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ABSTRACT. A partition over finite field is defined and each equivalence class is

constructed and represented by a set called the fundamental set. If a primitive

element is used to construct the addition table over these fundamental sets then

all additions over the field can be computed. The number of partitions is given

for some finite fields.
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i. INTRODUCTION

Throughout p,q will be fixed but arbitrary primes.

Let E GF(pn) n > 1 and define A A {a, a+l, +2, =+ (p-l)}. If

B E A, then A A. Define 2A, 3A (p-l)A such that A {x/x A}
1,2,...,p- I, thus As As.
DEFINITION * D1 P-UI=A A

=i
, , ,

Note that if 8 6 Ae, then Aa AS"
Ap= {xp/x A

pDEFINITION. A for 0,i 2 so, P ,P +I,
( C (P+ (p-l)} Aap Since pn for every GF(pn) we have Apn A Therefore

the values of in the definition can be limited to 0,1,2,...,n-i.

Ap , * PDEFINITION.
a Aap (A

n-l|| ,ApDEFINITION. A

{ap3 Z*thus X +bla b Z and j E Z }
p p n

LEMMA i.i. If 8 EXa, then X A--B.
PROOF. If 8 6 A then there exist a 6 Z b 6 Z and J Z such that’ P P n8 apj + b. This implies 8C . Since (Zp,+,.) is a field and a 0 both

-1

or A A8" a
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DEFINITION. A will be called a Fundamental Set.

Since A
pn

A for every E GF(pn), there exists a least positive integer m <_ n
a m-i

Apm *such that a A for some a 6 Z It follows that A *Ap

DEFINITION. Let u,8 E GF(pn). We define the relation in GF(pn) as

a 8 iff Aa AB
THEOREM i.I. From Lemma i.i. the relation is an equivalence relation.

This equivalence relation will partition the field GF(pn) into equivalence

classes A and each class is represented by a fundamental set.

DEFINITION. A will be called a Fundamental Class.
pn_ i

Let 8 be a primitive element in GF(pn). Since, 8 p -I is primitive in Z, P
then for every a Z there exists k where i < k < p- i. So, k can be determined

p a a a

easily. If the elements of the fundamental set A are expressed as powers of 8, then

can be expressed from A as powers of 8. So to calculate the addition table of

Aa it is sufficient to have the addition table of A. Therefore, if AI,Aa2,...,A=s,
are all the fundamental classes in GF(pn), it will be enough to tabulate only the

addition tables over A ,...,A with respect to 8 to do all the calculations over
i asGF(pn).

If for some a GF(pn), m is the least positive integer such that apm a+ b
,

for some a Z and b Z then it is true that m will be the smallest positive
P P

integer for every B such that Bpm aB+ b’ where b’E Z This will be shown
a P

below.

DEFINITION. Let a GF(pn), if m is the least positive integer such that

apm *aa+ b for some a Z b Z then m is called the index of and a is the
P P

coefficient of nd we say has an index m with coefficient a. If = Z we say
P

a has index 0 with coefficient a i.

LEMMA 1.2. If a has index m with coefficient a, then every 8 A has the

same index m and the same coefficient a.

PROOF Let B with index s and B Z There exist E Z 6 Z and
p PP m

j Z such that 8 PJ + 6. This implies 8
pm (a

pj + 6)p (aa + b)pj + 6
n

a + c where c Zp. Therefore s _< m. But from Lemma i.i. we have As A8.
Hence

a A. Therefore m < s, which implies 8 has index m with coefficient a.

DEFINITION The fundamental set A has index m with coefficient a if and only

if m is the least positive integer such that A
pm

aA.

THEOREM 1.2. If has index m with coefficient a then A has index m with

coefficient a and each fundamental set A
8
C Aa has the same index m with the same

coefficient a.

PROOF. Follows from Lemma 12

From the above theorem we can define the index A to be the index of any element

or any fundamental set included in A

Now, we want to discuss some properties of the index and the coefficient of

the fundamental set.
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THEOREM 1.3. In GF(pn), if A has index m and coefficient a then m dfvldes

n and a
n/m I. m

PROOF Let n m + r, 0 < r < m. Since m
p am+ b, for some bE Z we have

pmpm n m-2 mp r r -i -2a(m) + (a-I + a +...+ l)b and m (mp )p a -m + (a + a +

a
n/m

+ l)b So A
pr aA which implies r 0 and a i.

THEOREM 1.4. Let A be a fundamental set with index m and coefficient a. If

* /m
Ap bA, b E Z then m divides and a b.

