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ABSTRACT. A partition over finite field is defined and each equivalence class is
constructed and represented by a set called the fundamental set. If a primitive
element is used to construct the addition table over these fundamental sets then

all additions over the field can be computed. The number of partitions is given

for some finite fields.
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1. INTRODUCTION

Throughout, p,q will be fixed but arbitrary primes.

Let a EGF(pn) ; n > 1 and define A = Au ={a, a+1, a+2,...,a+ (p-1)}. 1If
B E Au , then AB = A,- Define ZAa’ 3Au""’ (p—l)Aa such that R,Aa = {8x/x EAG}
£ =1,2,...,p-1, thus RAQ = Ala'

o -1 p-
*
LEFINITION. A = b A = lj A, .
a a fLa

Note that if B € "A_, then A = “A
ote that B c,ten Aa- g .

] 2 £ £
, DEFINITION. A= (xP7/x €A} for £ = 0,1,2,..., so, AP = P P e,
n
L (p-1)} = Aapl. Since o = a for every a € GF(pn), we have Agn = Aa' Therefore,
the values of £ in the definition can be limited to 0,1,2,...,n-1.

* pl % * pl
DEFINITION. AP = *a pt = TP,
a a a
— n-1 pl
DEFINITION. A = A
a 9.=0 a

h K—{Pj+b|ez* bEZ and jE Z )}
tus,u-au a P’ l:‘an _‘]En.

LEMMA 1.1. 1 A A =24
fB GAG, then Aa AB'

— *
PROOF. If B€E Aa’ then there exist a € Zp’ bEZ and § €2z such that
n

= j i A A
B = aaP” + b. This implies ABC Au' Since (Zp,+,.) is a field and a ¥ 0 both

-1 -1 _pn-j -
a ",~b exist. Therefore, a = a ~gP + a }(-b) which says « EA,. Hence A C A
a

- - [}
orAa—-AB.

8
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DEFINITION. A will be called a Fundamental Set.

Since Ag A for every a € GF(p ), there exists a least positlve integer m < n

m P
such that AP = aA for some a € Z . It follows that A U A .
o (1 P

DEFINITION. Let a,B EGF(pn). We define the relation =~ in GF(pn) as

a~ B iff Au = AB
THEOREM 1.1. From Lemma 1.1. the relation ~ is an equivalence relation.
This equivalence relation ~ will partition the field GF(pn) into equivalence
classes Ka and each class is represented by a fundamental set.
DEFINITION. Xu will be called a Fundamental Class.

n
p -1
Let 6 be a primitive element in GF(pn). Since, ep-l is primitive in Zp .

*
then for every a € Z  there exists k_, where 1 <k <p-1. So, k  can be determined
easily. If the elements of the fundamental set A“ are expressed as powers of 6, then

Ka can be expressed from Aa as powers of 6. So to calculate the addition table of

Ka , it is sufficient to have the addition table of Aa' Therefore, if Ku ’X"Z’“"A“s'
are all the fundamental classes in GF(pn), it will be enough to tabulate only the
addition tables over Aa ""’Aa with respect to 8 to do all the calculations over
GF(p™. ! °

1f for some o € GF(pn), m is the least positive integer such that upm = aat+bh
for some a £ Z: and b % Zp’ then it i; true that m will be the smallest positive
integer for every B € Aa such that BP = aB+ b' where b'€E Zp. This will be shown
below.

DEFINITION. Let a € GF(pn), if m is the least positive integer such that
upm = aa+ b for some a € Z , b E Z then m is called the index of a and a is the
coefficient of a and we say a has an index m with coefficient a. If a € Zp we say
o has index 0 with coefficient a = 1.

LEMMA 1.2. If o has index m with coefficient a, then every B € A has the
same index m and the same coefficient a.

— *
PROOF. Let B € A with index s and B EZP. There exist & € Zp’ § € ZP and

] m 3 o i
NS z, such that B = 2aP” + 6. This implies 8P = (2P + 8)P = 2(aa + B)P + 5 =
af + c where c € Zp. Therefore s < m. But from Lemma 1.1. we have Ka = XB' Hence

a € A. Therefore m < s, which implies B has index m with coefficient a.

DEFINITION. The fundamental set A, has index m with coefficient a if and only
if m is the least positive integer such that Ap = aA.

THEOREM 1.2. If o has index m with coefficient a , then Au has index m with
coefficient a and each fundamental set AB(Z Aa has the same index m with the same
coefficient a.

PROOF. Follows from Lemma 1.2.

