y5 2;

v) Y5 4, AO(9 5D+100D6+lOOD6+750D11+625D16,
AO(9) 5D+200D6+750D11+625D16;

n 5; i) Yl I; ii) Y2 Y3 i; iii) Y3 Y4 l; iv) Y3=l, Y5=2;
v) Y4 =2’ Y5 =I; vi) Y4 i, Y5 =3; vii) Y5 5,

Ao(10) 1 + 50D5 + 200D5 + 750DI0 + 1500D10 + 5000D15 + 3125D20.
A0(lO) i + 250D5 + 2250D10 + 5000D15 + 3125D20.

We shall further calculate the matricians A(v)" i 1 2 3 4. We have

+ (w+4D)Al(n+l) + (w2+3Dw+6D2)Al(n+2)
+ (w3+2w2D+3wD2+4D3)Al(n+3) +

4 3 2 2 3 4 (n+4+ (w +Dw +D w +D w+D )A1

(w+4D)Ao(n)+(w+4D)Ao(n+I)+(w2+3Dw+6D2)AO(n+2) +

+ (w3+2w2D+3wD2+4D3)AO(n+3) +

+ (w4+Dw3+D2w2+D3w+D4)AO(n+4)
Comparing powers of w4 on both sides of (7.7) we obtained

Al(n+4) Ao(n+3) + 5DA0(n+4)"

(7.7)
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Further

Ap(n)+(w+4D)A(2n+l)+... +(w4+... +D4)A(2n+4)
(w2+3Dw+6D2)[A0(n)+... +(w2+3Dw+6D2)A0(n+2)
+ (w3+2w2D+3wD2+4D3)AO(n+3) +(w4+Dw3+D2w2+D3w+D4 )AO(n+4) ]

A(2n+4)= Ao(n+2 )+ 5DAo(n+3 )+ IOD2Ao(n+4). (7.9)

We leave it to the reader to verify, by the same method the results

A(3n+4) "’0
(n+l)+ 5DAo(n+2 )+ lOD2Ao(n+3 )+ IOD3Ao(n+4)

A(4n+4)= A(On)+ 5DA(on+I )+ IOD2Ao(n+2 )+ IOD3Ao(n+3 )+ 5D4Ao(n+4).
We thus have obtained

Al(n+4) A0(n+3) + (15)Ao(n+4)

A(2n+4) AO(n+2) + (15)AO(n+3)+ (52)AO(n+4)
A(3n+4)= Ao(n+I )+ (15)DAo(n+2)+ (52)D2AO(n+3 )+()D3AO(n+4
A(4n+4)= AO(n )+ (15)DAo(n+l)+ (52)D2AO(n+2 )+()D3A(on+3)+ (54)D4AO(n+4

(7. o)

(7. )

Ai(n+4) .r---- An+4-J)(5"j) Di-j, i:1,2,3,4, n:0, ,...I (7.12)
j=o

To conclude with this first paper of the sequence, we shall still

approximate the number , . From (7.1)we have, with D l,

w o
From (7.2) we obtain, with Theorem l,

Al(n+6)
w+4 lim

n-->co AO(n+6)
and from (7.8)

AO(n+5 + 5AO(n+6)
w+4 lim

n -> co A_n+6

A(n+5)
0w=l + lim

n-> co AO(n+’6)"
From (7.14) and (7.6) we finally obtain

(7.13)

(7. )
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(7.15)

(Y2+Y3+Y4+Y5)
2 (Y3+Y4)D(y2+2y3+3y4+4y5)

(Y2+Y3+Y4+Ys) (Y3+Y4)D(Y2+2Y3+3Y4+4Ys)2

Substituting in (7.14) the values for n 1,2,3,4 we obtain

w i + i + i + I’5’8’0’
1.143, 1.149, 1.149, 1.149.

It seems that 1.149 is a good approximation of . Indeed,

I. 1495 2.

From (7.2) and Theorem I we further obtain, in virtue of (?.9)

A2(n+4) A0(n+3) A0(n+2)w2+3wD+6D2 =n->limco A(n’+4)u 10D2+ 5D nlim-> co A0n+4)’( +nlim--> co A(n+4

( n-> (’n+4
A0(n+3)1 A0(n+3)

( )
A0(n+2)w2+3D D + limco "’0

+ 6D2= 10D2+ 5D n-->limco A0n+4 +n->limco A(n+4
Hence

A0(n+3) A0(n+2)w2= D2+ 2D n->limco An+4)
+ n->limco An+4)

with D I, and the approximate value of w, we obtain

w2 I + 2 0.149 +
An+2)
A’O(’n.’4’ )’

A0(n+2)
w2 1. 298 + A0(n+4 )

From here w2 can be easily evaluated exact to two places.

REFERENCES
I. JACOBI, C.G.J. Allgemeine Theorie der kettenbruchaehnlichenAlgorithmen, in velchen j ede Zahl aus drei vorhergehendengebildet wird, J.f.d. reine angew. Math. 6_9 (1969), 29-64.
2. PERRON, O. Grundlagen f{/er eine Theorie des Jacobischen

Kettenbruchalgorithmus, Math. Ann. 64 (1907), 1-76.



320 M. BAICA

3. BAICA, M. An algorithm in a complex field and its application
to the calculation of units Pacific J. Math. Vol. IIO0
No. I (1984), 21-40.

4. BERNSTEIN, L. The Jacobi-Perron algorithm its theory and
applications. Springer’, Berlln-eidelS’erg-Nw "Yor. Lect.
Note. Math. 207" (1971).

5. PERRON, O. Ein neues Konvergenzkriterium fdr Jacobi-Ketten 2.
Ordnun. Arch. Math. Phys. (Reihe 3) 1__7 (1911), 204-211.

6. BERNSTEIN, L. Representation of WDn d as a periodic con-
tinued fraction by Jacobi’s algorithm. Math. Nachr. 2__9
(1965), 179-200.

7. CARLITZ, L. Some combinatorial identities of Bernstein, SIAM J.
Math. Anal. 9 (1978), 65-75.

8. CARLITZ, L. Recurrences of the third order and related combina-
torial identities, Fibonacci Quart. 1__6 (1978), 11-18.

9. HERMITE, CH. Letter to C.G.J. Jacobi, J of.d. reine angew.
Math. 40 (1939), 286.


