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ABSTRACT. A theory of a generalized form of the chain transforms of order n is
developed, and various properties of these are established including the Parseval
relation. Most known cases of the standard theory are derived as special cases.
Also a theory of self-reciprocal functions is given, based on these general chain
transforms; and relations among various classes of self-reciprocal functions arc

established.
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1. IKRTRODUCTION.

The standard and the simplest definition of a function g to be the integral

transforms of f with respect to k is that

gx) = J T k(xt)dt (1.1)
0

where k is called the kernal, [1,VIII]. 1If further

o

flz) = f g k(xt)de, (1.2)
0

then we say that f and g are pair of k-transforms. Under less stringent conditions

the equations (1.1) and (1.2) can be replaced by

f a(t)dt = [ t_lf(t)kl(xt)c’t (1.3)
0 0
J F(E)ydt = f t°1g(t)kl(:ct)ri+ (1.4)
0 0

T
where K, (x) = J k(t)dt
0
The above reciprocity formulae define the pair S and g, generally known as Watson

transforms. Many generalizations of this reciprocal relation have been given, and
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one of the directions was pointed out by Fox, [2], who introduced the idea of chain

transforms. He showed that for chains of the form

00

J g, Wk, (ux)du
0

g, ()

gn(x) = IO 9, Wk, _ (wx)du

o

J gn(u)kn (ux)du ,
0

9, (x)

there exists a theory similar to the standard theory for n = 2, i.e., the Watson
transformations. Also, Duggal, [3], considered the pair of equations.

&

f L& rayax - J k(u)g (@) dx (1.5)
0¥ T 0

00

f Luthg@rds =f k() £ () dz (1.6)
0 0

using convolution of the functions f and g and characterizing the relationship between
fand g. If V = v are taken to be the Heaviside step functions, then (1.5) and (1.6)
reduce to the equations similar to the equations (1.1) and (1.2) above, thus extend-
ing the Watson's definition.

In this paper we shall combine th- above mentioned two extensions of the usual
Watson integral transformations. We shall give a generalized form of the chain trans-
forms of order n and develop properties parallel to those of the standard theory.

Most of the well-known results are deduced as special cases. Further a theory of
self-reciprocal functions is developed based on these general chain transforms; and
again many standard results are deduced as special cases. In the end various examples
are given to illustrate the general nature of the main theory developed and its
special cases.

2. PRELIMINARY RESULTS.
Definition 2.1 Let f € L2(0,). Then define

MIF(x);8) = F(s) = J Flo)® e, (2.1)
0

s = %—+ i, =© < 1T < ®, F(g) is said to be the Mellin transform of f(x); the

integral exists in the mean-square sense. If further F(s) € Lz(% - 1w, %'+ i),

then
L4jo
F@ = 37 J F(s)x  ds 2.2)

Jg=1o0

W F(s) 5]

the integral existing in the mean-square sense; we say that f(x) is the inverse

1 .
Mellin transform of F(s), s =5 * 1T, == < T <, [1,I].
The Parseval theorem, [1,III].

If f and g € L2(0,») and have Mellin transforms F(s) and G(s) respectively, then

Jstio

00 -8 2.3)
J Flxt)g(t)dt = ‘27112[ F(s)G(1-s)x °ds (

0 Bt
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Definition 2.2. A function f is said to be self-reciprocal with respect to the kernel

k if f is its own k-transform, satisfying the identity

flx) = f f(e)k(xt)de,
0
or its equivalent. We then say that

fen, (2.4)

Although most of the results hold for functions involved under less stringent condi-
tions, but we shall mainly work in the Hilbert space L2, for convenience and elegance
of the theory of integral transforms in this setting.

3. CHAIN TRANSFORMS.

We consider the system of » integral equations

fo 7<i(u:c)f‘i+1 (x)dx = Io v, (ux) f; (x)dx

where 7 = 1,2,...,7n and ?(x) = % f(%). For simplicity we shall assume that no two f%
are equal, although it is not essential. We shall refer to the functions ki and vi
as kernels. Now, we give one of our major results.
Theorem 3.1.

If (1) k;v.,f; and fn+1 all € L2(0,®), 7 = 1,2,...,n.

(ii) J ki(ux)};+1(x)dx = Jovi(um)};(x)dx, 7 =1,2,...,n where

0
o 3.1)
f@ =17, ana
n V.(s) -
(iii) P(s) = L € 17G - im, T+ 0w, (3.2)
i= K.(8)
1
then u .
_1 ~~
JO Fry, @)= = Jo @ p, (we)f) (x)dz (3.3)
.1'+1:cn
1 [¢ P(s) _1-s (3.4)
where pl(x) pre J%_im 1<s x ds ,

and V.(s) and Ki(s) denote the Mellin transforms of vi(x) and ki(x) respectively on

T
1 .
S=E+1,T’—m<'[<oo.

