PERMUTATION MATRICES AND MATRIX EQUIVALENCE OVER A FINITE FIELD

GARY L. MULLEN

Department of Mathematics
The Pennsylvania State University
Sharon, Pennsylvania 16146
(Received March 21, 1980 and in revised form August 12, 1980)

ABSTRACT. Let $F=G F(q)$ denote the finite field of order q and $F_{m \times n}$ the ring of $m \times n$ matrices over F. Let P_{n} be the set of all permutation matrices of order n over F so that P_{n} is ismorphic to S_{n}. If Ω is a subgroup of P_{n} and $A, B \varepsilon F_{m \times n}$ then A is equivalent to B relative to Ω if there exists $P \varepsilon P_{n}$ such that $A P=B$. In sections 3 and 4, if $\Omega=P_{n}$, formulas are given for the number of equivalence classes of a given order and for the total number of classes. In sections 5 and 6 we study two generalizations of the above definition.

KEY WORDS AND PHRASES. Permutation matrix, equivalence, automorphism, finite bield.

AMS(MOS) SUBJECT CLASSIFICATION CODES: Primary 15A33, Secondary 12C99, 15 A24.

1. INTRODUCTION.

In a series of papers [1-4,6-8] L. Carlitz, S. Cavior, and the author studied various forms of equivalence of functions over a finite field through the use of permutation groups acting on the field itself. In [9] the author defined two matrices A and B to be equivalent if $b_{i j}=\phi\left(a_{i j}\right)$ for some permutation ϕ of the field while in [10] B was said to be equivalent to A if $B=\phi(A)$ where $\phi(A)$ was computed by substitution. In the present paper we study another form of matrix equivalence over a finite field through the use of permutation matrices and the Pólya-deBruijn theory of enumeration.

Let $F=G F(q)$ denote the finite field of order $q=p b, p$ is prime and $b \geq 1$ and let $F_{m \times n}$ denote the ring of $m \times n$ matrices over F so that $\left|F_{m \times n}\right|=q^{m n}$. Let
P_{n} be the set of all $n \times n$ matrices over F consisting entirely of zeros and ones with the property that there is exactly one 1 in each row and column. In the literature, such matrices have been called permutation matrices. It is not hard to show that P_{n} is a group under matrix multiplication which is isomorphic to S_{n}, the symmetric group on n letters and consequently has order n : If $P \varepsilon P_{n}$ the isomorphism can be defined as follows. If

$$
P\left[\begin{array}{c}
1 \\
\cdot \\
\cdot \\
\cdot \\
n
\end{array}\right]^{\cdot}=\left[\begin{array}{l}
\alpha_{1} \\
\cdot \\
\cdot \\
\cdot \\
\alpha_{n}
\end{array}\right]
$$

then define $\phi_{P} \varepsilon S_{n}$ by $\phi_{P}(i)=\alpha_{i}(i=1, \ldots, n)$. Then $\Psi: P_{n} \rightarrow S_{n}$ defined by $\Psi(P)=\phi_{P}$ is an isomorphism.
2. GENERAL THEORY.

If Ω is a subgroup of P_{n} we may make
DEFINITION 1. If $A, B \varepsilon F_{m \times n}$ then B is equivalent to A relative to Ω if there exists $P \varepsilon \Omega$ such that $A P=B$.

This is an equivalence relation on $F_{m x n}$ so we let $\mu(A, \Omega)$ denote the order of the class of A relative to Ω and let $\lambda(\Omega)$ be the total number of classes induced by Ω.

THEOREM 2.1. If $A, B \in F_{m \times n}$ then B is equivalent to A relative to P_{n} if and only if the columns of B are a permutation of the columns of A.

PROOF. Suppose $A P=B$ where $A=\left(a_{i j}\right)$. In P suppose that for $j=1, \ldots, n$ the 1 in column j occurs in row i_{j}. Then $A P=\left(a_{i j}\right) P=\left(a_{i i_{j}}\right)$ so that column j of A becomes column i_{j} of AP.

Conversely, suppose column j of A is column i_{j} of B. Define P so that in column j we have a 1 in row i_{j} and zeros elsewhere. $T h e n P_{n}$ and $A P=B$ so that A is equivalent to B.

