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ABSTRACT. An m-dimensional locally conformal Khler manifold (l.c.K-manifold) is

characterized as a Hermitian manifold admitting a global closed 1-form a%(called the

Lee form) whose structure (F%,g%) satisfies

VF -8g + 8g F + aF,
where ? denotes the covariant differentiation with respect to the Hermitian metric

gl, 8 -Fl a, Fl F gel and the indices 9, ,l run over the range 1,2, m.

For l.c.K-manifolds, I.Vaisman [4] gave a typical example and T.Kashiwada ([I],

[2],[3]) gave a lot of interesting properties about such manifolds.

In this paper, we shall study certain properties of l.c.K-space forms. In 2, we

shall mainly get the necessary and sufficient condition that an l.c.K-space form is

an Einstein one and the Riemannian curvature tensor with respect to gl will be ex-

pressed without the tensor field Pl. In 3, we shall get the necessary and sufficient

condition that the length of the Lee form is constant and the sufficient condition

that a compact l.c.K-space form becomes a complex space form. In the last 4, we shall

prove that there does not exist a non-trivial recurrent l.c.K-space form.
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i. INTRODUCTION.

This paper is directed to specialist readers with background in the area and

appreciative of its relation of this area of study.

M(FI,gI,al) be an l.c.K-manifold. Then, by the definition, at any pointLet of

M there exists a neighborhood in which a conformal metric g* e-20g is a Khler one,

i.e.,

-20F)V*(e 0, do a,

where V denotes the covariant differentiation with respect to g*. Then we have
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eF + + aeF (i i)VgFl -aFg + e eEg aiF eggl.
The following proposition was proved by T.Kashiwada [i]

PROPOSITION i.I. A Hermitian manifold M(F,gI) is an I. c. K-manifold if and

only if there exists a global closed 1-form ai satisfying (i.i).

In an l.c.K-manifold M, we define a tensor field Pl as follows;

where I111 denotes the length of the Lee form t with respect to

In an m-dimensional l.c.K-manifold M, we know the following formula;

e (m 2)(PEF%
e + P%EFe) 0 (1.3)REF%e + R%eF

where R denotes the Ricci tensor with respect to g% [i]. Thus we have

PROPOSITION 1.2. In an m-dimensional (m 2) l.c.K-manifold M, the tensor field

PU% is hybrid, i.e.,

0 (1.4)PEF%
e + P%eF

if and only if the Ricci tensor R% is hybrid.

From now on in this paper, we assume that the tensor field P% is hybrid.

REMARK. In an m-dimensional (m 2) Einstein l.c.K-manifold, the tensor field P%
is hybrid, identically.

An l.c.K-manifold M is called an l.c.K-space form if the holomorphic sectional

curvature of the section {X,FX} at each point of M has the constant value. Let M(H)

be an l.c.K-space form with constant holomorphic sectional curvature H. Then the

Riemannian curvature tensor R% with respect to g% can be written as

where X PeFet [1].

2. L.C.K-SPaCE FORMS.

In this section, we shall consider the necessary and sufficient condition that an

1. c.K-space form becomes an Einstein one. Next, we shall get an expression of the

Riemannian curvature RmX that does not include the tensor field

Let M() ba an m-dimensional 1.c.K-space form with constant holomorphic sectional

curvature . Then we have (1.5). Transvecting (1.5) with 9 we have from the

straightfoward calculation

4R% {(m + 2)H + 3P}g% + 3(m- 4)P%,
where P P%g% and it can be written as

e + IP -V
e ----(m 2) I111

Thus we have

(2.1)

(2.2)

PROPOSITION 2.1. A 4-dimensional l.c.K-space form M(H) which the tensor field

P% is hybrid is an Einstein one and then the scalar field P is constant.

We have from (2.2) and the Green’s theorem [5]
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PROPOSITION 2.2. A compact m-dimensional l.c.K-space form M(H) which the tense

field ’) is hybrid has a non-negative P.

Next, we shall prove the following

THEOREM 2.3. An m-dimensional (m # 4) l.c.K-space form M(H) which the tensor

field P% is hybrid is an Einstein one if and only if the tensor field Pk is pro-

portional to

PROOF. If the tensor field rPu% is proportional to g%, then the tensor field P%
can be written as

P
Pk --- gUk" (2.3)

Thus we have from (2.1) and (2.3)

R {(m + 2)H + 6(m 2)p}/U m

The inverse is trivial, so we omit its proof.

COROLLARY 2.4. An m-dimensional (m # 4) Einstein l.c.K-space form M(H) which the

tensor field P"% is hybrid is a complex space form if P 0.

Transvectlng (2.1) with %, we have

4R m(m + 2)H + 6(m 2)P, (2.4)

where R denotes the scalar curvature with respect to D%. By virtue of (2.1) and (2.4),

we can easily see that

4 (m 4)(m + 2)H + 4R (2 5)3PD% m 4 2(m 2)(m 4) g%’
4 (m 4)(m + 2)H + 4RF (2 6)P% 3(m- 4)H% 6(m- 2)(m- 4) ’where I REF1. Substituting (2.5) and (2.6) into (1.5), we obtain

(m- 4)H+R
Hoo (m 2 (m 4) (gog goog + (m3(m4_) (m2) (m i_)H4)+ R

(FF

i+

Thus we have

PROPOSITION 2.5. In an m-dimensional (m # 2,4) l.c.K-space form M(H) which the

tensor field P% is hybrid, the Riemannian curvature tensor RgD% can be written as

(2.7) without

3. COMPACT L.C. K-SPACE FORMS.

In this section, we shall mainly deal with compact 1.c.K-space form.

