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ABSTRACT. Using some results on linear algebraic groups, we show that every con-

nected linear algebraic semlgroup S contains a closed, connected dlagonallzable

subsemlgroup T with zero such that E(T) intersects each regular J-class of S. It

is also shown that the lattice (E(T),<) is isomorphic to the lattice of faces of a

n
rational polytope in some Using these results, it is shown that if S is any

connected semlgroup with lattice of regular J-classes U($), then all maximal chains

in U(S) have the same length.
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O. INTRODUCTION.

Throughout this paper, Z, Q, +, Z+, Q+ will denote the sets of reals,

integers, rationals, positive reals, positive integers and positive rationals re-

spectively. If X is a set then IXl denotes the cardlnallty of X. If X is a

subset of a semlgroup, then <X> denotes the subsemlgroup generated by X. If (P,<_)

is a partially ordered set and {el <e2 < <en } is a finite chain in P, then

we define the length of the chain to be n i. K will denote a fixed algebraically

closed field, K
n

K K the afflne n-space. M (K) will denote the set of
n

all nxn matrices and GL(n,K) the group of units of Mn(K). F(Xl,...,Xn) will de-

note the free commutative semlgroup in the variables Xl,...,xn and K[XI,...,xn]
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the free commutative algebra over K in the variables XI,... ,Xn. We use the

notation of [6,(] for algebraic semigroups. Let S be an algebraic monoid with

identity element i and group of units G. If g E G, then the maps x/xg, x/gx,

-1
x/g xg are all automorphisms of the variety S. The last one is also a semigroup

automorphism. If we let a,b a,bES, ab 1}, then becomes an algebraic

group. Actually, with more general notions of varieties [5], G itself can be

viewed as an algebraic group By [6, Theorem 1.1], we can assume that S is a

closed submonoid of some (K) Then clearly G GL(n,K) N S and S\G is closed
n

If S
1

is closed submonoid of S with group of units G
l, then G

1
G N S1. If H is

a closed subgroup of G, then H is the group of units of H. If S is connected,

then clearly so is G, G S and dim S dim G. If S is not connected, then [7;

Lemma 1.9], 1 lies in a unique irreducible component S
1

of S and S
1

is a closed

connected submonoid of S. We say that S is t.rigonalizable if S is *-isomorphic

to a closed semigroup of lower triangular matrices. If S is connected, then

since G S, it follows from the Lie-Kolchin Theorem [5; Theorem 17.6] that S is

trigonalizable if and only if G is solvable. S is a d-semigroup if S is

*-isomorphic to a closed subsemigroup of (KP, -) for some p Z+. If S is

connected, then since G S, we see that S is a d-semigroup if and only if G is

a torus By [7; Corollary 3.15], a connected d-semigroup with zero can be

characterized as a connected Clifford semigroup with zero. If X,YCS, then X is

conjugate to Y if g-lxg Y for some g G.

1. CONNECTED SEMIGROUPS

LEMMA 1.1. Let S be a connected monoid, eE(S), e # 1. Then there exists a

closed connected submonoid S’ of S such that l, e S’ and e is the zero of S’.

PROOF. Let G denote the group of units of S and set V S\ G. Then V

V1U U V where V1,...,V are closed and irreducible. Let mo dim Vr r 1 i’

i 1,...,r. Then m. < n-l, where n dim S. Let -S / eS be given by (x) ex.
I

Let q dim eS i IV. Wi (Vi)C eS Let i E {1 ...,r) Suppose W eS
i

1

Then i is dominant. So by [5; Theorem .3] there exists a non-empty open set 0
i

of eS such that 0
i C_ (Vi)I and so that dim _l(x)- m_-a-<n-q for all x0.. So
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dim(V
i
N @-l(x)) < n-q for all x 60.

1
()

Next suppose W
i # eS. Then set 0. eS\W.. Then

V. N -l(x) for all x e 0.. (2)
1 1

Let 0 0102... Or. Since eS is connected, 0 # @. Let x 60. Then

x @-l(x). Let D be an irreducible component of @-l(x) such that x D. Then

[5; Theorem 4.1] dim D >_n-q. We claim that D

_
V. For suppose D C V. Then

D c_ V.m for some i. Since x e -l(x) 0
i
N V

i, (2) is ruled out. So t ()

dim D < n-q, a contradiction. Hence D V. So D N G # @. Let g6DOG. So

(g) x. Thus eg x, xg
-I

e. Let Y Dg
-I

Then Y is closed and irreducible

-iLet y 6 y. Then yg 6 D. So eyg x and ey xg e. Hence ey e for all

-i -iy6y. Since g 6 D, I gg 6y. Since x6D, e xg 6 Y. Let

S
I {alaeS, ea e}. Then S

I
is a closed submonoid of S and YC_SI. Let S

2
be

the (unique) irreducible component of I in SI. Then Y C_ S
2

and S
2

is a closed

connected submonoid of S. Thus i, e 6 S
2

and ea e for a 6 S2. By the dual of

the above argument, there exists a closed connected submonoid S
3
of S

2
such that

e 6 S
3

and ae e for all a 6 S3. So ae ea e for all a6 S
3.

FACT 1.2. Let A c M (K) such that AB BA for all A, B 6 A. Suppose also
n

that each A 6 A is lower triangular and diagonalizable. Then there exists a

lower triangular, invertible matrix P such that p-lAp is diagonal.

PROOF. We prove by induction on n. Let A {A Is E }, A Ca
C a

is (n-l) (n-l), aa6K. Clearly CC8 C8C for all a,8. Since

minimum polynomial of C minimum polynomial of A

minimum polynomial of C has no multiple roots. So each C is diagonalizable.

So there exists, by induction, an invertible, lower triangular (n-l) (n-l)

matrix MI such that MTIcMI is diagonal for all a. Let M MOIl" Then
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D M-IA M G is (n-l) (n-l) and diagonalm
G

Let Ea De aal, a 6 . Then each Ea is diagonalizable and EmE8 EsEm
(all a, 8). Moreover,

0b(C)
n n

Since EaEB EsEe,

c.C.b.B.( b.e.c.8.C i 2 n,all c B (3)i i i i

Also, since E is diagonalizable,

c (). 0 implies b (a). O, all i,e ()i i

Let i 6 {2,...,n}. If there exists such that c # 0 let u.= b )/c
1 i 1 1

By (3), Uo is independent of the choice of . If there is no such m, let u 0i i

Let u_ i and set u By (4), E u 0 for all . Let e. be the column
I ( 1

th
with 1 in i component and 0 elsewhere. Then u, e2,...,e is a linearly in-

n

dependent set of eigenvectors of E for all a . Let R [u, e2,...,en]. Then

R is lower triangular and invertible. Clearly R-IE R is diagonal for all . So

R-1D R is diagonal for all . Let P MR.