COROLLARY 2.2. If $A, B \varepsilon F_{n \times n}$ and B is equivalent to A relative to Ω then $\operatorname{det}(B)= \pm \operatorname{det}(A)$.

In fact, if $A P=B$ and P corresponds to $\phi_{P} \varepsilon S_{n}$ where ϕ_{P} is an even permutation then $\operatorname{det}(B)=\operatorname{det}(A)$ while if ϕ_{P} is an odd permutation then $\operatorname{det}(B)=-\operatorname{det}(A)$.

DEFINITION 2. If $A \in F_{m \times n}$ then P is an automorphism of A relative to Ω if $P \varepsilon \Omega$ and $A P=A$.

If Aut (A, Ω) denotes the set of all automorphisms of A relative to Ω, then it is easy to check that $A u t(A, \Omega)$ is a group under matrix multiplication whose order will be denoted by $\cup(A, \Omega)$. It is easy to prove

THEOREM 2.3. If $A \in F_{m \times n}$ then for any subgroup Ω of P_{n}

$$
\begin{equation*}
\mu(\mathrm{A}, \Omega) \cup(\mathbf{A}, \Omega)=|\Omega| \tag{2.1}
\end{equation*}
$$

where $|\Omega|$ denotes the order of Ω.
If $P \in P_{n}$ let $N(P, m, n, q)$ denote the number of $m x n$ matrices A over $G F(q)$ such that $A P=A$.

THEOREM 2.4. If P corresponds to $\phi_{P} \varepsilon S_{n}$ and ϕ_{P} has $\ell(P)$ distinct cycles then $N(P, m, n, q)=q^{m \ell(P)}$.

PROOF. Suppose the distinct cycles of ϕ_{P} are $\sigma_{1}, \ldots, \sigma_{\ell(P)}$. Using Theorem 2.1 it is clear that $A P=A$ if and only if within a given cycle of ϕ_{P} the columns of A are identical. The theorem then follows from the fact that a given column can be constructed in q^{m} ways.
3. CYCLIC GROUPS.

If $\Omega=\langle P\rangle$ is a cyclic group of permutation matrices where $|\Omega|=s$, let $H(t)$ denote the subgroup of Ω of order t where t / s so that $H(t)=\left\langle p^{s / t}\right\rangle$. If P corresponds to $\phi_{P} \varepsilon S_{n}$ let $\ell_{t}(P)$ denote the number of cycles of $\phi_{P} s / t$ and suppose $M(t, m$, $n, q)$ denotes the number of $m \times n$ matrices A over $G F(q)$ such that Aut $(A, \Omega)=H(t)$.

THEOREM 3.1. For each divisor t of s

$$
\begin{equation*}
M(t, m, n, q)=\sum_{a \left\lvert\, \frac{a}{t}\right.} \mu(a) q^{m \ell} \text { (P) } \tag{3.1}
\end{equation*}
$$

where $\mu(a)$ is the Mobius function.
PROOF. By Theorem $2.4 q^{m \ell}{ }^{(P)}$ counts the number of $m x n$ matrices A over GF(q) such that $A u t(A, \Omega) \leq H(t)$. From this we subtract those for which the containment is proper. This number is given by

$$
\begin{equation*}
M(t, m, n, q)=q^{m \ell_{t}(P)}-\Sigma M(u, m, n, q), \tag{3.2}
\end{equation*}
$$

where the sum is over all $u|s, t| u$ and $t \neq u$. After applying Mobius inversion
to (3.2) we obtain (3.1).
COROLLARY 3.2. For each divisor t of s there are $t M(t, m, n, q) / s$ classes of s / t and

$$
\begin{equation*}
\lambda(\Omega)=\frac{1}{s} \sum_{t|,| s} t M(t, m, n, q) . \tag{3.3}
\end{equation*}
$$

As an illustration, suppose $q=2, m=n=3$, and

$$
P=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]
$$

so that if $\Omega=\langle\mathrm{P}\rangle$ then $|\Omega|=3$. One can easily check that $\mathrm{M}(3,3,3,2)=8$ and $M(1,3,3,2)=504$ so that there are 168 classes of order 3,8 classes of order 1 and thus from (3.3), $\lambda(\Omega)=176$.