N PROOF. Due to the hypothesis (i) and the fact that f € [2(0,=) whenever
fé € L (0,=), the integrals in (3. 1) exist and are in fact absolutely convergent

?lso, the L2-functions in (i) have Mellin transforms which belong to Lz(— - few,
3 + i) due to definition (2.1) above.

Now due to the Parseval theorem for Mellin transforms of L2-functions, applied to
both sides of (3.1), we have

Ki(s)Fi+l(3) = Vi(s)Fi(s) a.e. (3.5)

1 . .
om s =5 +7I1, @< T <e, 7=1,2,...,n. On successive elimination and using (3.2),
we obtain



60 C. NASIM

F (s) = P(s)F, (s)
n+l
Next we have

Fo@ =M F () ],

*nt+l 1

therefore
1 i -8

f%+1(x) =57 J%-im P(s)Fl(s)x ds, (3.6)
the integral converging in the mean-square sense, since P(% + 21) 1is bounded and
Fi(s) € Lz(%-- 1o, %—+ 7). Or from (3.6), we have

U I A u 8

JO Fpp @z = 5= J%_im P(s)F (s) 7 ds, 3.7)
the integration inside the integral sign is justified because of uniform convergence
due to hypotheses (i) and (iii). Now since P(s) is bounded, therefore f(f 3 €

LZ(%'— To, % + Z») and hence

x_lpl(x) = M-l [______lPEs; H ac:| s

exists and € L2(0,). Also
fi@ = 1HE -8 2],

therefore due to the Parseval theorem applied to the right-hand side of (3.7), we

obtain

0
as desired.

o -1 ~
Fpqq ®)dx = JO z py (o) f (®)dr ,

DEFINITION 3.1. The sequence of functions {f;} is said to be the general chain
transform of order n, with respect to the kernels ki and vi’ i =1,2,...,n, whenever
the system (3.1) along with (3.3) is satisfied. It is now an easy matter, to prove a
stronger result than that of Theorem 1, which we give below without proof.

THEOREM 3.2. Let the conditions of (i) and (ii) of THEOREM 1 hold. Then

necessary and sufficient condition that (3.3) holds is that

n V.(s)
P(s) = T =

i=1 Ki(s)

Next we shall give some special cases of the result of THEOREM 1.
First let n = 1.
COROLLARY 1. If

f ky ) f, () d =J v, ) f| @) dx
0 0
and Vl(s)
P(s) = ,
K, (s)
then u -
J f@de = J x_lpl(ux)? (x)dz , (3.8)
0 0

i -
where p, (2) = - J EG) 18 g,

27 Lefe 1-s
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Thus if kl,v1 and fl are known, we have an inversion formula to retrive the unknown
function fé. If we further set
[o if0<ax<1,
v, (x) =
1 if > 1
z x

we obtain a familiar unsymmetric transformation of Watson's type [1,VIII]; that is
COROLLARY 2. If

U 00
= % U
fo £y @dz = fo 2, f, @d

and

P(s)l(1 (s) = -3
then

0

= U
[o fp@)de = jo pl(w)f‘1 (x)dx .

Next let n = 2. Then THEOREM 2, reduces to a known result [3], that is:
COROLLARY 3. If (i) k;»f; and fy € L2(0,%), 7 = 1,2,

0 L

(11) JO ky (o), (x)dx = f v, (u2)f| (z)dx
0

jo ky (ux)F (@)dz = fo v, )T, (x)dx

Vi (s)V,(s)
(iii) P(s) = —
K, (s)K,(s)

and

1 . 1 .
GL(E—‘LQ,E""LW)

then “

J fy@)de =J x'lpl(ux)}:l(x)dx
0 0

1 I%+im P(s) xl-s ds.

where pl(x) = =

2mt %_iul -8
Suppose, now, pl(x) is differentiable, then from (3.4), we have
1 FHie s
px) = py(x) = 70t I P(s)x “ds ,
LT .
%-iw
-1
i.e. p(x) = M "[P(s); x].

Further let

ki(x) =6(1 - x),
i =1,2,...,m and § being the Dirac delta function. Then the sequence (3.1), reduces
to . N

fi+1(u) = Io vi(ux)fé(x)dx

and consequently we have, a non-integrated version of Theorem 1:
2 3 = RIS
THEOREM 3.3. If (i) vi’fi and fn+1 € L°(0,°), £ =1,2,...,n

(i) f,, G0 = fo v, () (x)dx

n
(iii) P(s) = I V.(s),
X 7
1=1
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then

0

Frpag () = [o pun)¥| (@)dax,
fo

where px) = L P(s)x °ds .