P
PROOF. Since m is the index of A, we have m < . Let km + r, 0 _< r < m.

mp
If a A, then there exist 6, 6’ Z such that m

pm am+ 6 and b+ 6’. But

km r , r P r
b+ 6’ (P )P (ako + 6 )P + 6’ akmp + 6". This implies r > m. Therefore

r 0. Hence ml and a b. Note: Since all finite fields of the same order are

isomorphic, if i E GFI(Pn) having index m with coefficient a, is the image of

2 GF2(pn) under an isomorphism o, then 2 has index m with coefficient a. There-

fore; GFl(pn) and GF2(pn) have the same partitions with respect to the equivalence

relation

EXAMPLE: Let F GF(52) and 8 be a primitive element in F such that 8 satisfies

the primitive polynomial indexing polynomial], P(x) x
2 + 4x + 2. The field F has

two equivalence classes, Z
5

and A8 {8, 8 + i 822 8 + 2 815 8 + 3 82
8 + 4 817 So, we have 8 8228/ 815 82 - 817. Since 86 2, then 4 812 and

3 818. Therefore,

5 4A
8

and A
8

2A
8

{8 7 87 + 2 8
4 87 + 4 =821 87 + 1 88}

3A
0

{019 019 + 3 016 019 + i 0
I0 019 + 4 821 019 + 2 06

4A
8

{813,813 + 4 810,813 + 3 83, 813 + 2 814, 813 + I 85

m
2. SOLUTIONS OF EQUAl IONS OF THE FORM Ap aA.

To study the fundamental sets in GF(pn) with index m < n, we have to study the

x
pm * x

pm
solutions of: (a) ax + 6; a Z a # i, 6 E Z and (b) x + 6;

P P,
6 Z in GF(pn). Note: If 6 0 in (b), then all the elements of the subfield

P
GF(pm) will satisfy (b).

We will now consider the solutions of

x
p ax + 6 (2.1)

,
where a 6 Zp, a # 1 and 6 Zp

LEMMA 2 i. Equation (2 i) has a solution e Z with index m only if m divides
p

n and an’m i.

The proof is a direct application of Theorem 1.3 and Theorem 1.4.
m

LEMMA 2.2. In equation (2.1), for y x + a-1 we have yP ay.

mm )pm=xpyP (x + +PROOF a-i

ax + 6 + 6 a_la--- a(y- + aa-i

ay.
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Therefore, to study the solutions of (2.1), it is sufficient to study the solutions of

ypm ay.

is a solution of equation (2.1).LEMMA 2.3. x -a
If 0 is a primitive element in GF(pn), then the following statements are true:

p -i

(a) 0 P-I Z n
p p -I

k
* 1

(b) For every a Z there exists an integer k such that a 0
p a

p a
where 0 < k < p-i. If a i, k # 0.

a a n
LEMMA 2.4. For every m such that m divides n and

n i i
p-i, then Pm

is an integer,
m p I n/m

pn k
1 k-2

PROOF. Let
n

k. So, p l(mod k) and
-1 (pro) -I (pro)k- + (pro)

m m pmp -i -i

+ I. Since p -= l(mod k), we have pJ l(mod k) for j 1,2 Therefore,

k-i

(pm)j 0(mod k). Hence
n pn_ i
m pm 1j=O

LEMMA 2.5. If a
n/m

i, a 1 and
nIm

PROOF.
n

But, from Lemma 2.4

Pn-! -k .n
n/m p- i a m

a 0

k n
a _p -i

p-i m
p -i

n
p -i i
m

p i n/m

n k
p-1 then p -i a

m p-i
p -i

1 _(n/m) ka
n/m p I

pn-l_.k
is an integer. Also, a 0 p- i a implies

is an integer.

n
i. Therefore,

p -I k
n

0 mod(pn-l) So p-i k
n

p-i a m a m
m

THEOREM 2.1. Given xp ax (2.2)

where m n, a i and 0(a) then

(a) Equation (2.2) has solution in GF(pn) and Z
P

Or(b) If is a solution of (2 2) where a O is primitive in GF(pn), then

n k pn
r P 1 a (mod -!).

m p-1 m
p -I p -I

(c) x 0 is the only solution of (2.2) in Z
P

PROOF.
m

(a) If x Z then xp x ax. Therefore x O.
P
m

(b) Since x
p

ax and a # i, then x _GF(pm).