4. THE CASE $\Omega=P_{n}$.

In this section we consider the group P_{n} of all permutation matrices of order n so that, as noted in the introduction, P_{n} is isomorphic to S_{n}, the symmetric group on n letters. We will employ the Polya theory of enumeration to determine the number of classes induced by P_{n}. Suppose the permutation group K acts on a et of r elements. If $\pi \in K$ consider the monomial $x_{1}{ }^{b_{1}}{ }_{x_{2}} b_{2} \ldots x_{r}{ }^{b}$ where for $t=1, \ldots, r b_{t}$ denotes the number of cycles of π of length t. The polynomial

$$
\begin{equation*}
\mathrm{P}_{\mathrm{K}}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{r}}\right)=|\mathrm{K}|^{-1} \sum_{\pi \varepsilon \mathrm{K}} \mathrm{x}_{1}^{\mathrm{b}_{1}} \mathrm{x}_{2}{ }_{2}^{\mathrm{b}_{2}} \ldots \mathrm{x}_{\mathrm{r}}^{\mathrm{b}_{\mathrm{r}}} \tag{4.1}
\end{equation*}
$$

is called the cycle index of K. It is well known [5] that $P_{S_{n}}\left(x_{1}, \ldots, x_{n}\right)=\Sigma\left(k_{1}!k_{2}!2^{k_{2}} \ldots k_{n}!n^{k}\right)^{-1}{ }^{k_{1}} 1_{1} x_{2}{ }_{2} \ldots x_{n}{ }_{n}$ where the sum is over all $\mathrm{k}_{1}+2 \mathrm{k}_{2}+\ldots+\mathrm{nk}=\mathrm{n}$.

In the Pólya theory of enumeration, let the domain D be the set of n columns and let the range R be the set of q^{m} possible column vectors so that $\left|R^{D}\right|=q^{m n}=\left|F_{m \times n}\right|$. If $K^{\prime \prime}$ is a permutation group acting on D then Pólya's theorem [5, p. 157] states that the number of distinct classes is given by $P_{K}(|R|, \ldots,|R|)$ so that $\lambda\left(P_{n}\right)=P_{S_{n}}\left(q^{m}, \ldots, q^{m}\right)$. It follows directly from Theorem 2.1 that $\lambda\left(P_{n}\right)$ is also the number of distributions of n indistinguishable objects into q mabelled ce11s, or $\left({ }^{n}+q_{n}^{m}-1\right)$ so that we have proven

Theorem 4.1. If $\lambda\left(P_{n}\right)$ is the number of classes induced by P_{n} then

$$
\lambda\left(P_{n}\right)=\binom{n+q^{m}-1}{n}
$$

Suppose $A \varepsilon F_{m \times n}$ has t distinct columns so that we have a partition of n with t parts say $n=m_{1}+\ldots+m_{t}$ where each distinct column occurs m_{i} times. By Theorem 2.1 for each such A we have $\nu\left(A, P_{n}\right)={ }_{i=1}^{t} m_{i}$: so that by (2.1) $\mu\left(A, P_{n}\right)=\left(m_{1}, \ldots, m_{t}\right)$. The number of such A is the same as the number of functions from D into R whose range is of size q^{m}, whose domain is of size n and whose preimage partition has type $m_{1}+\ldots+m_{t}=n$. We may rewrite this with distinct m's say $j_{m_{1}} m_{1}+\cdots+j_{m_{s}} m_{s}=n$ where $j_{m_{1}}+\ldots+j_{m_{s}}=t$. Then the number of such functions is $\left(q^{m}\right) t^{h}\left(j_{m_{1}}, \ldots, j_{m_{s}}\right)$ where $h\left(j_{m_{1}}, \ldots, j_{m_{s}}\right)$ is the number of partitions of n of type $j_{m_{1}} m_{1}+\ldots+j_{m_{s}} m_{s}=n$ and is given by Cauchy's formula

$$
h\left(j_{m_{1}}, \ldots, j_{m_{s}}\right)=n!/\left(\left(m_{1}!\right)^{j_{m_{1}}}\left(j_{m_{1}}\right)!\ldots\left(m_{s}!\right)^{j_{m_{s}}}\left(j_{m_{s}}\right)!\right)
$$

and $\left(q^{m}\right)_{t}=q^{m}\left(q^{m}-1\right) \ldots\left(q^{m}-t+1\right)$ is the falling factorial which assigns image values to the partition blocks. Hence we have proven