2n7 L i
Letting p(x) = 6(1-z), and hence, its Mellin transform, P(s) = 1 the above result,
then, defines the chain transforms introduced by Fox. Note that all the above
mentioned results are specializations of our Theorem 1, showing the general nature of
that result. Next we shall deduce a Perseval type relation for the general chain
transforms as defined by Definition 3. Let sequences {fk} and {gi} be chain trans-

forms of order n with respect to the kernels ki and V. Now consider
® ) ~ de
0 Fppy (W09, (@)dz
where
% U
fh+1(u) = JO In+1(x)dx .

By virtue of THEOREM 1 and the consequence (3.3), we have

C L1 ~
Jo T S )9, (2)dx

J g, @dz J ¢, (t)F (Bt
0 0

=J t“l?‘l(t)dtI o lp, (wt)g, (@)de
0 0

J £ (g, werde

Hence - i
-1.% ~ -1~ *
Jo @ £, g, @de = JO tf (g, wt)dt , 3.9

establishing, formally, the Parseval relation. Further on differentiating both sides,

formally, we have
JO FNCOPRON JO 7L, utydt .

Letting n = 1, reduces the above to the usual Parseval Theorem, [1, III].
It is now an easy matter to develop an inversion theory for the general chain

transforms. For instance if we assume that
P(s)P(1 - s8) =1,

then from (3.3), due to the standard inversion formula, we have

u 00
_ =1
Jo ?l(x)dx = Jo x pl(ux)fh+1(x)dx .
Thus the unknown function f1 is retrieved. On the other hand if we assume that

1 S o —
ﬁe—)€E'0, 0 = xd:c’

EO’ being the Lagunerre-Polya class [4, VII], then due to the known inversion tech-
niques, [5]

1
56y 1 @1 = @,

giving us the function fl'
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4. SELF-RECIPROCAL FUNCTIONS.
Suppose {fi} is a sequence of general chain transforms of order n, with respect

to the kernels ki and v, If we then set fh+l(x) = ?l(x), in Theorem 1, we have

THEOREM 4.1. If (1) Kk ,v..f, € L2(0,®), 2 = 1,2,...,n,

(ii) Jo ki(ux)?iﬂ (x)dx = Jo vi(ux)?r‘i(x)dx (4.1)

7: = 112,'--’n-l’ ?(x) = % f(%) >
r k, () f (@)dx = J v (ux)f, (zx)dx (4.2)
0 0

nd n Ve e o1,

(iii) P(s) = 'gl 7.9 €L (5-- 1w, §-+ 1),

then u Lot -
J ¥, @dz = J  'p, w)F, @iz 4.3)
0 0

i
=L P(s) 1-s

p, —Znif 1-e% 4o

f-im
From the conclusion (4.3), it follows that ?1 is self-reciprocal with respect to tne
kernel pl(x), in the sense of definition 2.2. Symbolically we say that

F € Rpl
The particular case when n = 2 is of special interest. In this case, many useful
properties of self-reciprocal functions are established, including a procedure for
generating self-reciprocal functions with respect to a given kernel. Now let n = 2.
Then,

COROLLARY 1. If (i) kv, and f, € L2(0,*), © = 1,2,

(i1) J k) ) fy (@)de = r v, W) (@)dx (4.4)
0 0
J k, (uz) f) (x)dx =[ v, ()T, (x)dx (4.5)
0 0
and v (8)V;(e) ©l . 1. .
(iii) P(s) = FAOTAIE €176 - de, 5+ iw)
then
€R
7 o

I pGe) 1o

ds .
Yiw 1-s

where pl(x) = E%f J

PROOF. By the Parseval theorem for Mellin transforms, equation (4.4) and (4.5)

give respectively,

K, (8)F,(8) = Vy(8)F(s) (4.6)

K, (8)F (1-8) = V,(8)F,(s), (4.7)
a.e. on 8 = %-+ 1T, -® < T < o, involving the Mellin transform of the respective func-
tions. Next define functions

3-8 ey 1

L(s) = ?;?I_:_EY L (5-— i=, 5+ i)
and Vl(s) L ‘

M(S)=WL<S)’ s =541t =<1 <w
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Then from (4.6) and (4.7), we obtain, a.e. on § = % + 1T, =© < T < o
Fy(s) = M(s)F,(1 - s) (4.8)
and
Fy(s8) = L(s)F,(1 - s). 4.9)
Also,
_La - s)
P(s) = @) M(s) .