(c) If Or is a solution of (2.2) then (or)pm-I
pn-i k

=a= 8
p-i a

Thus,

pn i pnr(pm- i) =- k (mod I)
p-i a

which implies
n k pn_ 1).r p 1 a (mod
m p-i m

p -i p -i

It follows from Lemma 2.5 that the above congruence is meaningful.
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n k
For every r

p -i a pn_ i) O
r

(mod is a solution ofTHEOREM 2.2. m p I m

(2.2).
p -I p -i

n k pn i
PROOF Let r P -i a + j j 0,1,2,.. then

m p-I m
p -i p -I

pn_ i
-k mm_l n

(Sr)P o p-I a (8p-l)j a I a. So, (Or)p aO.

Now consider the solutions of

m
x
p ax + 6 (2.3)

n
where a # i, a Z 6 Zp, mln and 0(a) From Lemma 2.2, Theorem 2.1 and

p m

6
is a solution of (2.3), whereTheorem 2.2, we have O

r + -a
n k

r
p -I a (mod and is the only solution in Z
m "p-i m P

p -i p -i

THEOREM 2.3. Let A be a fundamental set in GF(pn) with index m and coefficient

a i If A is not included in any proper subfield of GF(pn), then O(a)
n

and
m

n l(P- i).
m

PROOF. Let 0(a) d and u A. It follows dl and a has an index m with

m
coefficient a. Thus, sp as + for some 6 6 Z Hence

dm P
d (ed-1 d-2a

p
a s + + + + 1)6 s. Therefore s 6GF(pdin), which implies

GF(pdm) GF(pn) and d

COROLLARY 2.1. Let Xp aX + 6 (2.4)

msuch that a i, 6 Z mln, a 1 and O(a) , then equation (2.4) has solutions
P

in GF(pn) and all the solutions are included in GF(pm).
PROOF. GF(pm) is a subfield of GF(pn). Equation (2.4) satisfies the conditions

of Theorem 2.1 over GF(pm) and if u is a solution, then
mup a

-1 a-2 GF(pm)u + (a + + + 1)6 + O . Therefore

p -1
m

Note: If 8 is a primitive element in GF(pn), then y 0
p -i

is a primitive element

in GF(pm). Therefore, the solutions of equation (2.4) are of the form:

r’ m k’ pm _p.m_ 1 k’
y + where r’ P 1 a

(mod 1 and a 7
p 1 a

Sincem p-1 m
p -1 p -1

n m pnp -1 p -I
k -1pn-I

k
pn-I

k m p-l’ a k’
a 0

p-i a p-I a p -i -I a,we have 8 (8 O p

So, k k’. Therefore, the solutions of (2.4) over GF(pn) are of the form
a a

8r + i_-, where

n n k pn !)r P -I p -1 a
m r

m p-l- (mod
m

p -i p -i p -i
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mLEMMA 2.6. Equation (2.4) has p solutions in GF(pn).
PROOF. Corollary 2.1 insures that equation (2.4) has solution in GF(pm).

p -I a
m p-i

From the previous note, Theorem 2.1 and Theorem 2.2 we have 0 8p -1

is a solution and if a H {0 B + lGF(pm)} then a is aand a
0
+
_

a

(2.4). It is clear that H has pm elements.solution of

THEOREM 2.4. For every m divides n and every a E Z a 1 such that

O(a)[ n P
m

there exists a fundamental set in GF(pn) with index m and coefficient a.

PROOF. By Lemma 2.6, xp ax has solutions in GF(pn). If e is a
n

p_ -1
ok

primitive element in 6F(pn) then 0p -1
is a solution. We claim that has

an index m with coefficient a. To prove this, we assume has an index m with

coefficient b, therefore by Theorem 1.4 and Theorem 2.2 we conclude that is a

n pn_ 1)solution of xp bx and it is of the form es where s p -I
nodp-I

p -I p -i

So, there exists j where j > 0 such that:

n k

p-1 pm p-1p -1 p -1 -1

then 0 _< j pro_ llp_ 1

Since pm_ i_ > P ka < p- 1 and i _< we will have
p -i

0 <_ J < p_-- P

and this is a contradiction.

Hence A--A is a fundamental set with index m and coefficient a.

COROLLARY 2.2. The minimum subfield which contains all the solutions of

equation (2.4) is GF(pm).
PROOF. The proof is a direct application of Theorem 1.3 and Theorem 2.4.

We will now review some known facts about the solutions of x
p x + b in

the field GF(pn).
m

Let x
p x + b, where b EGF(pn) (2.5)

n
and d g.c.d. (m, n) and r The following theorems were given in [i].