LEMMA 1.3. Let S be a connected monoid with identity element l, zero e.

Let G denote the group of units of S. Suppose G is solvable. Then for any

maximal torus T of G, e 6 T.

PROOF. We can assume that S is a closed submonoid of M (K). By the Lie-
n

Kolchin theorem [5; Theorem 17.6] there exists P GL(n,K) such that p-1Gp is

lower triangular. Since S, p-Isp is lower triangular. So we can assume
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that S is lower triangular. Let T be a maximal torus of G and set X T U (e}.

Then X satisfies the hypothesis of Fact 1.E. So there exists a lower triangular

RE GL(n,K) such that R-lxR is diagonal. Clearly R-1SR remains lower triangular.

So we can assume that X is diagonal. If a E S, then let $(a) be the nun diagonal

matrix, with the diagonal being that of a. Then $(X) X. Clearly $ is a

*-homomorphism of S into M (K) and $(G) is a torus. By [5; Corollary E1.3C]
n

$(G)=$(T) T. So$(G)CS. Since S, $(S) C S. Let W $(S). Then

W {ala S, $(a) a) is closed. Since $(S) W, W is a closed connected

submonoid of S. Let H denote the group of units of W. Then T C H G and H is a

torus. So T H and W T. Clearly e $(e) E W T.

THEOREM 1.h. Let S be a connected monoid with group of units G. Let B be a

Borel subgroup of G. Then S U xB--x-1.
xG

PROOF. We can assume that S is a closed submonoid of W M (K). Let
n

G
I {(a,a-l) la E G} Then G

I
is a closed subset of WW. If (a,b),(c,d) GI,

then define (a,b)(c,d) (ac,db). Then G
1

is an algebraic group *-isomorphic to

G. Let B
1 {(a,a-1)la B}. Then B

1
is a Borel subgroup of G1. Now [5; Theorem

El.B], G1/B1 is a projective variety. Let $:GI/G1/B1 be the natural projection

$(a) aB1. Let V WGl, Y WG1/B1. By [1; Theorem 6.8], G1/B1 is smooth

and hence a normal variety. The same is true for W. So Y W G1/B1 is normal

[1; p. 77]. Let :V/Y be given by (a,b) (a,$(b)). Then is a surJective

morphism. Clearly each fibre of is irreducible and has dimension equal to that

-1of B1. So [i; Proposition 18.], is an open map. Let X {(a,g,g )la S,

g G,g-lag ). Then X is closed in V. So (X) is open in Y. Hence (X)

is closed in Y. Clearly (X) (X). Suppose (X), m E (X). Then

(x)= (y) for some xX, y X. So x (a,g,g-l), y (a,h,h-I) for

some a S, g, h G. Now g-lag E . Since (x) (y), (g,g-1) (h,h-1).

gB hB. Thus h gb for some b B. So h-lah b-l(g-lag)bb-lb , aSo

contradiction. So (X) (X) and (X) is closed. Let e:Y W G1/B1+ W

denote the projection of Y onto W. Then since G1/B1 is projective, e is a closed
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map 5 Theorem 6.2 ]. Hence e ( (x)) is closed in W. Clearly e((x))

u gBg c_ S. By [5; Theorem 22.2], O C_ e(#(x)). Since G s,e((x)) s. This

proves the theorem.

COROLLARY 1.5. Let S be a connected monoid with zero e and T a maximal torus

in the group of units G of S. Then e 6 T.

PROOF. Now T C__ B for some Borel subgroup B of G. By heorem 1.4, e Exx-I
-Ifor some x 6 G. So e x ex E . Hence e is the zero of . By Lemma 1.3, e 6 T.

COROLLARY 1.6. Let S be a connected monoid with group of units G. Let

el,...,ek 6 E(S) such that eI
> e

2
> > ek. Then there exists a maximal torus

T of G such that e1,...,ek 6 T

PROOF. We prove by induction on k. If k l, we are done by Lemma 1.1 and

Corollary 1.5. So assume k > 1. By Lemma 1.1, there exist closed connected sub-

monoids SI,...,Sk of S such that e. is the zero of S.. Then ae
k eka e

k
for

i i

all a S
i, i 1 ,k. Let V {ala E S, ae

k eka ek). Then V is a closed

submonoid of S and S1, S
k
C V. Let W be the (unique) irreducible component of

1 in V. Then S1,...,Sk

_
W and W is a closed connected submonoid of S. So e

k
is

the zero of S. Let G
1

denote the group of units of W. By our induction hypothesis,

there exists a maximal torus T
1

and G
1

such that e1,...,ek_1 6 T1. By Corollary

1.5, e
k
6 T1. Let T

1
C T where T is a maximal torus of G. Then el,...,ek 6 T.

By [7; Lemma 1.3] we have,

LEMMA 1.7. Let S be a semigroup, Jl’’’’’Jk e (S), Jl >J2 > >Jk" Then

there exists el,...,ek 6 E(S) such that e.l J’’l i l,...,k and el>e2> ...>e
THEOREM 1.8. Let S be a connected monoid with group of units G. Then

(1) All maximal closed connected d-submonoids of S are conjugate.

(2) All maximal closed connected d-submonoids with zeroes, of S, are con-

Jugate.