From the above theorem we can define the index K; to be the index of any element
or any fundamental set included in Aa'

Now, we want to discuss some properties of the index and the coefficient of

the fundamental set.
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THEOREM 1.3. In GF(pn), if A has index m and coefficient a then m divides

n and an/m = 1. o
PROOF. Letn =2m+ r, 0 <r <m. Since of = aa+ b, for some b E Zp’ we have
am - - n Lm - -
o = a!'(u) + (.:-1jt 1 + az 2 +...4 1)b and a = o = P )pt = a’“-ar + (az 1 + az 2 +

r
...+ 1)b. So, AP = a*A which implies r = 0 and a = L

. THEOREM 1.4. Let A be a fundamental set with index m and coefficient a. If
*
AP = bA, bE Zp , then m divides £ and aﬂ'/“l = b.
PROOF. Since m is the index of A, we have m < 2. Let £ =km+r, 0 < r < m.
m
If o« € A,then there exist §, §' € Z_ such that oP =aa+ 6 and o =ba+ 6'. But
km r k . 4 P k of

ba+ §' = (up WP = @%a+ 8 )p + 8" = a%«P + 6". This implies r > m. Therefore

2/m

r = 0. Hence m|% and a = b. Note: Since all finite fields of the same order are

isomorphic, if a, € GFl(pn) having index m with coefficient a, is the image of

1
a, (S GFz(pn) under an isomorphism o, then a, has index m with coefficient a. There-

fore, GFl(pn) and GFz(pn) have the same partitions with respect to the equivalence
relation ~ .

EXAMPLE: Let F = GF(52) and 6 be a primitive element in F such that 6 satisfies
the primitive polynomial [ indexing polynomiall, P(x) = x2 + 4x + 2. The field F has

two equivalence classes, Z5 and Ke. Ay = {6, 6 +1 = 622, 6+ 2= 915, 6+ 3= 82,
6 + 4 = 617. So, we have 6 > 622 - 615 -+ 92 +> 017. Since 96 = 2,then 4 = 912 and
3= 618. Therefore,

24 = (67,0" + 2 = 6%,07 + 4 =6"1,07 + 1= 0%},

34y = (012,677 + 3 = 616,617 + 1 = 610,617 + 4 = 0?1, 019 + 2 = %),

4ay = 613,013 + 4 = 610,613 4 3203, 13 4+ 2 =61, 613 41 - 6%

5 _
and Ae = AAB. .
2. SOLUTIONS OF EQUATIONS OF THE FORM Ap = aA.

To study the fundamental sets in GF(pn) with index m < n, we have to study the
m *
solutions of: (a) x® = ax + §; aE Zp ,a#l, 6€ Zp and (b) «® =x+ 8;

*
€2z in GF(pn). Note: If 8 = 0 in (b), then all the elements of the subfield
GF(p™) will satisfy (b).

We will now consider the solutions of

m
xP =ax+ 6 (2.1)

*
where a € Zp’ a#1land §E Zp .
LEMMA 2.1. Equation (2.1) has a solution a ¢ Zp with index m only if m divides

n and an/‘11 = 1.
The proof is a direct application of Theorem 1.3 and Theoremml.l;.
LEMMA 2.2. In equation (2.1), for y = x + a-1° ve have yp =ay.
P S S s
PROOF. o=k = g
§ § aé
-ax+6+a_l a(y-a_1)+a_1

ay.
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Therefore, to study the solutioms of (2.1), it is sufficient to study the solutions of

m
yp = ay.
LEMMA 2.3. X = lfa is a solution of equation (2.1).
If 6 is a primitive element in GF(pn), then the following statements are true:
2o-1
p-1 *
(a) 6 e z n
P 2 =1,
(b) For every a € Z_ there exists an integer ka such that a = ep’l a,
where 0_<_ka<p—l. If a # 1, ka#O.
n
LEMMA 2.4. For every m such that m divides n and n p-1, then p -1, 1
m pm -1

is an integer. m

-1 M -1 _ EMEL 4 o™

n

PROOF. Let = = k. So, p = l(mod k) and 2
m m m

p -1 p -1

... +1. Since p = 1(mod k), we have pJ = 1(mod k) for j = 1,2,... . Therefore,

k-1
m, j n|{pt-1
Z (p)” = O(mod k). Hence —|*—— .
m| m
j=0 ) p -1
n/m n " ka
LEMMA 2.5. If a =1, a#1and 2|p-1, then B ==. is an integer.
m pm—l p-1
"o ka "1 1 (n/m)ka
PROOF. B—== . —f. - P=2 . = LORLE
po-1 P p -1 /m P n_,
P_;_.k
But, from Lemma 2.4 PT‘_}_ . ni is an integer. Also, a =6 p-1 a implies
n p -1 /m
p-1,, .0
n/m _ _P-1 am En-l n _ n . n
a =0 = 1. The;efore, p=1 ka m_Omod(p--l). So p lka o
THEOREM 2.1.  Given xP = ax (2.2)

where mln, a# 1 and 0(a) =§ , then
(a) Equation (2.2) has solution a in GF(pn) and a € Zp'
(b) If a is a solution of (2.2) where a = e"', 6 is primitive in GF(pn), then

n_, k n_y
gz == ., 28 (mod ==,
m p-1 m
p -1 p -1

(c) x = 0 is the only solution of (2.2) in Zp.
PROOF. o
(a) If x € Zp, then xP = x = ax. Therefore x = 0.