LEMMA 2.7. If x
0

is a solution of (2.5) in GF(pn), then for every

d 8p -ij i, 2,..., p -i, x
0 + is a solution of (2.5) where 8 is a primitive

element in GF(pn).
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PROOF. n m

d m m d

Xo + 8p -i x + (Op p i

r-i

THEOREM 2.5.

THEOREM 2.6.

n_

(x0+b) + ep -I
Xo + ep 1 + b

d
The number of solutions of (2.5) in GF(pn) is ether 0 or p

Equation (2.5) has solutions in GF(pn) if and only if

, m
If we assume m divides n and b Z in the equation xp x + b

P
then we can conclude the following:

d m g- c- d(m.n),

for every b E Z we have
P

E pm
.ffiO

(a)

(b)

n

b=--nb=O
m

(2.6)

if and only if p divides
n
m

Now, we can restate the following theorems:

(a) Theorem 2.7. Equation (2.6) has solution in GF(pn) if and only if p

divides
n
m

(b) Theorem 2.8. If equation (2.6)has a solution in GF(pn), it ham pm

solutions, also if x
0

is a solution then x
0
+ 0p -1

j 0,1,...,p -i is a solution where 0 is primitive in GF(pn).
THEOREM 2.9. If (2.6) has a solution in GF(pn),then the minimum subfield that

contain all .the solutions is GF(ppm).
PROOF. Since equation (2.6) has a solution and m divides n then by Theorem 2.7

p divides , therefore GF(ppro) is a subfield of GF(pn). If a is a solution of (2.6),

m pm
then we have aP a + b, which implies aP = + pb = so = GF(ppro) and

a GF(pm)[b#0]
Let GF(p Z) be the minimum subfield which contains all the solutions of (2.6)

therefore

GF(p) C GF(ppm)
mand # m. This implies [pm. But since equation (2.6) has p solutions in GF(p)

and by Theorem 2.5 and Theorem 2.6, g c d(m,) m. Hence,

Therefore, pm .
LEMMA 2.8. If a is a solution of (2.6) in GF(pn) where has an index s with

coefficient a then s divides m and a i.
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PROOF Theorem 1 4 implies SIR. Let m_ r. Assumes a # 1 and
s

s m rs r ar-i ar-2+P as + 6 for SORe E Z therefore P P a + + ...+i)
r P r-i r-2

e + b. Hence a 1 and a + a + + 1 0 which implies b 0, but thls

contradicts the condition b 0 of equation (2.6)

COROLLARY 2.3 In GF(pn), for every m divides n and p divides , there

exist (p-l)pm elements e where 6 A such that Apm A and A GF(pm).
m * and therePROOF. Equation (2.6) has p solutions over GF(pn) for fixed b Zp

are p-i different values for b.

COROLLARY 2.4. In GF(pn), if m is a prime, then all solutions of (2.6) have

index m with coefficient a i.

PROOF. This is a direct consequence of Lemma 2.8.

THEOREM 2.10. In equation (2.6) if p divides __n then there exists an where

is a solution of (2.6) and has an index m with coefficient i.

PROOF. Since p then (2.6) has p solutions. Also by Lemma 2.8, if has

an index s with coefficient a 1 where siR, then a satisies xps x + i (2.7)
n

By Theorem 2.7 and Theorem 2.8 equation (2.7)where 6 --_m (b), hence s lm and p
ms

s
has p solutions. Let {Sl, s2, st} be the set of all the indices of the

solutions of (2.6) such that 1 _< s
i

< sj < R for every I < j . Since s _<
where is the greatest integer less than or equal to we have

m Sl s2 s p2P < P + p + + p < p + + p

p-1

k+l k+l
p2k 2k + iBut since P p < for k > i and p P < p we have

p-I p-I

R p p<pp
p-i

and this is a contradiction.

COROLLARY 2.5. In GF(pn), for every m divides n, and p divides n there

exists a fundamental set with index m and coefficient a I.

3. THE TOTAL NUMBER OF FUNDAMENTAL CLASSES IN SOME FINITE FIELDS.

In this section we will investigate the total number of fundamental classes

for some special finite fields From the previous study we conclude that If p

there exists a fundamental set with index m and coefficient 1 in GF(pn).
n

* mIn GF(pn), for every m divides n, and every a Z a # 1 where a 1 there
P

m
exists a fundamental set with index R and coefficient a. Since a 1 then the

ng c d( p-l) # i.

If A is a fundamental set with index m then A has p(p- l)m elements.
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In this section we will use the following notations:

(a) 0(pn) Number of fundamental classes in GF(pn).