(3) Let Y be a maximal closed connected d-submonoid with zero, of S. Then

U gE(Y)g-1 E(S). In particular E(Y) N J # @ for all J 6U(S). More-
geG
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PROOF. Since the group of units of a maximal closed connected d-submonoid

of S is a maximal torus in G, (1) follows from [5; Corollary 21.3A]

(2) Let Sl, S
2
be two maximal closed connected d-submonoids with zeroes of

S. Let e.l be the zero of S
i, i l, 2. Let H.I be the group of units of Si,

=T
i
i=l 2i l, 2. Then HiCTi,_ T

i
a maximal torus of G, i l, 2. Let V

i

Let f be the minimum idempotent of V Then e. > f Let W {ala6Vi,i i" i-- i" i

af. f }, U the (unique) irreducible component of i in W.. Since VI, V
2

are

conjugate by (i) so are W
1

W
2

Hence U
1

U
2

are conjugate. Since SiCW.l’
SiCUi, i i, 2. BM Lemma i.i, f. EU i 1 2 BM the maximalitM of S

i1 i’

=U i=l 2Si i’

(3) Let e e E(S). By Corollary 1.6, e e S
1

for some closed connected d-

submonoid S
I of S. By [7; Theorem 3.16], there exists a closed connected d-

submonoid with zero, S
2

of S
I such that e 6 S2. By (2) xS2x-I C__ y for some

x G. So xex
-I 6 Y. Hence E(Y) N J # @. Next let Jl > J2 > > Jk be a

e

maximal chain in U(S). By Lemma 1.7, there exist e
i
e E(Ji) such that

eI
> e

2
> > ek. Clearly

el > e
2

> > e
k

is a maximal chain in E(S). For if ei>f>ei+I, f E(S), then J >Jf>J a
e
i el+1

contradiction. By Corollary 1.6, el,... ,eke for some closed connected d-

submonoid of S. By [7; Theorem 3.16], el,...,ek 6 M
2

for some closed

connected d-submonoid with zero, M
2

of M1. So el,...,ek M
3

for some maximal

connected d-submonoid with zero, M
3
of S. Since (5) is maximal in E(S), it is

maximal in E(M3). By [7; Theorem 3.17], dim M
3

k-1. By (2) dim M
3

dim Y.

THEOREM i. 9. Let S be a connected semigroup. Then all maximal chains in

(S) have the same length.

PROOF. U(S) has mximum element J0" Let e 6 E(J0). BY [7; Lemma 1.3, 1.7].

G(eSe) {JNeSe J 6 (S)} _U(S) Now eSe is a connected monoid. We are done

by Theorem 1.8 (3).

THEOREM i.i0. Let S be a connected monoid such that for all a,b E S, alb
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a
2
b
i +

implies for some i E Z Let Y be a maximal closed connected d-submonoid

with zero, of S. Then JOy is a subgroup of Y for all J 6U(S). In particular

PROOF. The hypothesis implies by [8] that J is a subsemigroup of S for all

J e U(S). Let J e U(S). Then J N y # @ by Theorem 1.8. Let a, b e J N Y. Then

are, bHf in Y for some e, f E(Y). So e, f J. Since e, f e y, ef fe.

Since J is completely simple, e f. So aHb in Y and J N y is a subgroup of Y.

Now applying the proof of Theorem 1.9 we have

COROLLARY 1.11. Let S be a connected semigroup such that for all a, b 6 S,

implies a21bi for some i e Z
+

Then ((S) <) (E(Y) <) for some connected

d-monoid with zero, Y.

THEOREM 1.12. Let S be a connected monoid such that the group of units G of

S is nilpotent. Then E(S) is finite.

PROOF. By [5; Proposition 19.2], G has a unique maximal torus T. So T is

the unique maximal closed connected d-submonoid of S. By Theorem 1.8, E(S) C T.

So E(S) is finite.

EXAMPLE 1.13. S a
0

is an example of a connected

monoid satisfying the hypothesis of Theorem 1.12.

CONJECTURE iolh. Let S be a connected monoid with zero such that E(S) is

finite. Then the group of units of S is solvable.

EXAMPLE 1.15. Let S a, b 6 S Then S is a connected monoid

with zero and E(S) 2. The group of units of S is solvable but not nilpotent.

2. CONNECTED d-SEMIGROUPS WITH ZEROS

Let S be a connected d-semigroup with zero, dim S > 0. Then S is a monoid

[7; Theorem 2.7]. By a character of S, we mean a *-homomorphism x:S/K such that

X(1) l, X(0) 0. We let (S) denote the commutative semigroup of all characters

of S with pointwise multiplication. It is clear that if Sl, S
2

are connected d-
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semigroups with zeros dim S > 0 then S
I *-isomorphic to S

2
implies (SI) (S2)

A commutative semigroup W is said to be totally cancellative if W is

cancellative and for all a, b E W, n E Z
+ n

b
n

a implies a b. We will need

the following result of Grillet [3; Theorem 2.2].

THEOREM A [Grillet]. Let W be a finitely generated commutative semigroup.

Then W can be embedded in a free commutative semigroup if and only if W is totally

cancellative and idempotent-free.

LEMMA 2.1. Let S be a connected d-semigroup with zero 0 and identity l,

dim S > 0. Then

() (s) # .
(2) If e E E(S), e # 0, then there exists XE(S) such that for all gEE(S),

g >_ e implies x(g) l, g_e implies x(g) 0.

(3) (S) is idempotent- free and totally cancellative.

(4) (S) is linearly independent in the vector space of all functions from

S into K.

PROOF. Let G denote the group of units of S. We can assume that S is a

closed submonoid of M (K) for some n E Z+. If a E S, let (a) det ao Then
n

E (S), a(f) 0 for fEE(S), f # 1. So (S) # . Let e E E(S), e 0.

Then by the above, there exists 8 E @(eS) such that 8(f) 0 for all f E E(eS)

with f # e. Define x’S / K as x(a) 8(ea). This proves (2).

2
Let X E @(S) such that X X. Then X(S) {1,0} contradicting the fact

that S is connected. So #(S) is idempotent-free. Let Xl, X2, XB
E (S) such

that XIX2=XIX3 If a E G, then Xl(a) # 0 and so x2(a x3(a). So X2 X 3

on G. Since S, X2 X3 on S. So @(S) is cancellative. Now let XI,X2 E(S),
m m 1). Then Y is finite. Ifm E Z

+
such that X1 X2 Let Y {I E K, m

E Y, let S= {ala E S, Xl(a) x2(a)}. If aEG, then xi(a) # 0 for i=l, 2.