COROLLARY 4.2. The number of classes induced by P_{n} of order (m_{1}, \ldots, m_{s}) is

$$
\left(q_{t}^{m}\right)\left(j_{m_{1}}, \ldots, j_{m_{s}}\right)
$$

As an illustration of the above theory suppose $q=2$ and $m=n=3$ so that we are considering the 5123×3 matrices over $G F(2)$ under the action of the symmetric group S_{3}. Thus from Corollary 4.2 when $t=1$ we have $n=3$ so that there are $\binom{8}{1}\binom{1}{1}=8$ classes of order 1 , when $t=2$ we have $n=1+2$ so that there are $\binom{8}{2}\binom{2}{1,1}=56$ classes of order 3 and when $t=3$ we have $n=1+1+1$ so that there are $\binom{8}{3}\binom{3}{3}=56$ classes of order 6 so that $\lambda\left(P_{3}\right)=120$. Moreover, from Theorem 4.1 we also see that $\lambda\left(P_{3}\right)=\binom{10}{3}=120$ classes.

5. A GENERALIZATION

In this section we generalize Definition 1 by considering a notion of matrix equivalence which is similar to the idea of weak equivalence of functions over a finite field considered by Cavior and the author in [3] and [8]. Let P_{m} be the group of $m \times m$ permutation matrices over $G F(q)$. If Ω_{1} is a subgroup of P_{m} and Ω_{2} is a subgroup of P_{n} we may make

DEFINITION 3. If $A, B \varepsilon F_{m \times n}$ then B is equivalent to A relative to Ω_{1} and Ω_{2} if there exist $Q \varepsilon \Omega_{1}$ and $P \varepsilon \Omega_{2}$ such that $\mathrm{QAP}=\mathrm{B}$.

Thus $P \varepsilon P_{n}$ permutes the columns of A while $Q \varepsilon P_{m}$ permutes the rows of A so that Ω_{1} acts as a permutation group on the range R and Ω_{2} is a permutation group acting on the domain D. Clearly if $\Omega_{1}=\{i d$.$\} we obtain the previous cases considered in$ sections 3 and 4. In this more general setting we will make use of the extended Pólya theory of enumeration.

THEOREM 5.1. (Polya-deBruijn) The number of classes induced by permutation groups Ω_{2} of D and Ω_{1} of R is

$$
\begin{equation*}
\left.P_{\Omega_{2}}\left(\frac{\partial}{\partial z_{1}}, \frac{\partial}{\partial z_{2}}, \ldots\right) P_{\Omega_{1}}\left(e^{z_{1}+z_{2}+\ldots}, e^{2\left(z_{2}+z_{4}+\ldots\right)}, \ldots\right)\right|_{z_{1}=z_{2}=\ldots=0} \tag{5.1}
\end{equation*}
$$

Consider the q^{m} possible column vectors of R in an $m \times q^{m}$ array so that in row i, we have q^{m-i+1} sets where in each set one element of $G F(q)$ is repeated q^{i-1} times. For example, if $q=2$ and $m=3$ we list the 8 column vectors as

$$
\begin{array}{lllllllll}
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & \tag{5.2}\\
0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & . \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}
$$

Suppose now that Ω is the cyclic group of order m generated by the permutation $\phi=(12 \ldots \mathrm{~m})$. By letting Ω permute the rows of the $m \times q^{m}$ array, we induce a permutation group Ω_{1} on the column vectors of the range R. For example, if $\phi_{Q}=$ (123) then the column vectors $\left(C_{1}, \ldots, C_{8}\right)$ of (5.2) are permuted to $\left(C_{1}, C_{3}, C_{5}, C_{7}, C_{2}, C_{4}, C_{6}, C_{8}\right) . \quad$ If

$$
A=\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]=\left[C_{4} C_{7} C_{6}\right]
$$

and Q is the permutation matrix

$$
Q=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

then $\quad Q A=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]=\left[C_{7} C_{6} C_{4}\right]$.
By the isomorphism defined in section $1, \phi_{Q} \& S_{3}$ corresponds to the permutation matrix Q. Thus by applying ϕ_{Q} to the rows of the $m \times q^{m}$ array, we induce a permutation on the column vectors of the range R. This is turn induces a permutation of the rows of A which is equivalent to just permuting the rows of A by using the permutation matrix Q. Hence we can permute the rows of any matrix by simply permuting the rows of the $m \times q^{m}$ array.