m
(b) Since xP = ax and a # 1, then x ¢GF(pm). n
r.p'-1 :]1. ka
(c) 1If 8T is a solution of (2.2) then (6 )p =a=29P . Thus,

n
m_,y: P -1 -
r(p -1)= po1 ka (mod p -1)

which implies r =

It follows from Lemma 2.5 that the above congruence is meaningful.
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n k n
- - T
THEOREM 2.2. For every r = P;l——l . pil (mod rT]'-), o is a solution of
-1 -1
(2.2). P P
n k
PROOF. Let r=2 =1 ._2_ 4 4P =1l.45-0,1,2,... then
m p-1 m
p -1 p -1
n
P -1,

m k n m
©HP LoeP"1 2L P LI a. 124 s0, (6P = ae.
Now consider the solutions of

m
% =ax + 6 (2.3)

*
where a # 1, a € ZP, [ GZP, mln and 0(a) =% . From Lemma 2.2, Theorem 2.1 and

Theorem 2.2, we have of + lfa is a solution of (2.3), where

n k n
rzl =1 ,_=& (modpm-l) and

$ is the only solution in Z_.
m -1 a P
p -1 p -1

1-

THEOREM 2.3. Let A be a fundamental set in GF(pn) with index m and coefficient
n
a# 1. If A is not included in any proper subfield of GF(pn), then 0(a) = a and
n
o lp-1).

PROOF. Let 0(a) = d and a € A. It follows dlﬁ and a has an index m with

m
coefficient a. Thus, aP
dm
P = adu + (ad-l + ad-z

= aa + 6§ for some § € ZP. Hence

a + ... +1)8§ = a. Therefore a EGF(pdm), which implies
GF(pdm) = GF(pn) and d = E. n

COROLLARY 2.1.  Let X = aX + 6 (2.4)

n

such that a # 1, § €Z_, m|n, a" =1 and 0(a) = 2, then equation (2.4) has solutions
in GF(pn) and all the ls)olut:ions are included in GF(pg'm).

PROOF. GF(me) is a subfield of GF(pn). Equation (2.4) satisfies the conditions
ofl'l‘heorem 2.1 over GF(plm) and if a is a solution, then

m

P L 2-1 + 8!7.—2

a =aa+ (a + oo +1)§=a+0=aqa. TherefoteaEGF(p!'m).

p"-1

Lm
Note: If 6 is a primitive element in GF(pn), then y = P - 1 is a primitive element

2
in GF(p ™). Therefore, the solutions of equation (2.4) are of the form:

-1
. m k' 2m P2y
v +16 where r' = -1, = (mod 2 _]')andaﬂ'yp_1 2 . since
-a m p-1 m
p -1 p -1
n_, n gn-l Elm—l . n
P;]_k Lllk 2m ° p-1 ka uk'
a=¢9 P 3 we have 8P~ 2. of -1 )=6p-1 a

So, ka = k;. Therefore, the solutions of (2.4) over GF(p") are of the form

T

[ l—f—a , where

n n k n
r=—&—£ml °r'.=.1:l-1 . fl(modlm-l)
p -1 p -1 P p -1
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LEMMA 2.6. Equation (2.4) has pm solutions in GF(pn).
PROOF. Corollary 2.1 insures that equation (2.4) has solution in GF(pR'm).
n -k

P -1 _a

o -

From the previous note, Theorem 2.1 and Theorem 2.2 we have a, = 6P ~ 1

[
and % + -2 is a solution and if a € H = {ao - B+ l—f—a- BEGF(pm)}, then a is a

solution of (2.4). It is clear that H has pm elements.

. *
THEOREM 2.4. For every m divides n and every a € Zp’ a # 1 such that
0(a) E , there exists a fundamental set in GF(pn) with index m and coefficient a.
m
PROOF. By Lemma 2.6, xP = ax has solutions in GF(pn). If 6 is a
n
P -1, k
n m_, a
primitive element in GF(p ) then a = oP is a solution. We claim that a has

an index m with coefficient a. To prove this, we assume a has an index £ < m with

coefficient b, therefore by Theorem 1.4 and Theorem 2.2 we conclude that a is a

2 n n
solution of x* = bx and it is of the form 6° where s = %1 . pklj 1 mod (P—E_—l).
p -1 p -1

So, there exists j where j > 0 such that:

-1 % APt S U ka
L p-1 p-1

p -1 pl-l p-1

1 ka
then 0 < j = — [ - ] .
p-1 pm-l/p£-1 k‘b

m
Since%i>p s ka <p-1 and likbwe will have
p -1

03 <5ig [m- ]<0

and this is a contradiction.
Hence A = Au is a fundamental set with index m and coefficient a.

COROLLARY 2.2. The minimum subfield which contains all the solutions of
equation (2.4) is GF(plm).

PROOF. The proof is a direct application of Theorem 1.3 and Theorem 2.4.

m
We will now review some known facts about the solutions of xX* = X + b in

the field GF(p").

m
Let x =x + b, where b EGF(pn) (2.5)

and d = g.c.d. (m,n) and r = % . The following theorems were given in [1].