So a E S for some E Y. Thus G C__ L $5. Since G S, S k S. Since S is

connected, S S
t

for some E Y. In particular, i XI(1) X2(1) . So

Xl ?(2 and t(S) is totally cancellative. This proves (3).
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Now let I’ Xm E @(S) be distinct characters of S which are linearly

dependent. Let @i denote the restriction of Xi to G. Then @i’ i 1,...,m are

linearly dependent homomorphism of G. So [5; Lemma 16.1], @i @J for some

i # j. Since G S, i Xj, contradiction. This proves the lemma.

LEMMA 2.2. Let S be a connected d-semigroup with zero, dim S > 0. Then

+(1) S is *-isomorphic to a closed submonoid S of (Kn, -) for some n E Z

such that 0 (0,...,0) S

(2) @(S) is finitely generated.

(3) If a, b S, s # b, then there exists @(S) such that (a) # (b).

PROOF. First we prove (1). We can assume that S is closed subsemigroup of

(Kn, for some n Z
+

n minimal. Let e denote the zero of S and set S
1

{a-ela S). Then a <--> a-e represents a *-isomorphism between S and Sl,

0 (0,... ,0) is the zero of S1. So without loss of generality we can assume

2
Cthat e (0, .,0). Let f (l, ’an denote the identity of S. So i i’

i 1 ,n. Suppose some m. 0, say i 1. Then n > 1 and S C {0} Kn-1I So

S is *-isomorphic to a closed subsemigroup of (Kn-1 contradicting the

minimality of n. So a. # 0, i 1,...,n. So m. l, i 1,...,n and S is ai i

closed submonoid of (Kn, -). This proves (1).

Let S be a closed submonoid of (Kn, -) with identity 1 (1,...,1), zero

0 (0, 0). Let denote the i
th

projection of S into K. Then clearly

E1 ’n E (S)" Let X @(S). Since (0) 0, does not have a constant term.

So there exist ml"’’’mt F(XI"’’’Xn) al m K such thatn
t

(a) [ eii(a) for all a e S.
i=l

So X I ii(Xl,..., Xn). B Lemma 2.1(h), X i(Xl,...,Xn for some i. So
i=l

(S) <X1,...,Xn >. This proves (2). Let a, b e S such that x(a) x(b) for

all X 6 (S). Then a (Xl(a),...,Xn(a)) (Xl(b),...,Xn(b)) b. This proves

(3).

LEMMA 2.3. Let S be a closed connected submonoid of (Kn, .) with zero

0 (0,...,0). Then there exist Ul,...,ut, Vl,...,vt6 F (Xl,...,Xn) such that for
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a K, a S if and only if ui(a).. v .(a, i l, ti ’
PROOF Let i denote the i

th
projection of S into K. Then l’’’’’n(S)"

Let I {flf K[,...,Xn] f(S) 0}. Let D {flf I, f u-v for some u,

v F(Xl,...,Xn)}. We claim that I (D). Suppose not. Then there exists fI,

f (D) Since f(0) 0 there exist ml F(X1 ’Xn) al,
,m
r ,ar (0

r
such that f ) aimi Of all such f choose one with r minimal So

i=l

r
[ aimi (a)

+/-=l

f(a) 0 for all a S. So

r
[ (x,...,) o

i=l

By Lemma 21(4), p(Xl,...,Xn) q(XI,...,Xn) for some p, q 6 {l,...,r}, p # q.

Assume p l, q 2. So m.+/-(a) m2(a) for all a 6 S. Thus _+/--a 6 D. Now

r

(i + 2)2 + [ s’’11 f =i(I 2 6 I
i=3

By minimality of r, f-al(mI m2) e (D). So f e(D), a contradiction Thus

I (D). By the Hilbert Basis Theorem there exist fl"’" ’ft 6 I such that

I (fl,...,ft). Since I (D), fl,...,ft (Dl) for some finite subset D
1

of D.

So (D1)= I. This proves the lemma.

Let Sl, S
2
be connected d-semigroups with zeros, dim S. > O, i l, 2. Let

0:SI
/ S

2
be a -homomorphism such that 0(1) i, 0(0) O. Then define *’($2)/

0(SI) by 0*(X) X o 0- Next assume that " 0(S2) / 0(SI) is a homomorphism.

Then we claim:

for all a 6 SI, there exists unique b 6 S
2

such that

() (())(a) for

Assume (6). Then we can define @:S1
/ S

2
as (a) b. Then

xC@Ca)) (@(x))Ca) for all a e SI, X e ($2)

Next we claim
W mis a -homo orphism, (i) I, #(0) 0

We now prove (6), (8). Note that the uniqueness of b in (6) follows from Lemma

2.2(3). By Lemma 2.2(1) we can assume that S
2

is a closed submonoid of (Kn, .)

(6)

(7)

(8)
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.th
with zero 0 (0,...,0). Let Xi denote the projection of S

2
into K. Then by

Lemma 2.2, X1,...,Xn 6 ($2) and (S2) < X1,...,n >. By Lemma 2.3, there

exist Ul,...,ut, v
I

,vt
6 F(X1,...,Xn) such that for b Kn, b S

2
if and

only if ui(b) vi(b), i 1,...,t. So u.(Xl,...,Xn) vi(x1,...,xn) i=l,...,t.

Hence ui((Xl),..., (Xn)) vi((X1),...,(xn)), i 1,...,t. Thus

ui(((Xl))(a),...,((Xn))(a)) vi(((l))(a),...,((Xn))(a)) for all a S1,
i=l,...,t. So (((X1))(a),...,((Xn))(a)) e S

2
for all a 6 S1. Define

:Sl+ S
2

as (a) (((X1))(a),...,(((n))(a)). So is a *-homomorphism, (1)=l,

(0) 0. Clearly Xi((a)) (((i))(a) for all aS, i=l,...,t. Since

(S2) < l,...,n >, (7) and hence (6) is true. It is clear from (7) that

(9)

Now let @’Sl+S2 be a *-homomorphism, @(1) l, @(0) 0. Then for all X ($2),
ae SI, by (7),

x(( )(a))= ( (x))(a)= x((a))

By Lemma 2.2(3),

@ @ (i0)

THEOREM 2.4. Let SI, S2, S
3
be connected d-semigroups with zeros, dim Si > 0,

i i, 2, 3. Then

(i) If @:SI/S2 is a *-homomorphism with @(0) O, @(i) i, then

@ (S2)/(SI) is a homomorphism and @ @.