Let M(H) be an m-dimensional 1.c.K-space form with constant holomorphic sectional

curvature H. If we assume that the scalar curvature R is constant, then by virtue of

2.4) all of the scalar fields R,H and P are constant. Under this assumption, differ-

entiating (2.1) covariantly, we get

4V R 3On- 4)V P (3.1)

Substituting (1.2) into the above equation, we have

4V R 3(m 4){-V V e (Ve) a V a

By virtue of the Ricci identity [5] and the assumption

implies

+ +(Vll II )gv}. (3.2)

Vc, the equation (3.2)
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4(VmR VRm) 3(m- 4){eae + amCVa) -a(V0)
+ (VIIII VIIII

Transvecttng the above equation with g and taking account of the foula 2VR
V% [5] we obtain

i+ (V E)a + (m 2)V IIII 0. (3.3)

Substituting (2.1) into (3.3), we obtain

{(m + 2) + 311aI12 + Veg}a + m -2 4Vllall 0. (3.4)

us we have

THEOR 3.1. In an m-dimensional (m # 2,4) l.c.K-space fo (H) which the

tensor field PD% is hybrid and the scalar curvature is constant, the length IIII of

the Lee fo a% is non-zero constant if and only if

(m + 2) + 311all + V ae 0. (3.5)

By virtue of (3.5) and the Green’s theorem, we have

COROLLARY 3.2. In a compact m-dimensional (m # 2,4) l.c.K-space fo (H) which

the tensor field P% is hybrid and the scalar curvature is constant, if the length

IIII of the Lee fo a% is non-zero constant, then there exists the following relation

between the holomorphic sectional curvature H and the length llall of the Lee fo

(m + 2) + 311all 0. (3.6)

COROLRY 3.3. There does not exist a compact m-dimensional (m # 2,4) i.c.K-

space form () which the tensor field P is hybrid and the holomohlc sectional

cuature is positive if the length llall of the Lee fo a% and the scalar curvature

are constant. Especially, if 0, then the manifold must be locally Euclidean,

that is, the Riemannian curvature tensor m% is identically zero.

The following proposition was proved by T.Kashiwada [i];

PROPOSITION 3.4. In a compact dimensional (m # 2) l.c.K-manifold , if

e 0 (3.7)

holds good, then the manifold is a Khler manifold, where % n y g%. The

inequality in this case is naturally reduced to =.

Now, let () be a compact dimensional (m # 2,4) l.c.K-space fo. Then trans-

vecting (2.5) with FF%, we get

-m(m + 2) +
3 (3.8)

By virtue of (2.4) and (3.8), we obtain

m(m + 2)H 4RHe R
3 (3.9)

Thus we have from PROPOSITION 3.4 and (3.9)

THEOREM 3.5. In a compact m-dimensional (m # 2,4) l.c.K-space fo M(H) which

the tensor field PU% is hybrid, if the inequllty m( + 2)H > 4R holds good, then the

manfold M is a complex space form.

4. RECURRENT L.C.K-SPACE FOS.

A Riemannian manifold M is said to be recurrent if the Riemannian curvature tensor
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R satisfies

R (4 i)v eKux
for a certain non-zero vector field e For a recurrent Riemannian manifold, it is

trivial that

R ciR. (4 2)

Now, let () be an m-dimenslonal (m # 2,4) recurrent l.c.K-space fo which the

tensor field P% is hybrid. en we have (2.7) and (4.1). Differentiating (2.7)

covariantly and taking account of (4.1) and (4.2), we have

(m-)s
_

F

+ ( 4)( 1) +

+ 2F F

+ F F 2F F )}+ (FFI F + 2F<iF<)
1

3(m- 4)[{egKpF9%-

+ (F<ul Fgl + 2FI) + {mKlm FKpml 2(Pm + FKI)}
+ (x x +

+ F # F # 2(F # + F # )}el] 0. (4.3)

Transvectng (4 3)with we get

( + 2)HoKp3 3(m- 4)(m- 2) (gKv6U gKpS F
1 (m3(m 4) )

+ (RF + 5R)au-
{ + (m- )}1.

Fro ths, we obtain

o. (4.

us we have

THEOR 4.1. An m-dimensional (m # 2,4) recurrent l.c.K-space fo (H) which

the tensor field P% is hybrid is trivial, that is, the nifold is locally setric
or of zero holomorphic sectional curvature.

Let (H) be a 4-dimensional recurrent l.c.K-space form. Then, by virtue of

PROPOSITION 2.1, the manifold is Einstein. Thus we have from (2.1) and (4.2)

(2S + P) 0. (4.5)
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Thus we have

THEOREM 4.2. A 4-dimensional recurrent l.c.K-space form M(H) which the tensor

field P% is hybrid is trivial or the manifold has a property 2H + P 0.
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