LEMMA 2.7. If x. is a solution of (2.5) in GF(pn), then for every

0
n
T
i=1,2,..., pd-l, (X + 6P -1 )is a solution of (2.5) where 6 is a primitive

0
element in GF(pn) .
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PROOF . n o n
p_-1l,)p p -1,
1 m d__1
xg + 6P 7 =xP + (8P )P
n n
pd—lj p_d-lj
= (x +b)+0p -1 = x. + 6P -1 +b
0 0

d
THEOREM 2.5. The number of solutions of (2.5) in GF(pn) is either O or p .
THEOREM 2.6. Equation (2.5) has solutions in GF(pn) if and only if

r-1 od
Z P =o.
£=0
* m
If we assume m divides n and b € Zp in the equation X =x+b (2.6)

then we can conclude the following:
(a) d=m=g-+ c+ d(m.n),
*
(b) for every b € Zp’ we have

R, L]
m m
E: fm }: n
p = b=;b 0
=0 L=0

if and only if p divides % .
Now, we can restate the following theorems:
(a) Theorem 2.7. Equation (2.6) has solution in GF(p") if and only if p
divides = .
(b) Theorem 2.8. If equation (2.6) has a solution in GF(pn), it has pm
b
solutions, also if X is a solution then X + Opm- 1 .
j= 0,1,...,pm— 1 is a solution where 6 is primitive in GF(pn).
THEOREM 2.9. If (2.6) has a solution in GF(pn),then the minimum subfield that
contain all .the solutions is GF(ppm).

PROOF. Since equation (2.6) has a solution and m divides n then by Theorem 2.7
p divides ﬁ, therefore GF(ppm) is a subfield of GF(pn). If a is a solution of (2.6),

m pm
then we have up = a + b, which implies up =a+pb=as0a€Ec GF(ppm) and

a ZGF(pM b #0].
Let GF(pl) be the minimum subfield which contains all the solutions of (2.6)

therefore
6F(p") C cF(pP™)

and 2 # m. This implies £[pm. But since equation (2.6) has p" solutions in GF(p")
and by Theorem 2.5 and Theorem 2.6, g+ c* d(m?) = m. Hence, m|2|pm.
Therefore, pm = L.

LEMMA 2.8. If a is a solution of (2.6) in GF(p") where a has an index s with

coefficient a then s divides m and a = 1.
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PROOF., Theorem 1.4 implies slm. Let u;’ = r. Assumes a # 1 and
s m rs . .
of = aa + § for some § € ZP’ therefore of = of = ata + (ar 1+ar 2+...+1)6 =
@ +b. Hence a' = 1 and ar—l + ar-2 + ... +1=0 which implies b = 0, but this
contradicts the condition b # 0 of equation (2.6).
COROLLARY 2.3. In GF(pn), for every m divides n and p divides s, there

o m
exist (p- l)puJ elements a, where a € Aa , such that Ag = Aa and A, ¢ GF(p ).

*
PROOF. Equation (2.6) has p" solutions over GF(p") for fixed b € Zp and there

are p-1 different values for b.

COROLLARY 2.4. In GF(pn), if m is a prime, then all solutions of (2.6) have
index m with coefficient a = 1.

PROOF. This is a direct consequence of Lemma 2.8.

THEOREM 2.10. In equation (2.6) if p divides‘% , then there exists an a where
a is a solution of (2.6) and a has an index m with coefficient 1.

PROOF. Since pl— , then (2.6) has p solutions. Also by Lemma 2.8, if a has
an index s with coefficient a = 1 where s|m, then a satisfies xP =x+ 6 2.7
where 6 =§ (b) , hence s]m and p|§ . By Theorem 2.7 and Theorem 2.8, equation (2.7)

has ps solutions. Let {sl, Sps et s sg} be the set of all the indices of the

solutions of (2.6) such that 1 < s; < 84 <m for every 1 < j < &. Since s < [PZ-]

where [%] is the greatest integer less than or equal tog , we have
s s s [E]
“'<pl+pz+...+p"ip+pz+...p:Z

k+1_ 2K k+1_ 2k+1
But since p—# <p~ for k > 1 and L——R < , we have

and this is a contradiction.
COROLLARY 2.5. In GF(pn), for every m divides n, and p divides % , there
exists a fundamental set with index m and coefficient a = 1.

3. THE TOTAL NUMBER OF FUNDAMENTAL CLASSES IN SOME FINITE FIELDS.

In this section we will investigate the total number of fundamental classes
for some special finite fields. From the previous study we conclude that if plﬁ N

there exists a fundamental set with index m and coefficient 1 in GF(pn).
n

*
In GF(pn), for every m divides n, and every a GZP, a # 1 where a° = 1 there
n

exists a fundamental set with index m and coefficient a. Since a" = 1 then the
g-C°d(£,p-l)#1.
If A is a fundamental set with index m then A has p(p- 1)m elements.
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In this section we will use the following notations:

@ oM

®) 8™
subfield of GF(p").