(2) If i’S
1
/ S

1
is the identity map then i -(S1)/(S1) is the identity

map.

(3) If @:(S2) / @(SI) is a homomorphism, then @:SI/S2 is a *-homomorphism

with $(0) 0, (I) i. Moreover @

(4) If i’(S1)/(Sl) is the identity map, then i’Sl+S1 is the identity

map.

(5) If @l’Sl+S2 @2"S2/S3
are *-homomorphism with @i(0) 0, @i(1) i,

i l, 2, then (@2 o @l 1 o @2
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(6) If I’($2)/(S1), 2:($3)/(S2) are homomorphisms, then

i o 2 2 i

(7) S
1

is *-isomorphic to S
2

if and only if (Sl) is isomorphic to ($2).

PROOF. (i), (3) follow from the equations (6)-(10). (2), (4) are trivial.

(7) follows from (2), (4), (5), (6). So we need only prove (5), (6). First we

prove (5). Let X e (S3). Then for all a SI,

So (2 0

((2 o i ())(a) ($2(1(a)))

(2(X))(,l(a))

(,l(,2(X)))(a)

((1 o 2)(X))(a)

i i o $2

Next we prove (6). Let a S, X (S3)- Then by equation (7),

X(l o 2(a)) ((1 o 2)(X))(a)

(l(2(X)))(a)

(2(X)) (el(a))

X(2(l(a)))

X(2 o el(a))

By Lemma 2.2(3), i o 2 2 o i’ proving the theorem.

THEOREM 2.5.

CKn Set

Let e
I

F(X
1

.,Xm) Let V {(el(a) (a))laEKm},e
n

,e
n

Then S is a closed connected d-submonoid with zero, of (Kn, ).

Moreover (S) < el, e >

PROOF. Define e:(Km, .) / (Kn, .) as e(a) (el(a)""’en(a))" Then 8 is a

*-homomorphism with image V. So S is connected. Clearly 1 e(1), 0 e(0) S.

Let i denote the i
th

projection of S into K. Then by Lemma 2.2, (S)

<Xl,...,Xn> Let u, v F(Y1,...,Yn). Suppose U(Xl,...,Xn) v(Xl,...,Xn).
Then u(b) v(b) for all b S. So
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U(l(a)’’’’’mn(a)) v(ml(a),...,mn(a)) for all a Km (ll)

Since K is infinite, u(col ’con) v(col," ’con) in F(X
1

,Xm). Conversely

suppose u(col"" "’con) v(col’" ,con in F(Xl,...,Xm). Then (ii) is true. So

u(b) v(b) for all bEV. Since V S, u(b) v(b) for all bES. So u(Xl,...,Xn )=

v(x1,...,Xn). It follows that (S) =<X1,...,n > <col,’’’,mn >"

By Theorem A, Lemmas 2.1, 2.2, Theorems 2.4, 2.5, we have.

THEOREM 2.6. Let N
1
be the category of connected d-semigroups with zeros of

dimension > 0 with morphism being *-homomorphisms Cwith (0) 0, (1) 1. Let

N2 be the category of finitely generated, commutative, idempotent free, totally

cancellative semigroups with morphisms being semigroup homomorphisms. Then (@,*)

is a contravariant equivalence between l and 2"
THEOREM 2.7. Let S be a closed connected submonoid of (Kn, -) with zero

0 (0,.. ,0). Then for some mZ+
col"’’’n (Xl’’’’’Xm)’ S V where V

{(col(a),...,con(a))la Km}.

PROOF. Let Xi denote the i
th

projection of S into K. Then by Lemma 2.2,

(S) <X1,...,Xn >. By Theorem A, (S) < col’’’’’co > for some m Z
+

n

E (X
1 ..,Xm) with i-,mi Let V {(col(a) (a))laKm) and setcol’" ’con ’n

S
1

V. Then 1 (1,...,l)0 (0,...,0) S1. Let u, v(Y1,...,Yn). Suppose

u(c) v(c) for all c S. Then U(l,...,Xn) v(x1,...,Xn). So u(col,. ,con)
V(l ,n ). Thus u(b) v(b) for all bEV. Since V SI, u(b) v(b) for all

be S1.
Conversely suppose u(b) v(b) for all b S1.

Then

u(col(a) ,COn(a)) v(col(a),...,con(a)) for all a e Km

Since K is infinite, u(col,...,con) v(col,. ,con)" So U(Xl,...,n v(Xl,’-’,Xn )"

Thus u(c) v(c) for all c S. By Lemma 2.3, S SI.

COROLLARY 2.8. Let S be a closed connected submonoid of (Kn, ") with zero

0 (0,...,0), dim S=I. Then there exist il,...,in E Z+ such that S

il in 6Z
+

S defined as above is a
,...,a )laK}" Conversely, for any ii,...,In

closed connected submonoid of (Kn, ") with zero 0 (0,...,0) and dim S i.
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V {CmlCa),...,mnCa))la E Km) and s=V. Let v T(Ca,...,a),...,nCa,...,a)
aEK), SI=V-’. Then SlCS_ d Sl=l. So S=S1. So there exist i1,...,inE Z+

i
I

i iI
i

such that V
I {(a ,...,a n)laEK}. Define e:K/S as e(a) (a ,...,a n). Then

it is easy to see that e is a finite morphism in the usual sense of [5; Section

.2]. By [5; Proposition .2], e(K) S.

THEOREM 2.9. Let S be a connected monoid with zero, dim S I. Then S is

*-isomorphic to a semigroup of the type given in Corollary 2.8.

PROOF. By Corollary 1.5, S is a d-semigroup. We are now done by Lemma 2.2

and Corollary 2.8.

THEOREM 2.10. Let S be a connected semigroup, e, fEE(S), e >f. Then there

exists a closed connected subsemigroup S
1

of S such that e is the identity of Sl,

f is the zero of S
1

and dim S
1

1.

PROOF. We can assume that e is the identity element of S (otherwise we work

with eSe). By Lemma i.i we are reduced to the case when f is the zero of S. By

Corollary 1.5, we are reduced to the case when S is also a d-semigroup.

A(S) {All prime ideals of S} U {}.

(s) (s\l A(S)}.

(S) Maximal semilattice image of S.