If Ω_{1} is the cyclic group of prime order m acting on the q^{m} column vectors induced by a cyclic group of prime order m acting on the rows of the $m \times q^{m}$ array, it is not difficult to prove that

$$
\begin{equation*}
\mathrm{P}_{\Omega_{1}}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{q}^{m}}\right)=\frac{1}{m}\left(\mathrm{x}_{1}^{\mathrm{q}}+(\mathrm{m}-1) \mathrm{x}_{1}^{\mathrm{q}} \mathrm{x}_{\mathrm{m}}\left(\mathrm{q}^{\mathrm{m}}-\mathrm{q}\right) / \mathrm{m}\right) \tag{5.3}
\end{equation*}
$$

We are now ready to prove
THEOREM 5.2. If Ω_{1} is cyclic of prime order m and Ω_{2} is cyclic of order n then if m n

$$
\begin{equation*}
\lambda\left(\Omega_{2}, \Omega_{1}\right)=\frac{1}{m n} \sum_{t \mid n} \phi(t)\left(q^{m n / t}+(m-1) q^{n / t}\right), \tag{5.4}
\end{equation*}
$$

while if $m \cdot n$

$$
\begin{equation*}
\lambda\left(\Omega_{2}, \Omega_{1}\right)=\frac{1}{\mathrm{mn}} \sum_{\substack{t \mid n \\ t \neq k \mathrm{k}}}^{\sum} \phi(\mathrm{t})\left(\mathrm{q}^{\mathrm{mn} / \mathrm{t}}+(\mathrm{m}-1) \mathrm{q}^{\mathrm{n} / \mathrm{t}}\right)+\frac{1}{\mathrm{n}} \sum_{\substack{t \mid n \\ t=k m}} \phi(\mathrm{t}) \mathrm{q}^{\mathrm{mn} / \mathrm{t}} \tag{5.5}
\end{equation*}
$$

PROOF. We must evaluate (5.1) which becomes for fixed $t \mid n$

$$
\begin{equation*}
\frac{\phi(t)}{m n} \frac{\partial^{n / t}}{\partial z_{t}^{n / t}} \quad e^{q^{m}\left(z_{1}+z_{2}+\ldots\right)}+(m-1) e^{q\left(z_{1}+z_{2}+\ldots\right)} e^{\left(q^{m}-q\right)\left(z_{m}+z_{2 m}+\ldots\right)} \quad z_{i}=0 \tag{5.6}
\end{equation*}
$$

If $t=1$ (5.6) reduces to $1 / m n\left[q^{m n}+(m-1) q^{n}\right]$. If $m \mid n$ and $t>1$ is a divisor of n we have $M=\phi(t) / m n\left(q^{m n / t}+(m-1) q^{n / t}\right)$ which proves (5.4) upon summing over all $\mathrm{t} \mid \mathrm{n}$. If $\mathrm{m} \mid \mathrm{n}$ and $1<\mathrm{t} \neq \mathrm{km}$ for some positive integer k the (5.6) contributes M as before while if $1<t=k m$ for some k, (5.6) contributes $\left(\phi(t) q^{m n / t}\right) / n$ from which (5.5) follows.

As an illustration, suppose $q=m=n=2$ so that we are considering the 16
2×2 matrices over GF(2). Let Ω_{1} be the cyclic group of order 2 acting on the two rows of the 2×4 array

0	1	0	1
0	0	1	1

and let Ω_{2} be the cyclic group of order 2 acting on the 2 columns of D. Then from (5.5) we have $\lambda\left(\Omega_{2}, \Omega_{1}\right)=5+2=7$ distinct classes which may also be easily verified by direct calculation.