By the Parseval theorem for Mellin transform of L?-functions (4.8) and (4.9) give,

respectively,

u 0
J £, (@)dz =J " m(uz) £, (z) de
0 0

U Q0
[ £ @dzs = JO el ) £, (@) de
0

where
i }
m @) = lez 1MES; T
J%_im
and .
L (z) = 1 (A L(s) 225 ds
1 2t . 1-8 :
h-iw

The functions m and 51 are defined by the integrals which exist in the mean-square
sense, since both M(s) and L(s) are bounded on g = % + Zm, —o» < T < », due to the
hypothesis (iii) of Corollary 1 above, and consequently ¥£§2§ and iééﬁi both

€ Lz(% - 1w, %-+ o). Thus, combining the above results, we have,

Corollary 2. If (1) f, and f, € L2(0,»),

u 00
(1) j fp@dz = j & tm, () £ () dx
0 0

u 00
(iii) J £, @de J a:_181 (ux) f, (x)dzx
0 0

. _ LA - s)
(iv) P(s) = () M(s)
then
€R .
i P,

where ¢,,m; and p, are defined above.

This result gives us a procedure for generating a new class of self-reciprocal
functions, given a self-reciprocal function and the kernels. Note that the hypothesis
(ii) shows that f} € le. If all the functions involved are differentiable, we obtain

a simpler form of the Corollary 2 above, that is:

Corollary 3. If (i) fy and f, € L2(0,%)
(ii) Fo(w) = Jo m(ux)f}(x)dx, (i.e. f} € Rm)’

(ii1) fy @) = J £ (ux) f, (x)dx
and 0
L(l - 8)

(iv) P(s) = 73)

M(s)
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then

fla = J p)f (@de , (i.e. F€R).
0 p

For example, let

m@) = ~2n(sintvd (4n5?) + coskru(¥ (4mc®) - (ame®)}1, vz 0
2y 2 v pc ) , V2
N
ov z(l - s - lv)c(l -8+ lv)
M) - i 1 i,
t(s = 5VL(s +5v)
where z(z) = z n-z, R(z) > 1, the Riemann-Zeta function. Also,
n=1
(2m) 7T (e + F)cos Fn(s + 5v)

HM(s)

s

1 .1 1
(1 - s + 7")51“ E‘n(s - T’)

by making use of the identity

z(s) = ns-IZSF(l - 8)sin %ﬂs z(l - s).

It is an easy matter to see that
M(s)M(1 - 8) =1,

hence m(x) is a Fourier-Watson kernel. Further let

m 1
L(s) = cosec 3 (s =3V,

then
_ LA - s8)
P(s) = I M(s)
2071 (s + v)
ra-s+ %v)
-1 2 1 1
e(x) = M "[L(s); =] = TI3Z V2 0, - SV < Re s < 2 + )
and
p(z) = MY P(s); ] = 2n Jv(lmx%), -hcres<3.
Thus,

Corollary 4. If (i) f € Rm’ m defined by (4.10),

(ii) g(z) = JO E(xt)f(t)de,
where 2(x) = 2 x‘%V
T 1l+ 2%
then ?(x) € Rp’ where p(x) = 2n Jv(4nx%).
In particular, let
kv

f(x) = 2°° cos(2mx).

One can show that f € Rm. Then

g(x) J L(xt) f(t)dt

0
_2 kv ® cos(2nt)
B JO 1+ xt de

= g () -2/ [65221(55)].

Now
o

J p(xt)g(£)dt = 2n J £V m2me g (bm Fthae
0 0

65

(4.10)
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= x%ve—an

’ [6;29(10)].

=g,
as predicted, thus verifying the result of Corollary 4. Next we shall give a slightly
different version of Theorem 4.1, so that the function fl’ rather than the function
?1 is involved in the conclusion.

THEOREM 4.2. Let the conditions (i) and (ii) of Theorem 4.1 hold. Further if

n V.(1 - 8) -
Q(S)=HE‘”—(1——_—?)—€L(%—'5«»,%+7;@)
i=1 "¢
then -
Ju fi@dx = f x_lql(ux)fl(x)dx, (or f €R )
0 0 K
where .
ftio )
q,() = 5%;—[ . Igé§%»xl S ds .
F-ie

Again the special case when n = 2, is interesting, since it gives us a procedure for
generating self-reciprocal functions.