(c) A(p ,m,a) = Number of elements in GF(pn) with index m and coefficient a

n
Number of fundamental classes in GF(p ).

Number of fundamental classes in GF(pn) but not in any proper

and none of these elements belonging to any proper subfield of GF(p ).

(d) E(m,a)={x = ax + §; GGZ,aEZ and 6 ¥ 0 if a = 1}.
(e) SE(m,a,n) is the set of all solutions of the equations of E(m,a) in
GF(pn) but not in Zp.
We shall investigate in the following the number of fundamental classes in
GF(qu), where q p-1, and q # p.
LEMMA 3.1. If qlp~-1,then qt+l divides pq [q -1 1 for every t = 0,1,2, ... .
PROOF. We will prove this lemma by induction. By Fermat Theorem the lemma
is true for t = 0. Assume it is true for t = s then

s+1 s q°
[p la-11_ 1] = [qu la=11y " _ 1]

$[q-1] 5 (g-1],9 1 S[q-11,9 -2
=t o [(pq = + 3 1974 4.+ 1]

sp q s, _ ¢
ip? [q-1] _ 1 [Z 2 [a 1]) ]

=1
Sp _ Sr__ q -j
Since 1:»q (q-1] = 1 mod q, then (pq [q 1]) = 1 (mod q) for every j = 0,1,...,qs.
q® s a®-j
. Z (pq [q-l]) = qs (mod q) = 0 (mod q) which implies qs"'2 divides
j=1
s+l[q_1]

[p* 1. t+1

LEMMA 3.2. In GF(pq ) where q/p-1 and q # p, we have

t t
t+1) - Pq [Pq [Cl"ll_l]

atp t+1

p(p-1)q
* s
1,then for every a € Zp. where a # 1, al 41

PROOF. Since g * ¢ + d(q,p-1)

for every s > 0, therefore equation (2.6) and equation (2.7) have no solutions in
t+l t+l

GF(pq ) for every m = qh; h > 0. Hence every element in GF(pcl ) but not in
t t+l

GF(pq ) has index qt+1 which implies that every fundamental set in GF(pq ) but not

t
in GF(p‘:l ) also has index qt+1. So:

t+1 t t t
4, _ pd - p% _pl [t le-11_ 4
t+1

A(p

p(p-1gq p(p-l)qt+l

From Lemma 3.1 and g * ¢ - d(p-1,9) = 1 we have A(pu.l) is an integer.
COROLLARY 3.1 In GF(pq) where ng- 1, q # p we have:

q-1
1 pp” " -1) 3.1)

qy _ P -P _
op) =1+ p(p-1)gq * p(p-1)q :
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t+1 t t+1
Since 0(|:u“1 ) = O(pq ) + A(pq ) we conclude that:

2-1
2 t+l
o(p“)=1+§ apd )
t=0

-1 t t
-1
=1+Z pd pd -1 _
t+l
t=0 p(p-1)q

where q[p-1, q # p. s
We shall now study the number of fundamental classes in GF(pp ).

By Theorem 2.7, Theorem 2.8 and Theorem 2.9, the equation

P

¥ =x+b ¢ (3.2)
where b € Z* and t < s has pp solutions and all solutions are included in
cF(ppt+1),
LEMMA 3.3. All the solutions of (3.2) have an index pt.
PROOF. Let o be a solution of (3.2) and has index m. We have m = pk for some
k t
k < t and app =a + c for some c € Zp which implies app =a + 0 =a. Therefore a is

not a solution of (3.2). t+1 t

t
COROLLARY 3.2. In GF(pp ) but not in GF(pp ), there are (p—l)pp elements
t t+1 t t
with index pp . So A(pp s Py 1) = (p—l)pP . ¢

*
PROOF. For a fixed b € Zp equation (3.2) has pP solutions and we have (p-1)
*
elements in ZP. pt+1 . 41 .
COROLLARY 3.3. If a € GF(p ) but a & GF(p ) then o has index p or p,
where t > 1.

COROLLARY 3.4. For t > 1;

t t+1  t
+
pt _ (p-1pP pP —pP -(p-1)pP
apm ) = t * t+1
p(p-1)p p(p-1)p
t t
_B, et [ pfﬁﬁ_l_l]
TSR (p-1)
P
t Pt (p-1)-1
- P -t-1 P -1 + 1] (3.3)
P [ -1 :
In GF(pp), the equation P =x+b (3.4)

*
where b € Z_ has p solutions and each solution has index p. Therefore there are

p(p-1) elements in GI-‘(pp)-ZP with index p. This implies:

p
LEMMA 3.4. p p(p-1) ., p -p(p-1)-p
o) =1+ T T pG-Dp
P 3.5

p-1
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COROLLARY 3.5. s -2, L t+l
0P ) =2+ Bl +Z 8P ) (3.6)
t=1

s
In what follows we will study the number of fundamental classes in GF(pp 4 )
where qfp-1, q # p and s,8 > 1.