(b) A(pn) Number of fundamental classes in GF(pn) but not in any proper

subfield of GF(pn).
(c) %(pn,m,a) Number of elements in GF(pn) with index m and coefficient a

and none of these elements belonging to any proper subfield of GF(pn).
m

(d) E(m,a) {xp ax + " . Z a Z and 0 if a 1}.
p P

(e) SE(m,a,n) is the set of all solutions of the equations of E(m,a) in

GF(pn) but not in .
We shall investigate in the following the number of fundamental classes in

GF(pq ), where q p-l, and q @ p.
t

t+l pq [q-l]LEMMA 3.1. If qp- l,then q divides i for every t 0,i,2,

PROOF. We will prove this 1emma by induction. By Fermat Theorem the len,a

is true for t O. Assume it is true for t s then

pq [q-l]_ i (pqS[q_l]) 1

[
s s-2 I]s s q-i s q

(pq [q-l] 1) (pq [q-l]) + (pq [q-l]) + +

[pq [n-ll, 11 (pq [q-1])
]--1

s s q s
Since pq [q-l]

i rood q, then (pq [q-l]) E i (mod q) for eve J 0,I q

s

So, (pq [q-l])
j=l

S

s s+2
q (mod q) -= 0 (mod q) which implies q divides

s+l [q_l][pq 1].
t+l

LEMMA 3.2. In GF(pq where qp-1 and q # p, we have
t t

A(pt+l) Pq [pq [q-l]_l]
t+lp(p-l)q

, s
PROOF. Since g c d(q,p-l) l,then for every a 6 Zp, where a @ I, a

q I

for every s O, therefore equation (2.6) and equation (2.7) have no solutions in
t+l

h
t+l

GF(pq for every m q h > 0. Hence every element in GF(pq but not in
t

t+l
t+l

GF(pq has ndex q which mplies that every fundamental set in GF(pq but not
t t+l

in GF(pq also has index q So:

t+l t t t

A(pt+l pq p_q pq. [_pq_ [q-if_ 11
t+l t+l

p (p-l)q p (p-l)q

t+l)From Lemma 3.1 and g c d(p-l,q) 1 we have A(p is an integer.

COROLLARY 3.1 In GF(pq) where gp-l, q p we have:

O(pq) i +---P---= i +
p(pq-l_ I)

p(p- l)q p (p-l)q
(3.1)
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t+l t t+l
Since O(pq O(p

q + A(p
q

we conclude that:

-1
t+l

O(pq 1 + A(pq

t--O

-i pqt t

i + [pq [q-l]

t=0
P(P-l)qt+l

where qp-i, q # p. s
We shall now study the number of fundamental classes in GF(pp ).

By Theorem 2.7, Theorem 2.8 and Theorem 2.9, the equation

t

x
pp

x + b (3.2), t
where b Z and t < s has pP solutions and all solutions are included in

t+l P

GF(pp ).
tLEMMA 3.3. All the solutions of (3.2) have an index p

kPROOF. Let be a solution of (3.2) and has index m. We have m p for some
k t

k < t and a
pp

+ c for some c
P

not a solution of (3.2). t+l t
COROLLARY 3.2 In GF(pp but not in GF(pp ), there are (p-l)pp elements

t t+l t
t ppwith index pP So x(PP p I) (p-l), t

PROOF. For a fixed b E Z equation (3.2) has pP solutions and we have (p-l), P
elements in Z

p t+l
t+l t

COROLLARY 3.3. If e E GF(pp but GF(pt) then has index p or p

where t > I.

COROLLARY 3.4. For t > i;

t t+l t t

t+l) (p_l)pp +
pp _pp _(p_l)pPA’PP(

t+lp(p-l)p p(p-l)p

pp t ppt
t+l + pp -t-i (P-I)-I-I

(p-l)
p

t
t [pP (P-I)-I_I ]pp -t-I

(p-l) + i (3.3)

In GF(pP), the equation x
p

x + b (3.4),
where b 6 Z has p solutions and each solution has index p. Therefore there are

P
p(p-l) elements in GF(pP)-z wlth index p. This implies:

P

LEMMA 3.4. O(pp) i + + pP-p(p-l)-p_
p (p-l) p(p-l)p

(3.5)
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COROLLARY 3.5. s-i t+l
O(pp 2 + + A(pp (3.6)

tl
s

In what follows we will study the number of fundamental classes in GF(pp "q

where qp-I, q p and s, > I.

sSince qp-i then for eve m divides p -q and eve a E Z with a i, we
s p

p "q
m s )have a i. So, Theorem 1.3 implies that SE(m, a, p q for every

sa # 1 and every m lp q

By Theorem 2.7, Theorem 2.8 and Theorem 2.9, we conclude the following:
LEMMA 3.5. For every t and h; 0 < t < s-i, 0 < h < , SE(ptqh, I, pSq) has

t h
(p-l)pp "q

elements, all of them are contained in the minimum subfield
t+l h t h

GF(pp q
and SE(ptqh, i, pSq)N GF(pp "q .

