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ABSTRACT. Approximating solutions to the differential equation dy/dx f(x,y) where

f(x,y) y by a generalization of the modified Euler method yields a sequence of

approximates that converge to e. Bounds on the rapidity of convergence are determined,

with the fastest convergence occuring when the parameter value is 1/2, so the genera-

lized method reduces to the standard modified Euler method. The situation is similarly

examined when f is altered.
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i. INTRODUCTION.

The Euler method is known as a simple, but crude,method for approximating

solutions to differential equations. The modified Euler method offers greater

refinement, as shown in Ross [i]. Let us recall in this setting we wish to solve

the equation dy/dx f(x,y) subject to the condition Y(Xo) YO" We let h denote a

positive increment in x and define x
k

x
0 + kh. To approximate the exact solution y

at Xk, Y(Xk) Yk’ we construct a seaence of approximates yk(I), yk(2), which

converge to Yk" Proceeding inductively we get Yk+l by considering the sequence:

()
Yk+l Yk + hf(xk,Yk) i. i)

(2)
Yk+l Yk + (h/2)[f(xk’Yk) + f(Xk+l’Yk+l(I))] (1.2)

while in general

(n) (n-l))]Yk+l Yk + (h/2)[f(xk’Yk) + f(Xk+l’Yk+l
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hen successive terms in this sequence are close enough, we set their common value

:qual to Yk+l" With this in mind, we can consider the equation

Yk+l Yk + hi 1/2f(xk,Yk) + 1/2f(xk+l,yk+l (1.4)

defining the solution points by the modified Euler method (MEM).

If we consider the specific differential equation with f(x,y) y, and the side

zondition y(O) i, with an increment of h i/n we get the values

2n + i
n

1 (n- .5) + .5

Yn 2n 1 (i + (1.5)

This produces a sequence that converges to e (as was to be expected since y’ y).

The modified Euler method fits into a more general scheme given by

Yk+l Yk + h[pf(xk’Yk) + (l-p)f(xk+l’yk+l) (i.6)

where 0 p I. If we now apply this generalized method (call it M EM) to the same
P

differential equation as above, we get a general term of

n 1 nn+p =[i+ (17)Yn n- (l-p) n- (l-p)

and clearly Yn approaches e. We note here that p 1 produces the same sequence as

the Euler method, and p 1/2 produces the same sequence as the modified Euler method.

2.

e.

MAIN RESULTS.

One is now led to ask which value of p yields the sequence that best approximates

suggests one could examine the family of functions

f (x) (i + i/x)x + (l-p).
P

The expression for Yn
(2.1)

this. It follows that p .5 yields the best approximation to e because any value p’
greater than .5 can be improved upon by, say, (p’ + .5)/2. Perhaps Euler knew some-

thing that we haven’t given him credit for when he chose p 1/2 instead of an

alternate weighting system!

To determine, how, quickly f.5 converges to e, we wish to find N such that x > N

implies f.5(x) e is bounded above by > O. To this end we have

i x[ 501n(l + i/x) .491n(i + i/x)f.5(x) f. si(x) (i +) e" e

i + ) (. 50i .49i)ini( i + i/x)(i/i:

z .o()(.5o-a( + /x(/:)
+/-0

<.Ole i(.50i-l)(i/x)i(i/i!) (2.5)
i=I

(2.2)

(2.3)

is referred to the articles by Darst, Dence and Polya [2-4] for further details on

These functions fall into one of three types, depending on the size of p. The

function f is decreasing for p _z .5, is increasing for p > (-i + V5)/2, and is
P

decreasing at first then eventually increasing for .5 < p (-i + V5)/2. The reader
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< .Ole

_
21-ix (2.)

i=I

e/[ 50(2x I) ], for 12xl > . (2.7)

Since f.5(x) e < .5[f.5(x) f.51(x)] e/[lOO(2x i)] for all sufficiently

large x, the difference between f.5 and e can be made small enough by choosing x

greater than .511 + e/(iOOz)]. For example, with e .0OO1 we then choose x > 136.A
and get f.5(137) 2. 7182938 and the difference f.5(137) e .000012.

If we now consider the slightly more general initial value problem dy/dx
f(x,y) Ay with side condition y(O) I then, using MpEM,we get

Yl YO + (I/n)[pAYo + (I-p)AYl] i + (i/n)[pA + (l-p)AYl] (2.8)

so
n+Ap

Yl n + (p-l)A (2.9)

and then

2
so Y2 Yl

Y2 Yl + I/n)[pAYl + I-p)AY2] (2.10)
nThe n-th term is given by Yn Yl or

A n

Yn [i + A (2 II)n (l-p)

with A,B,C real.