*
Since qu— 1 then for every m divides ps -qz and every a e;ZP with a # 1, we
s £
P °q
have a T # 1. So, Theorem 1.3 implies that SE(m, a, psql) = ¢ for every
s 2
a # 1 and every m|p® - q" .
By Theorem 2.7, Theorem 2.8 and Theorem 2.9, we conclude the following:

LEMMA 3.5. For every t and h; 0 <t <s-1, 0 <h <y, SE(ptqh, 1, psql) has
t h
(p~-1)pp 4 elements, all of them are contalned in the minimum subfield
t+l h
PGP 1) and sEGS", 1, p%ah) N RGP D) = o

LEMMA 3.6. For every t, h such that 0 <t <s-1, 0 <h < 2-1,
t h+l s 2.
» 1, pq).
ptqh *
PROOF. Let a € SE(p q s 1, psq ). Then qP =a+ § for some s E Z_,
t h P
P °q +1
which implies of =a+ [q - 8], where [x] is the least nonnegative residue
of x mod p. Since [q+6] # O then a € SE(pt-qh+l, 1, psql).
It is clear that if a € SE(pt qh, 1, psql),then a has an index pt -qr for
: t L t h+ £
some 0 < r < h. Since, SE(p, 1, psq ) C SE(ptq, 1, psqz) C ... CSE(pq 1 1,p q )

we conclude that

SE(p* q , 1, p°q ) is included in SE(p q

t+1 t h+l t h
h+l t h+l . .
AP -q s pa T, 1) = (p-1pP T - (p-1)pP "9

t, h t.Pre-1]
= (p-1pP "9 | pP Tty (3.7)

t+1 h+l

q

Therefore, in GF(p ) there are

t.h t h t.h t h
Pra P g (9-1] pP "9 [P "9 la-1l_

t h+l t+1 h+l
p(p-1)p -q P Teq

(p-1)p (3.8)

fundamental classes with index pt°qh+1. From Lemma 3.1 and the fact that

pt > t + 1, the number given in (3.8) is an integer.

t+l  h+l t_ h+l
Since any proper subfield of GF(pp q ) is a subfield of GF(pp q ) or
t+l_ h t+1_ h+l
GF(pp 1y, So, in GF(pp q ), the number of fundamental classes with
index pt+1'qh+1 is equal to
41 h+l t htl t+#1_h t_h .qM[q-1
ppt 4 P4 pP TP 79 —(p—llpp a [Pp 4 la-tl_ g
t+l_ h+l
p(p-)p "-q
t+1_h _t+#1_ h _ t.h pteqliq-1]
Pt e el : {pP ale-tl ;. 5 (3.9)
= t+l  ht
p(p-Dp  "°q

Therefore, we have the following
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s 2
THEOREM 3.11.  In GF(pP "9 ),

t+l. n+l
AP Y ) = (3.8) + (3.9).

From it follows that

pEHL, Bl t+1_ htl t+1, h
o(p ) =8P T ) 40P 7Y
D it ptogh
+00® " ) - 0P "Y) . (3.10)
We now study the general case, i.e. the number of fundamental classes in GF(pn).
2 2 '}
1 2

. _ . r
First, let n = 9 a " .- q such that 2, #0 gi[p-l and 9y # p for every
i=1,2,...,r.
Let N(s,p) be the number of elements in GF(pS) but not in any proper subfield
s
of GF(p’).

THEOREM 3.12.. The number N(s,p) = :E: u(i)qj where p is the M8bius functions.
(See [2]). ij=s

Since for every m divides n and every a € Z* , the set SE(m,a,n) = ¢. It
implies that if o EEGF(pk) where GF(pk) is a sub?ield of GF(pn) and a doesn't belong
to any proper subfield of GF(pk), then a has an index pk. So, we have the following

THEOREM 3.13.  If GF(p¥) C GF(p™) then a(p%) = (ks )k )
p(p-1)p
Kk 2 2 ES
= . . 2
Now let n = p qa q, .-+ q  ~ such that k #0, 9y # p, 1 # 0 and

qup—l for every i = 1,2,...,s.
t t t t
LEMMA 3.7. For every m = p K P PR qss where 0 < t < k-1,
0 < ti < 11, i=1,2,...,s then SE(m,1,n) has (p-l)pm elements, all of them are
contained in the minimum subfield GF(ppm) and SE(m,1,n) F\GF(pm) = ¢.

Since SE(m,1,n) C GF(ppm), we have SE(m,1,n) = SE(m,1,pm).
t t

LEMMA 3.8. For every m = pt-qll° ces ® qsS where 0 <t <k-1, 0 < ti < li

for i = 1,2,...,s and for some t
SE(mqr,l,n)-

LEMMA 3.9. 1f pk divides m, and m divides n then SE(m,1,n) = ¢.
COROLLARY 3.6. If SE(mqr ,1,n) # ¢ and SE(mqr ,1;n) # ¢ for some .2} ¢ T,
1 2

e tr < lr -1, SE(m,1,n) is a proper subset of

then SE(mqu,l,n) # SE(mqrz,l,n).
The proof is an immediate application of Lemma 3.7,
COROLLARY 3.7.  If p® divides m but not r, then SE(m,1,n) N SE(r,1,n) = ¢.
The proof is a direct application of Lemma 3.7.
COROLLARY 3.8. If for some 0 < t < k-1 ptlm and ptlr but pt+11m and
pt+1]r then

SE(m,1,n) N SE(r,1,n) = SE((m,r),1,n)

where (m,r) =g * ¢ * d(m,1r).