LEMMA 3.6. For every t, h such that 0 < t < s-i, 0 < h < -i,
SE(ptqh 1 pSq4) is included in SE(ptqh+l 1 pSq)

ptqh(ptqh, pSq) ,PROOF. Let u q SE I, Then up a + 6 for some q Z
t h P’

which implies u
pp "q + I

u + [q ], where [x] is the least nonnegative residue
h+l Sq).of x mod p. Since [q- ] 0 then SE(pt q i, p

SE(pt h, Sq) t rIt is clear that if u q 1, p ,then u has an index p q for

A) tq, pSq) (ptqh+l, Sq)some 0 < r < h. Since, SE(pt, i, pSq C SE(p i C C SE i p
we conclude that

t+l
h+l t h+l t h+l t h

X(P
p

"q p q I) (p-l)pp "q

t hi t qh(p_l)pP "q pp [q-l]

t+l h+l
Therefore, in GF(.pp q

there are

t h t h ppt_ h t h
(p_l)pP "q [pP "q [q-l]_l]= "q [pp .q [q-l]

h+l t+l h+lP(P-I)pt’q p "q

h+lfundamental classes with index pt.q From Lemma 3.1 and the fact that
t

p t + i, the number given in (3.8) is an integer.
t+l h+l t h+l

Since any proper subfield of GF(pp "q
is a subfield of GF(pp "q

or
t+l h t+l h+l

GF(p
p "q ). So, in GF(pp "q ), the number of fundamental classes with

t+l h+l
index p "q is equal t6

t+l h+l t h+l t+l h t h t h t h
pp .q _pp .q _pp. .q +pp .q... _(p_l)pP .q.. [pp-q [q-l]

t+l h+l
p(p-l)p .q

-1]- I:’
t+l h t+l h t h t h

.q [pp .q [q-l]_l]_pp -q [pp-q [q-l]pP
h+l

p (p-l)pt+l q

(3.7)

(3.8)

(3.9)

Therefore, we have the following
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s
THEOREM 3.11. In GF(pp "q ),

t+l n+l
(PP "q

(3.8) + (3.9).

From it follows that

t+l h+l t+l h+l t+l h
O(pP "q (pP "q + O(pp "q

t h+l t h
+ O(Pp "q O(P

p "q
(3.10)

We now study the general case, i.e. the number of fundamental classes in GF(pn).
i 2 rFirst, let n ql q2 qr such that i # 0 giP-I and qi # p for every

i 1,2 r.

Let N(s,p) be the number of elements in GF(ps) but not in any proper subfield
of GF (pS).

THEOREM 3.12.. The number N(s,p) (i)qj
where is the Mblus functions.

(See [2]). i-j=s
,

Since for every m divides n and every a E Z the set SE(m,a,n) . It
(pk) (pk) P

implies that if EGF where GF is a subfield of GF(pn) and doesn’t belong
to any proper subfield of GF(pk), then = has an index pk. So, we have the following

THEOREM 3.13. If GF(pk) C GF(pn) then A(pk) N(k,p)
kp(p-l)p

k i 2 sNow let n p ql q2 qs such that k # O, qi # p’ " # 0 and
i

qi2P-I for every i 1,2,...,s.

t tl t2 t
s
where 0 < t < k-l,LEMMA 3 7 For every m p ql q2 qs

0 _< t
i _< i’ i 1,2,...,s then SE(m,l,n) has (p-l)pm elements, all of them are

contained in the minimum subfield GF(ppro) and SE(m,l,n) N GF(pm) .
Since SE(m,l,n)C GF(ppm), we have SE(m,l,n) SE(m,l,pm).

t tt 1 s
<LEMMA 3.8. For every m p "ql qs where 0 < t < k-I, 0 < t

i i
for i 1,2 ,s and for some t t < -i, SE(m,l,n) is a proper subset ofr
SE(mqr,l,n). r r

LEMMA 3.9. If pk divides m, and m divides n then SE(m,l,n) .
COROLLARY 3.6. If SE(mqrl,l,n) # and SE(mqr2,1;n) # for some rI # r

2

(mqrlthen SE ,l,n) # SE(mqr
2

1 n)

The proof is an immediate application of Lemma 3.7.