Case i. Set a
n

IA) by

(i + A/n)Bn + C (2.12)
We shall consider A as positive in what follows.

(I + A/n) n + e and b (i + A/n)-n + a
and define the number

n

in(1 + A/2) ln(l + AIln(l + A) ln(l + A/2 > O. (2.1.3)

y (A) <, 0 (2.1A)

The motivation for this is that y(A) is the limiting value of a as n tends to for

which a a By methods analagous to those used by the author in [4] we known n+l"
that [an is increasing if e Qy(A), decreasing if A/2, and initially decreasing

then eventually increasing if 7(A) < A/2. Because bn is basically a reciprocal

of an it follows that the monotonicity of bn is increasing if e -A/2, decreasing

if > -7(A), and initially increasing then eventually decreasing if -A/2 a -y(A).
Case 2. Set c

n (i A/n) n +e
and d (I A/n)-n +a

n with n > A, and define the
umber 7(A) by

A A([A] + 2)in(l [’] 2 ([A] + l)in(l [A] + 1

A Ain(l [A] + 1 ln(l [A] + 2

where the brackets denote the greatest integer function. Similar to above we have
\ -A/2 decreasing if < y(A), and initially increasingthat Cn is increasing if

hen eventually decreasing if (A) < < -A/2, and that [dn is increasing if
m A/2 and initially decreasing then eventually increasing ifdecreasing if

so Yn converges to eA. Furthermore, since Yn is of the form (i + A/x)x + (I-p)A

insight into the behav-ior of Yn can be gained by examining the related family of

sequences



186 R.B. DARST AND T. P. DENCE

A/2 a <-(A).
from the identity

Because of cases I and 2 we can determine the monotonicity of (2.12’

A Bn + C A (sgn B)n + C/IBI IBI
(1+ ;) [(1+ ) ] (2.15]

Furthermore, since (2.11) is of the form

(i + A/x)x + (I-p)A (2.16)
A

it follows that the fastest convergence to e is when (1-p)A A/2, or p 1/2. This

is because (i + A/n) n +
is decreasing to e

A
for - A/2, with the fastest conver-

gence at a A/2. We remark here that some of the above monotonicity properties could

be alternately derived by examining the logarithm of (I + A/x)Bx + C.
The rapidity of this convergence can be discussed by considering the functions

f (x) given by (2.16) and noting (same technique as before) that
p

f.5(x) f.51(x) < eA[e 50Aln(l + A/x) .A9Aln(l + A/x)e

< "OleA I Ai(A/x)i21-i

A2eA/[50(2x A2) ].

(2.17)

(2.8)

(2.19)

Table 1 lists some data for this situation.

f. 50(x) f. 51 (x) f. 50 x)-f. 51 (x)
A2eA

50(2x A2)

i0 20.A3377 20.27357 16020 32867
50 20.10259 20.067/+8 .03511 .03972

I00 20.08992 20.07211 .01781 .01892
/+00 20. 08581 20. 08131 00/+50 00/+57

Table 1 (A 3)

For large enough x we have

A2eAf.50(x)- eA< 1/2[f.50(x)- f.51(x)] < I00(2x-A2)
and for this difference to be less than . > 0 just choose x greater than

5[A2 + A2eA/(IO0 )]. For example, with z .001, we choose x 999 and get

f.50(x) e3 .0000/+.

3. CONCLUDING REMARKS.

(2,20)

Noticing how critical the value p 1/2 is on the efficiency of convergence

orompts one to characterize those functions f(x,y) which fall under this classifi-

cation. Knowing this to be true for f(x,y) Ay, we can now show it to be true for

the elementary functions f(x,y) =xm, with the side condition (0,0), and for m 0,i,

xm+l/(2 3 (we know y re+l) and y(1) 1/(m+1)) Using M EM of (1 6) and
P

h i/n we get
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n n-1 n

i=I i=1 i=I (.)Yn
m+l m+l
n n

n m+1

I ni with a i/(m+l) andBut i
TM

is expressable as a polynomial p(n) a
i m+l

i=I i=1

a 1/2. Thus Yn can be written as
m

1 m+l m-i m- n + am_in + + aln) + (1/2 n pnTM)

m+l

and this expression converges to I/(m+l) fastest when p 1/2. Likewise it follows

that p 1/2 whenever f(x,y) is a polynomial in x. Further classifications of f

appear to be more difficult to obtain.
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