The proof is a direct application of Lemma 3.7, Corollary 3.6 and
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Corollary 3.8.
We know from Theorem 2.10 if m divides n and SE(m,1,n) # ¢ then there is an

a € SE(m,1,n) such that a has an index m. We want to find the number of elements in
t t11 tlz tlh
SE(m,1,n) with index m. Let m = p -q -q c ... * q and m divides n where
11 12 1h

0<t<k-1, t #0 for r = 1,...,h and h < s. If we rearrange the q's in the

factorization of n such that 9, = 9 for r = 1,2,...,h, then SE(&L,I,n) C SE(m,1,n)
i

m

h
for every i = 1,2,...,h, and [ SE(Em—,l,n) = SE( , 1, n).
i=1 i

9 9+

We shall use the following notations for the remaining of this section:

t t t
2 h
m=peq;Tq, e 9, 1< ti
h
and L o m
m, = — m, = E -———
1 9y 2 939
i=1 i,j=1
h i<
m=_$_——“’ — 1<i <i,<...<i_ <h and
T 9y°Q; * --- v 9y -1 2 r— °
i=1 "1 72 r
J
r r
1oy # 11 q for ifzs
1 % 3=1 i
¢ t.-1 t -1 th-l
If r > h then we define o = 0. Therefore mo= P g 4, Coees t .

From previous Lemmas, we conclude the following.

If R[SE(m,1,n)] is the number of elements in SE(m,1,n) with index m then

R[SE(m,1,n)] = m - o, + o, - m, + ... + (—l)rmr + ...+ (—l)hmh . (3.11)

Also, if B € GF(ppm) and not in any proper subfield of GF(ppm), then 8 has index
m or pm. Hence we have the following.
THEOREM 3.14.

R[SE(m,1,pm)] _ N(pm,p)-R[SE(m,1,pm)] . (3.12)

pm, _
AT p(p-Dm p(p-1)pm

s
To determine the number of equivalence classes in GF(pq ) where q]p-l, we need
*
to study SE(m,a,qs) for all m dividing qS and a € Zp' From Theorem 2.7 we have

SE(M,l,qS) = ¢ for every mlqs. Also we know that for every mlqs and every a # 1,
* qS/m s m
a e Zp if a =1 then SE(m,a,q ) has P(p -1) elements. One question we will try

s
*
to answer first is that for given m, is there an a € Zp, a # 1 such that a9 /m =1
*
and then how many such a's in Zp can one find? Another question is for fixed r and

a, how many m'“s, a'“s are there such that SE(m',a',qs) CIE(m,a,qs).

LEMMA 3.10. In Zp, if qv divides (p-1) then there are qvul(q-l) elements of
order qv.
PROOF. Let b be primitive element in Zp' Assume for some k; 1 <k < p -1,

p-1 for some
q

bk is a solution x3 = 1. This implies k*q = 0 mod(p-1). So, k = t
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t=1,2,...,q-1. But also if r = 22—— for every £ = 1,2,...,q-1 we have

®H9 = bE(P - 1and b* #1 whichqimplies that in Z_we have (q-1) elements of

order q. Let p -1 = qz * h where the g = ¢ - d(p—l,hg = 1, then for every r such

that r = 0 mod(ql_v'h) and 0 < r < qv we have b® is a solution of xqv = 1, which

implies that in Zp, ;here are qv-l elements such that xqv =1 ;nd x¢#1l, Forv=1,
= 2 we will have q° - 1 - (q-1) = q(q-1) elements of order q°. The same for

t-1 -1) = q (q-l) elements of order qc.

lJ

v=1¢t-1, v=_t we will have qt -1-(q
LEMMA 3.11. In Zp, if for a fixed b where 0(b) =

v=u
an a of order q where £>v>yand a satlsfles x4 =b (3.13)

and 1 < p < & there exists

then there are q “H gistinct elements in Z of order qv satisfying (3.13)
PROOF. Note that equation (3.13) has no repeated roots. If a is a solution, we

H H v-u u
claim that a,aq +1, an +1, e a(q “Dra-1 are distinct solutions of (3.13). To

r.q +1 _
prove our claim, first since 0(a) = qv then a * for r, = l,2,...,qv M_1 are

=1-+b=">b. Since

U
q v-u o’ v-u
r +l)q = af'q .4

distinct cleients in Zp. Also (a

u
g *c d(rqu-+1,q) =1 and 0(a) = qv, we have O(arq +1) = qv.

THEOREM 3.15. If b €2z <uch that 0(b) = q%; 0 < p < &, then for every v,
£ > v >y, there are qV-u elenents of order qv and satisfying (3.13).