It is easy to see that (A(S), ) (A((S)), ) is a complete lattice. If S is

finitely generated, then (S) is finite and so (A(S), C) is a finite lattice.

THEOREM 3.1. Let S be a connected d-samigroup with zero. Define m:I(S) /

P(@(S)) as re(I) (I E @(S), x(a) 0 for all a E I). Define S:P(@(S)) / I(S)

as S(W) (ala E S, (a) 0 for all X E W). Then m,S are inclusion reversing

-1biJections and S m Moreover m(A(S)) A(@(S)).

PROOF. Clearly u, are inclusion reversing. Let lEA(S). Then l=eS for

some eEE(S). So u(I) {I E @(S), (e) 0}. It follows that u(I)EA(@(S)).

Clearly I C_(m(I)). We claim that I= (a(1)). Suppose not. Then there exists

a E (m(I)) such that a I. Let a Hf, f E E(S). Then fI, fE(u(I)). So

e #_ f. By Lemma 2.1(2), there exists E @(S) such that (f) =l, (e) =0. So
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e re(I) and f 8((I)), a contradiction. So

for all I e A(S), a(I) e A(@(S)) and 8(m(I)) I (12)

Let P e A(@(S)). We claim that 8(P) e A(S) and m(8(P))=P. By Lemma 2.1, this

is true for P (S). So assume P # (S). Then F (S)\P is a subsemigroup of

#(S). By Lemma 2.2 we can assume that S is a closed submonoid of some (Kn, "),

th
0= (0,...,0) E S and that #(S) < X1,...,Xn > where Xi

is the i projection of

S into K, i=l,...,n. Let A {XilXiEF). Then<A>= F. Let e=(el,...,en)
where e =l if xi6A, eo =0 if Xi q A. We claim that e 6 S. Suppose not. Then

i i

by Lemma 2.3, there exist u, v 6 F(XI, Xn) such that u(a)=v(a) for all a6Sand

u(e) # v(e) Since u(e) 2 u(e) and v(e) 2 v(e) we can assume that u(e) i,

v(e) 0. Clearly u(x1,...,Xn) v(xI, Xn). Since u(e)=l, u(X1,...,xn)

By Lemma 2.2 and Theorem 2.7, we can assume that S is as in Theorem 2.7, with

e (I,...,I), f =(0,...,0). Let V
I {(I(a’’’’’a)’’’’’n(a’’’’’a))la6K}’

S
I

VI. Then e, f6SI, dim SI= i, SIC S. Define e:K / S
I

as

e(a) (ml(a,...,a), mn(a, ,a)). Then e is a *-homomorphism. So S
1

is

connected. This proves the theorem.

3 POLYTOPES

If X C]Rn then we let C(X) denote the convex hull of X (see [4]) The con-

vex hull of a finite set in ]Rn is called a polytope [h]. If the vertices of P

are rational, then P is said to be a rational polyope. If X CP, then X is said

to be a face of P [h; p. 35] if for all a, b e P, a e (0,i), ma + (l-m)b e X if

and only if a, b E X. Let X(P) denote the set of all faces of P. Then [4; p. 21],

(X(P),C_) is a finite lattice. Dimension of P is defined to be the dimension of

the affine hull of P [h; p. 3]. Then dimension of P (length of any maximal chain

in X(P))- I. Two polytopes PI’ P2 have the same combinatorial t_ if X(PI)
X(P2) (see [h; p. 38]). By [h; p. 2hh], every polytope of dimension <--3 has the

same combinatorial type as some rational polytope. However this is not true in

general [: P. 9]. If u (l’’’’’an), v (81,...,8n) n then let u v

n

I a-8i denote the inner product of u and v.
i=1

1
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Let S be a semigroup. An ideal I of S is said to be s_emiprime, if for all

a6S, a 6I implies aI. I is Prime if for all a, bS, abI implies aI or

b 6 I. Let

[(S) {All ideals of S}

A(S) {All principal ideals of S}

F(S) {All semiprime ideals of S} U {@}

involves only those Xl’S with Xi 6 F. So u(x1,...,Xn)6F. Since v(e)=0,

v(X1,...,Xn) involves at least one X.l with Xi @ F. So v(x1,...,Xn) 6P. This con-

tradiction shows that e 6 S. Clearly x(e) 1 for X 6 F, x(e) 0 for 6 P. Hence

P {XIX e #(S), x(e):0} a(eS). By (12), 8(P) 8(a(eS)) eS e A(S),

m(8(P)) a(eS) P. So

for all P e A((S)), 8(P) 6 A(S) and a(8(P)) P (13)

Clearly

a(I
1
U I2) a(Ii) N (I2) for all Ii, 12

Let WI, W
2
e r((s)). Then clearly 8(Wi)C_8(WINW2) i i, 2. So

8(WI)8(W2) C__B(W10 W2). Let a 6 8(W
1 W2). Suppose a @ 8(Wi), i=l, 2.

Then there exist 8
i Wi, i=l, 2 such that el(a) # 0, i=l, 2. So

e e182 W
I W2, 8(a) # 0. So a 8(W

1
(] W2), a contradiction. Thus

8(W
I
n W2) 8(Wl) U 8(W2) for all Wl, W

2
r((s)) (5)

Clearly A(S) is finite. Let I e [(S). Then I I
1
U 12 U... U I

k
for some

Ii,... I
k
e A(S). By (12) 8((I )) I

r
r 1 .,k. By (lh) (15)

a(I) a(Ii)... N a(Ik)
S(a(I)) B(a(II) )U... U 8((Ik)

IlU uI
k

I

So

8(a(I)) I for all I e I(S) (16)

Since @(S) is finitely generated, A((S)) is finite. Let W e F(@(S)). By [2;

p. 125,Exercise 9], W=W
1

(] ...(] W
k

for some W
1

,W
k

A((S)). Then by (13)
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m(8(W ))=W for r=l,...,k. Then by (lh), (15),
r r

s(w) sCwi) u... u(wk)
(s(w)) (s(wi)) n... n(s(wk)

WIN NW
k

W

So

(s(w)) Wor iwe v(#(s)) (17)

By (16) and (17), -i=8. By (12), (13), e(A(S))fA(#(S)). This proves the theorem.