COROLLARY 3.7. If pt divides m but not r, then SE(m,l,n) f SE(r,l,n) .
The proof is a direct application of Lemma 3.7.

t pt+lCOROLLARY 3.8. If for some 0 < t < k-i ptlm and p Ir but 2m and

t+lrp then

SE(m,l,n) SE(.r,l,n) SE((m,r),l,n)

where (re,r)= g- c d(m,r).

The proof is a direct application of Lemma 3.7, Corollary 3.6 and
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Corollary 3.8.

We know from Theorem 2.10 if m divides n and SE(m,l,n) @ then there is an

a SE(m,l,n) such that a has an index m. We want to find the number of elements in

t tll t12 tlhSE(m,l,n) with index m. Let m p .ql
I "q12 q and m divides n where

0 _< t _< k- i, t
Ir # 0 for r l,...,h and h < s. If we rearrange the q’s in the

factorization of n such that qlr qr for r 1,2,. ,h, then SE( ,1,n)
h

for every i 1,2,...,h, and i=iN SE(--"1,n)qi, SE(ql q2m’’’qh l, n).

We shall use the following notations for the remaining of this section:

t t
2

t
ht i

m p "ql q2 qh 1 < t.

and h h

m
I m

2qi qiqji=l

h

r qi
.= qil qi2 r

i<j

1 < iI
i
2

< i h and
r

r r
|| qi || q. for i +
j=l j j =l

t tl-i t2-1 th-1If r > h then we define m O. Therefore m
h

p "ql "q2 qhr
From previous Lemmas, we conclude the following.

If R[SE(m,I,n)] is the number of elements in SE(m,l,n) with index m then

R[SE(m,I,n)] m m
I
+ m

2
m
3
+ + (-l)rm + + (-i)

h
r mh (3.11)

Also, if B GF(ppm) and not im any proper subfield of GF(ppm), then B has index

m or pm. Hence we have the following.

THEOREM 3.]4.

&(ppm) R[Sm(m,l,pm)] (pm,p)-R[Sm(m,l,pm)] (3 12)p(p-l)m p (p-l)pm

s
To determine the number of equivalence classes in GF(pq where qlp-l, we need

s s *to study SE(m,a,q for all m dividing q and a Z From Theorem 2.7 we have
P sSE(M,l,qs) for every mlq s. Also we know that for every mlq and every a # I,, S/m

a Z if a
q

i then SE(m,a qS) has p(pm-l) elements One question we will tryp .
to answer first is that for given m, is there an a Z a # I such that a

qs/m
I

P
and then how many such a’s in Z can one find? Another question is for fixed m and

P
a, how many m’ s, a’ s are there such that SE(m’,a’,q E(m,a,q ).

LEMMA 3.10. In Z if qV divides (p-l) then there are q (q-l) elements ofp’v
order q

PROOF. Let b be primitive element in Z Assume for some k; k p I,
p

b
k

is a solution x
q

i. This implies k-q 0 mod(p-l). So, k t- P-__!_ for some
q
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t 1,2,. ,q-l. But also if r p-1 for every 1,2,...,q-I we haveq
-(br) q b

’p-I"
I and b

r
# 1 which implies that in Z we have (q-l) elements of

P
order q. Let p i q h where the g c d(p-l,h) I, then for every r such

that r 0 mod(q-v h) and 0 < r < qV b
r

x
qv

we have is a solution of I, which

I x
qvimplies that in Z there are qV- elements such that i and x 1 For v I,P 2 2v 2 we will have q I- (q-l) q(q-1) elements of order q The same for

v t I, v t we will have qt i (qt-l-l) qt-l(q-l) elements of order qt.
LEMMA 3.11. In Z if for a fixed b where O(b) qP and i < p < there existsp

an a of order qV where _> v > and a satisfies x
qv-

b (3.13)
v- * qVthen there are q distinct elements in Z of order satisfying (3.]3)

P
PROOF. Note that equation (3.13) has no repeated roots. If a is a solution, we

claim that a,a
qp+l

a
2q+l (qV--l)’q-i

a are distinct solutions of (3.13). To

v riq+l v-U_lprove our claim, first since O(a) q then a for r. 1,2 q are

q+l qV- vr r-q aqV-distinct c,l,.nrs in Z Also (a a i b b. SinceP
v rq+l) vg c d(rqU+ l,q) 1 and O(a) q we .ve O(a q

THEOREM 3.]5. If b f Z ,ch that O(b) qP- 0 < v < , t|n for every v,
Pv-D v_> v , there are q e]rlnts of ord,r a and satisfying (3.]3).
v-i v vPROOF. In Z we have q (q-l) el,ments of order q Let c e z and 0(c) q

P pv- p
and let c

q
d so d # 1 and d

q
i. Furthermore, the order of d is q By

v- x
qv-v

Lemma 3.11, we have q elements satisfying d for each d. But there are
v-i- q-l(q-l) distinct d’s of order q for which the above equation is

_q

q

solvable and that is exactly the total number of elements in Z having order qV.
t pqt P

LEMMA 3.12. If q divides p-i, then q divides -i for every t > 0.