PROOF. In Z_we have qv-l(q-l) c¢lements of order qv. Let ¢ E-Zp and 0(c) = qv
v-i 1 M
and let cq =dsod¢# 1 and a% = 1. Furthermore, the order of d is q . By

- v
Lemma 3.11, we have qv Yelements satisfying x3 = d for each d. But there are

-1
ﬂ__;é%:ll = q“_l(q-l) distinct d's of order qu for which the above equation is
q

solvable and that is exactly the total number of elements in Z_ having order qu.

LEMMA 3.12. If q divides p-1, then q divides p -1 for every t > O.

PROOF. By induction.

In GF(pq) where q divides p-1, the set SE(l,a,q) # ¢ if and only if 0(a) = q.
Since there are (q-1) elements of order q and for a fixed b with 0(b) = q, the set
SE(1,b,q) has p(p-1) elements, therefore GF(pq) has BSE:llSS%ll = (q-1) fundamental

p(p-1
classes with index 1. So we conclude:

9 2 (a- p-p-p(p-1) (g-1) +1
0% = (a-1) + BERIE
q-1
_ 7 7-1) + (p-1)
= (q-1) +
(a-1) (p-1q
q-2, q-3
- (q_l) +R R 3 +...+1+1 (3‘1a)
Since P = 1 mod q.
q
q-r _ =
1+ E P =1+ (gq-1) mod q = 0 mod q.
r=2

So, (3.14) is an integer. s
THEOREM 3.16. In GF(pY ) where q divides (p-1), if 0(a) = q', then for every
t t t+v
t, where 0 < t < s-v we have SE(q ,a,qs) = SE(q ,a,q ) # ¢ and

+ t _ vit=l
SE(q%,a,9"*%) N sE(q%,a,q" ) = 4 .
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PROOF. By Corollary 2.1 we have

+
SE(qt,a,qs) - SE(qt,a,q" t)# 6 -
t

Theorem 2.4 and Corollary 2.2 will imply that qu =aX+b; beE Zp has a

solution a, with index m = qt and a, ¢ GF(Pqt+v 1). Ey Theorem 2.1 the solution

set of this equation is H = {uo - B+ ig; /B EEGF(pq )} and it is clear that
qt+v-1 b

H N GE(p <455}

NOTE: This theorem is not true in general. It is possible that in some cases
the minimum subfield that contains all the solutions of xpm = ax + 8 has a proper
subfield which contains some of these solutions.S ,

From Theorem 3.16 we conclude that in CF(pq ), where glp-1, SE(qt ,b,qs) is a
. t EN . ' ' qt-t'
subset of SE(q ,a,q ) if and only if t' + v’ = t + v and b = a, where
o) = q"

v > 0, Theorem 3.15 insures the existence of exactly q elements "b" in Z such

*
, 0(a) = qv, t' <t < s-v. Also for a fixed a € Zp with order qv where

+1
that 0(b) = qv and b% = a. Hence, for a fixed a with order qv and fixed t;

t < s-v there are q elements b in Zp such that:

-1
SE(qt ,b,q%) C SE(q%,a,q®).

*
Therefore, if we start with a, S Zp such that O(ao) = qv, then there are

* v+i q
a1y eee anEE Zp where O(ai) =q and (ai+1) = a;. So, we have

SE(qt—(i+l)

and qv+n|(p-l).
*
Let p-1 = qu » h where g - ¢ + d(h,q) = 1. Then for every a € Zp’ a #1 and

s 33410 qs) C:SE(qt—l,ai,qS) for every i = 0,1,2,...,n-1 where t-n >0

every t > 1 such that 0(a) = qv, 1 <v<2and t +v <s we have the following
Lemma. . s qt t-1
LEMMA 3.13. In SE(q ,a,q ), there are exactly (p -l)p-(pq -)p-g
elements with index qt and coefficient a. v
From this lemma, we conclude that in GF(pq ) there are
qt qt-l
-1)- -1) - -1
”-L-C . )29 . e (3.15)
(p-1)+q

fundamental classes and each class has an index qt and a coefficient with order qv.

Lemma 3.12 insures that (3.15) has an integer value. We will use the notation:

I'(m,t,v) = (3.15), wherem =t + v, 1 <v<gand t >1.
s
It is clear now that in GF(pq ) where s > 1, we have

s s-1 s-1
@Y -pY H)p? -1(g-D (3.16)

p(p-1)q°
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fundamental classes and each class has index qS with coefficient 1.

Therefore, for s > 2, & > 2 we conclude that:

0(q% = 0(® 1) + (3.16)

s 41 q‘5 s-6-1
+ Z r(s,s-v,v) + p(p_ -1)gq G(q;l) (3.17)
v=1 p(p-L)q

where s-6-1 = min{2-1, s-1} and § = max{0,s-2}.
If £ = 1 then we have:
s-1
0(a®) = 0(*™H) + (3.16) + P-Q’i'—llf‘llﬂ . (3.18)
p(p-1)g
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