REMARK. The classical Hilbert’s Nullstellensatz yields a 1- 1 correspondence

between the closed subsets of Kn and the radical ideals of K[X1,... ,Xn]. Moreover

this restricts to a l-1 correspondence between the closed irreducible subsets of

Kn and the prime ideals of K[Xl,...,Xn]. Analagously, Theorem 3.1 yields a l-1

correspondence between the ideals of a connected d-semigroup with zero S and the

semiprime ideals of its character semigroup #(S). Moreover this correspondence

restricts to a correspondence between the principal ideals of S and the prime

ideals of @(S).

THEOREM 3.2. Let S be a connected d-semigroup with zero. Then

(u(s), i)

_
(E(S), <_)

_
(((S)), _).

PROOF. Clearly (A(S), C_)_(U(S), <_) (E(S), <_). By Theorem 3.i, (A(S), )

is anti-isomorphic to (A(@(S)), c_). Clearly (A(@(S)), C_) is anti-isomorphic to

(X(@(S)), c_). This proves the theorem.

Let Qmn denote the set of all mn matrices over Q. The following result is

well known. However, we include a proof here for the convenience of the reader.

FACT 3 3 Let A Qmn u (al""’am) 6Bm such that uA 0. Then there

exists v (81,...,8m) 6 Qm such that vA 0 and for i=l,...,m,mi> 0 implies

Bi>O, . 0 implies 8i 0
i

PROOF. Let N {XIX e]RTM, XA 0)denote the left null space of A. Since

A omn, there exist ul,...,ut Qm such that Ul,...,ut is a basis of N. So
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U

t
7. juj for some

J=l

+ en

v
t

j=l
For Z laj-gjl small enough, u-vl < " For g small enough,

the conclusion of the lemma clearly holds.

COROLLARY 3. h.

such that

Let Ul, ’urn’ Vl ,VnE Qd al 81 8n E ]R
+

,mm,

m n;. .u. 8jvj.
i=l

+
Then there exist al,...,am, 81,...,8n Z such

that
m n
7. c,,.u. Z 8jvj.

i=l
i

J=l

PROOF. Q+By Fact 3 3 we can choose ml, such that,am, 81 ,8n

m n- alUi Z 8jvj.
i=l j=l

e Z
+ 8’:j 8j Z

+
Then for sm s e i=l ,msome S Si i’

J i,... ,n. Clearly
m n
7. m.u. Z 8jvj.

i=l J=l

THEOREM 3.5. The classes {X(S) IS is a finitely generated, commutative,

idempotent-free, totally cancellative smeigroup) and {X(P) P is a rational

polytope in ]Rn for some n E Z+) are identical to within lattice isomorphisms.

PROOF Let S be a finitely generated, commutative, idempotent-free, totally

cancellative semigroup. By Theorem A we can assume that S =<Ul,...,Un>C (zd,+),
0S. Let C C(Ul,...,Un). By Fact 3.3, 0C. So C-C . By [h; p. ii ],

there exists u 6Rd
such that u. a> 0 for all a6C. So u. u. > 0, i=l,...,n

i

v ]Rd, then In- l(u- <_ II u- II II so fo= II u- vll
small enough, v. u.1 0 for i i,... ,n. So, without loss of generality, we can

If

u Qd, If aES, then let e(a) e Qd.assume that
u-a

ml mk z+ and set a lal + + kak" Then

Let al,...,ak6S,

e()
k

8ie(ai) C(e(a].),...,e(.)),
k
[ 8 i whereii=l

(.a. u
i i > 0,a’u

i l,...,k.

(8)
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So P C(e(S)) C(e(Ul),..., 8(Un)) is a rational polytope. If X e X(S), then

let (X) C(e(X)) c p. If F 6 X(P), then let (F) {ala6S, e(a)F} S.

Let X X(S). Let x, yP, a (0,1) such that ax + (l-a)y z 6 (X). There

exist al,...,ap, bl,...,bqS, Cl,...,CrX, al,-..,ap, 81,..-,8q,

Y1 ’Yr (0,i) such that x zeie(ai), y zsje(bj), z ZYke(Ck ),

8 ]R
+

Eel ESJ EYk I. So there exist al’’’’’p’ 81"’’’ q’ YI’’’’’Yr such that

Z.a.11 + ZSjbj ZYkCk

By Corollary 3.4 there exist ml,...,mp, 81,...,8q, Yl,...,Yr 6 such that

r.a.a + Zgjb ZYkCk X

Since X X(S), aI, ap, bl,...,bqX. Since x C(e(al), e(ap)) and

y 6 C(e(bl) e(bq)), x, y (X). Hence (X) X(P). Clearly X C_ @((X)).

Let a ((X)). Then e(a) C(e(x)). So there exist al,...,ap

+ such that ma Za.a.. By Corollary 3 h, there exista
I mp i 1

Z
+

el,...,m such that m a Em.a.X. So a X. Hence
p i I

for all XeX(S), (X) e X(P) and @((X)) X (19)

Let F)P). By (18) @(F) is or a subsemigroup of S. Let a, bS such

that

So e(a), e(b)eF.

By (18), e(a+b) e(a)+ (l-)e(b) e F for some e (0,i).

Hence a, b6(F) and @(F) 6 X(S). Clearly ((F))CF. Let

k
x e F. Then xeP (S). So x 7.

i=l
ie(ai for some al,...,akeS, l,...,ake(Ql)

i. Then e(ai) 6 F, i i, ,ksuch that 7.i
x e ((F)). So (#(F)) F. Hence

So al,...,ake(F) and

for all FeX(P), (F) e X(S) and ((F)) F (20)

Since , are clearly inclusion preserving, it follows from (19), (20) that

(X(S), c..c..) (X(p),c_).

Conversely let P c_m be a rational polytope. Then P C(al,...,an) for some

al"’"an 6 Qm. If a 6 Z+, then clearly (X(P), _c) = (X(aP), _c). So we can assume

that a1,...,an zm" Let u. (ai,1), i=l,...,n, d m+l. Then Pl=C(u1,...,un)=
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P {i} C__ md
is a rational polytope and (X(P), C__) (X(pl) C__). Let S

< u]_,...,u >C Zd. nen 0S and S is a finitely generated, commutativetotally

cancellative, idempotent-free semigroup. Let u (0,i) 6 Zd. Then u u. i,
l

U.
l

u i=l ..,n. By the proof of the firsti--1,...,n. So e(ui) u u. i’

half of this theorem, (X(S), c__) (X(PI) C__). This proves the theorem.