PROOF. By induction.

In GF(pq) where q divides p-l, the set SE(l,a,q) # if and only if O(a) q.

Since there are (q-l) elements of order q and for a fixed b with O(b) q, the set

SE(I b,q) has p(p-l) elements, therefore GF(pq) has p(p-l)(q-l) (q-l) fundamental
p (p-l)

classes with index i. So we conclude:

O(pq) (q-l) + pq-p-p(p-l)(q-l)+ I
p (p-l) -q

(q-l) + (--pq-l-l) +
(p-l)q

pq-2 +pq-3 + + 1 + 1(q-l) + (3.14)
q

Since P -= I sod q.
q

i + >pq-r 1 + (q-l) sod q 0 sod q.

r=2

So, (3.14) is an iteger.
V

THEOREM 3.16. In GF(p
q

where q divides (p-l), if O(a) q then for every

qt qS) qt t+v
t, where 0 < t < s-v we have SE( ,a, SE( ,a,q # and

SE(qt v+t) v+t=l
,a,q Sm(qt a,q
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PROOF. By Corollary 2.1 we have

,a, SE ,a,q #
t

Theorem 2.4 and Corollary 2.2 will imply that X
pq

aX + b; b Z has a

t
t+v-i P

solution an with index m q and n GF(Pq ). By Theorem 2.1 the solution
t

set of this equation is H {s
O

+ / GF(pq
and it is clear that

H (D GF(pq i-a
NOTE: This theorem is not true in general. It is possible that in some cases

the minimum subfield that contains all the solutions of x
pm

ax + has a proper

subfield which contains some of thse solutions.
s t’

From ’Fheorem 3. conclude that in CF(pq ), w]ere qlp-l, SE(q ,b,q s) is a

t-t’
subset of SE(q

t s),a,q if and only if t’ + v’ t + v and b
q

a, wlere

qV’ v * vO(b) O(a) q t s-v. Also for a fixed a Z with order q where
p

v > O, Theorem 3.15 insures the existence of exactly q elements "b" in Z such
v+l q v P

that 0(b) q and b a. Hence, for a fixed a with order q and fixed t"

< s-v there are q elements b in Z such that:
p

SE(qt-i s) t s
,b,q SE(q ,a,q ).

ao qVTherefore, if we start with a
0 Zp such that 0( then there are

v+ia a Z where O(ai)__ q and (ai+l)q a.. So, we haven p

SE(qt- (i+l) s) t-i s
ai+I, q SE(q ,ai, q for every i 0,1,2 ,n-1 where t-n >_ 0

and qV+n (p-i).
g ,

Let p-1 q h where g c d(h,q) i. Then for every a Z a # i and
P

every t >_ i such that O(a) qV i < v < E and t + v < s we have the following

Lemma.
t t-I

LEMMA 3.13. In SE(qt,a,qS), there are exactly (pq -1)p-(pq -1)p- g
telements with index q and coefficient a.

t+v
From this lemma, we conclude that in GF(pq there are

t t-i
(Pq -l)-(Pq

t
-i) q qV-l(q_l

(p-l) -q
(3.15)

t vfundamental classes and each class has an index q and a coefficient with order q

Lemma 3.12 insures that (3.15) has an integer value. We will use the notation:

F(m,t,v) (3.15), where m t + v, 1 < v < and t > i
s

It is clear now that in GF(pq where s > i, we have

s s-i s-i
(pq -pq )-p (pq -i) (q-l)

s
p(p-l)q

(3.16)
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S
fundamental classes and each class has index q with coefficient 1.

Therefore, for s > 2, > 2 we conclude that:

s-l)O(qs) O(q + (3.16)

s-6-1 6
s-6-1(q+ 2 F(s s-v v) + (-Pq

v=l p (p-l)q

where s-6-1 min{-l, s-l} and 6 max{O,s-}.

If 1 then we have:

s-i

s-I p(pq -i) (q-l)
0(qs) 0(q + (3 16) + s-i

p(p-1)q

(3.17)
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