COROLLARY 5. If (i) f;,v andk, L (0,), 1= 1,2,

o

(i1) Jo kl(ux)}"z(a:)dx Io vl(ux)}‘l(x)dx

fo k, ) F (z)de f: v, ) Fy (z)dr
V(L - 8)V,(1 - )
i Q@ = ra—sna e

then
u

| i@ = rx-lq](ux)fl(x)dr
0 0

: -
ie. fy € qu .
Now from the hypothesis (ii), by using the Parseval theorem for Mellin transforms, the
two equations imply respectively,
K1 (8)Fy(8) = V,(s)F,(s)
Ky (8)F (1 - 8) = Vy(8)F,y(s),
a.e., where s = %-+ T, =® < T < o,
If we consider the functions L(8) and M(s), defined earlier, then as before, we obtain
Fy(s) = M(s)F,(1 - s)

and
Fl(s) = L(s)F,(1 - 9), a.e.
The last two equations, then give, respectively,
f:fz(x)dr = ra:-lml(ux)fz(x)dr (4.11)
and 0
f: fl@)de = rx-le(ux)fz(x)cbc (4.12)
0
+iw
_ 1 L(s) _1-s
where  £,(x) = 20t ), 1T-5% ds ,

h i
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and Lie }
my(x) = % J:_w. —]-_ALE%Z—;- ! Sds.
Thus we, formally, have
COROLLARY 6. If (i) f, and f, € L2(0,x),
(ii) (4.11) and (4.12) are satisfied,

- _ L(s)
(ill) Q(S) = L(—l_—s)- M(l - 8),

then
r fi)dz = rx-lql(ux)fl(:c)dx where £,, m,,q, are as defined above.
0 0

It is not difficult to prove the above result rigorously, the functions f1 and f, €
L2(0,*) and M(s), L(s) and Q(s) are bounded on g = %+ i1, -® < T < ®»  hence the
Parseval theorem can be applied to give us the desired result. A non-integrated form

of the above result is as follows:

COROLLARY 7. If (i) fo(u) = rm(ux)fz(x)d'x:
0

(i) fi = J £(ux) £, (x)dx
then © 0
fl(u) = f q(wr)fl(x)zir.
The kernel 0

U
q,@) = J q(x)dx
0

and the kernels ¢(r) and m(x) are defined similarly. Note that the above results gives

us a procedure for generating self-reciprocal functions. For example, let

%

m(x) =& Jv(x),

then its Mellin transform is given by [7; 326(1)]

1 1 1
"oy = 23_% F(T) +56 + 7;)
I‘(%\) - %s + %)
Now, let
- F(u+vtl)
Z(x) = (x/z) Kt%(\)'u)(x)’

Kn being the usual Bessel function of third kind, and its Mellin transform is

% 1
L) = 2° I‘(%v+%‘s+7l‘-) (%“+%S+Z)‘
Therefore
1) NV
Q(s) = Il -9 M1 - 9)
1 1 1
R R L Y
B 1 1 3,
TGu-22+2
¥

whence q(x) = = Ju(x).

Thus, we have as a special case of Corollary 7.

COROLLARY 8. If f € H_ and

7L B
gx) = Jo (§xt) K%(v_u)(xt)f(t)dt ,
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h €
then g "

Here the class Hu denotes the class of self-reciprocal functions with respect to the

Hankel transforms of order u. To varify this result, let
fxy ==z &7 ,

and f(x) € Hv' Then, [6; 132(25)],

© 1 g (ukv) y
Jo Gt Ky oy @OF B

g(x)

1 Js(v+u—1)e:c2/uw

% (v-p-t 1
= g7 0ow )r(v+1)r(§v +5u + Da -%(u+3v+2)’t%(v-u)(x2/2)

and it is an easy matter to verify that g(x) € Hu, as predicted, [6;84(15)]. A parti-

cular case of the above result is obtained, if we set v = py = % , il.e.

COROLLARY 9. If f € Rs and

gz = J T rydt
then 0
g(x) € R,

where Rs and Rc denote the classes of self-reciprocal functions with respect to Fourier
sine and Fourier cosine transforms, respectively. In the operational notation, we have

that if

F [f] = f and L[f] = g,
then

F,lg]l =g,
where Fs’FE and L denote the Fourier sine, Fourier cosine and the Laplace transforms

respectively. For example, consider

f@) = —I%Jf—) PR Hyy @212, Re v > - 7,
such that

f@) € R, [7;115(5)].

Now,

gx) =

I e Ttr(tyde
0
2

2

-v_2v-1 z¢/u 2
14 2

7 e -3v,-v(m /2) ,

[7;215(13)], where Mu v and Wu

>

v are Whittaker's functions and then g(x) € Rc’ [7;61(7)],
’

as predicted.
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