If S is a connected d-semigroup with zero, then "by [7; Theorem 3.17],

dim S length of any maximal chain in E(S). By Theorems 2.6, 3.2 and 3.5 we have,

THEOREM 3.6. The classes {(E(S), <--) S is a connected d-semigroup with zero,

dim S>0) and {(X(P), c) P is a rational polytope in IRn for some n6Z+} are

identical to within lattice isomorphisms. Moreover, for any corresponding S and

EXAMPLE 3.7. If SK1*,.), then the corresponding polytope P is a tetrahedron

More generally if S (Kn, -), then the corrsponding polytope P is the (n-1)-sim-

plex.

EXAMPLE 3.8. Let S {(al,bl,a2,bp,a3,b3)lai,bj6K, aibj=ajbi, i, J=l,2, 3}.

Then by [7; Example 1,.7] S is a closed connected d-submonoid with zero, of (K6 ")

Moreover dim S= 1. and IECS)I 22. The corresponding polytope P can be shown to

be the triangular prism"

2 2
EXAMPLE 3.9. Let S {(al,a2,a3,ah,a5,a6)lal,..-,a6K, a3aI a5a2,

2 2 2 2 K
6

K
6

a2a5 ala4, a2a4 a5a3}. Define 0: / as

223 22 2 2 22
(x
I ,x2 ,x3 ,x1* ,x5 ,x6 x3x4x5 x2x3x5 XlX2X3 XlX2X4’ XlXhX5 x6)

Then (K6) S and so S is a closed connected d-submonoid with zero, of (K6 -)

Clearly dim S 4 and E(S)I 24. The corresponding polytope P can be shown to

be the pentagonal pyramid:
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COROLLARY B.10. Let S be a connected semigroup such that U(S) is the

following lattice

Then n < 2.

PROOF. By the proof of Theorem 1.9, we can assume that S is a monoid. Let

S
I
be a maximal connected d-submonoid with zero, of S. Then by Theorem 1.8(B)

E(SI) N J for all J U(S) and dim S
I

2. By Theorem 3.6, the polytope P

corresponding to S
1
has dimension 1. So P is the line

so IE(S )I lu(s)l
_

IE(Ss.) . Hence n <_ 2.

EXAMPLE B.ll. 2(K) and (,.) show that n can be i or 2 in Corollary B.10.

h. SEMILATTICES

As usual, by a semilattice, we mean a commutative, idempotent semigroup.

LEMMA h.1. Let n be a finite semilattice. Then x( )l + .
PROOF. We prove by induction on 11" If this is clear. So assume

II > i. Let m be a maximal element of . Then {m} X(). Define :X()/X(I
as (F) F N i" Let F

I X(I and set PI I\FI" Let PPI" We claim that

sPPI" Otherwise f sp FI. Then f PfPI’ a contradiction. So SPl C_ PI"
If FI X(), then (FI) FI. Suppose not. Then FIPI. So there exists

fl FI such that fl FI" Now we claim that FI
U {m} X(). Otherwise FI_FI.

So af2P1 for some f26F1. So flf2 (fl)f2 F
1

and aflf2 (af2)flPl, a

contradiction. So F
I
U {} X(), (Flu {}) FI. Thus is surJective. Let

F
I X(I) FI # , F, G X(), (F) F

I (G), F # G. We can assume that

F,, G. So G FI, F FI
U {,}. Since m F, F C__ F. So ,F

I C_FI.
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Since G, G C \G. So FI
C ikFl a contradiction. Thus I-I(FI)I i.

Clearly -i(@)= {@, {}}. So IX()I I(5)I + 151 + + I=I +

If is a semilattice, then let F() denote the semilattice of all hmomorphisms

of into 0 {0,i}. Then clearly V()
_

(X(9),]). Let V () Y(9)\{I,O}.

Then Y () may or may not be a subsemilattice of V().

LEMMA h.2. Let be a finite semilattice. Then Y (Y()) is a semilattice

and n V (V()).

PROOF. Define e: / V(F(I)) as e(a) (f) f(a). Then e is a homomorphism.

Clearly e(a)(1) i, e(m)(0) 0. So e(m) e F*(F(Q)). We claim that e is in-

Jective. We can assue that fl (2_ fl
0

x x flO. Let f.z denote the i
th

projection

of into 0" Then f’z e F(a). Let a,8 e a such that e(m) e(8). Then

e()(fi) e(g)(fi) for all i. So f’()z fi (8) for all i. So =8. By Lemma

h.l, IF*(V()) II. Hence V*(()).

COROLLARY h.3. Let i’ 2 be finite semilattice such that

(X(I) c__) (X(2) c_.). Then i 2"
COROLLARY h.h. Let be a finite semilattice such that *() is a semi-

lattice. Then F(F*() .
PROOF. Let i V (). Then by Lemma h.2,

So ((i F(n)" Again by Lemma h.2,

v(].) , v*(v(v(z))) (v())

If S is a finitely generated semigroup and if is the maximal semilattice

image of S, then clearly n is finite and (X(S), c_) = (X(n), c_). By Theorem 3.5,

Lemma h.2, Corollaries h.3, h.h, we have.

THEOREM 4.5. (1) Let (L,V ,A) be a finite lattice. Then L X(P) for

some rational polytope P if and only if V (L, A) is a semilattice and is
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isomorphic to the maximal semilattice image of some finitely generated, commutative,

idempotent free, totally cancellative semigroup.

(2) Let be a finite semilattice. Then is the maximal semilattice image

of some finitely generated, commutaitve, idempotent free, totally cancellative

semigroup if and only if (X(), c) is isomorphic to (X(P), c) for some rational

polytope P.

If P is a polytope, call X(P), the face lattice of P. By a theorem of

Tarski (see [4; p. 91]), the enumeration problem for face lattices of polytopes

is solvable. However, for rational polytopes the problem is not yet solved [4;

p. 92]. By Theorem 4.5, we have,

THEOREM 4.6. The enumeration problem for face lattices of rational polytopes

is solvable if and only if the enumeration problem for maximal semilattice

images of finitely generated, commutative, idempotent-free totally cancellative

semigroups, is solvable.
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