6. A FURTHER GENERALIZATION

In this section we consider a further generalization by allowing Ω_{1} to act directly on the column vectors of R rather than on the rows of the $m \times q^{m}$ array. As before suppose Ω_{2} acts on the set of n columns of D. Thus, after a matrix is permuted by columns, it is then acted upon be a more general permutation of the column vectors of R rather than just permuting the rows of the given matrix. For example, using the example from section 5 , suppose Ω_{1} is the cyclic group of order 8 generated by $\phi=(12 \ldots 8)$. Then if ϕ is applied to the matrix

$$
A=\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]=\left[\epsilon_{4} C_{7} C_{6}\right]
$$

we obtain the matrix

$$
\left[C_{5} C_{8} C_{7}\right]=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

which cannot be obtained from A by just permuting the rows of A. Hence we have a more general setting than that considered in section 5 where equivalent matrices were obtained by simply permuting the rows and columns of the given matrix.

Suppose Ω_{1} is cyclic of order q^{m} acting on the q^{m} column vectors of R while Ω_{2} is cyclic of order n acting on the n columns of D.

THEOREM 6.1. If p \& n

$$
\begin{equation*}
\lambda\left(\Omega_{2}, \Omega_{1}\right)=\frac{1}{n q^{m}} \sum_{t \mid n} \phi(t) q^{m n / t} \tag{6.1}
\end{equation*}
$$

while if $\cdot \mathrm{p} \mid \mathrm{n}$

PROOF. Since $q=p^{b}$ where p is a prime and $b \geq 1$ we have

$$
\begin{aligned}
& P_{\Omega_{1}}\left(x_{1}, \ldots, x_{q^{m}}\right)=\frac{-1}{q^{m}} \sum_{t \mid q^{m}} \phi(t) x_{t}^{q^{m} / t} \\
= & \frac{-1}{q^{m}}\left[x_{1}^{p^{b m}}+\sum_{i=1}^{b m}\left(p^{i}-p^{i-1}\right) x_{p^{b}}^{b m-i}\right] .
\end{aligned}
$$

Substituting $\mathrm{P}_{\Omega_{1}}$ and $\mathrm{P}_{\Omega_{2}}$ into (5.1) we obtain for a general term with t fixed

$$
N=\left.\frac{\phi(t)}{n q^{m}} \frac{\partial^{n / t}}{\partial z_{t}^{n / t}}\left[e^{p^{b m}\left(z_{1}+z_{2}+\ldots\right)}+\sum_{i=1}^{b m}\left(p^{i}-p^{i-1}\right) e^{p^{b m}\left(z_{p^{i}}+z_{2 p^{i}}+\ldots\right)}\right]\right|_{z_{i}=0} .
$$

If $t=1, N=q^{m n} /\left(n^{m}\right)$ while if $\left.t^{\prime}\right\rangle 1$ and $p \nmid n$ then $t \neq \mathrm{kp}^{i}$ so that $N=\left(1 / n q^{m}\right) \phi(t) q^{m n / t}$ from which (6.1) follows after summing over all $t \mid n$. In the case where $p \mid n$, if t is a divisor of n and $t \neq k p^{i}$ for some k then N is the same as in the above case. If $t=k p^{i}$ then $N=\left(1 / n q^{m}\right) \phi(t)\left(p^{i}-p^{i-1}+1\right) q^{m n / t}$ so that summing over all $\mathrm{t} \mid \mathrm{n}$ yields (6.2).

As an illustration, if $q=p=m=n=2$ then using (6.2) we see that $\lambda\left(\Omega_{2}, \Omega_{1}\right)=3$ so that the 162×2 matrices over $\mathrm{GF}(2)$ are decomposed into 3 disjoint equivalence classes.

REFERENCES

1. Carlitz, L. "Invariantive theory of equations in a finite field", Trans. Amer. Math, Soc. 75 (1953), 405-427.
2. Carlitz, L. "Invariant theory of systems of equations in a finite field", J. Analyse Math. 3 (1953/54), 382-413.
3. Cavior, S.R. "Equivalence classes of functions over a finite field", Acta Arith. 10 (1964), 119-136.
4. Cavior, S.R. "Equivalence classes of sets of polynomials over a finite field", J. fur die Reine und Angewandte Math 225 (1967), 191-202.
5. deBruijn, N.G. Polya's theory of counting, Applied Combinatorial Mathematics (ed. E.F. Beckenbach), John Wiley \& Soṇs, New York, 1964.
6. Mullen, G.L. "Equivalence classes of functions over a finite field", Acta Arith. 29 (1976), 353-358.
7. Mullen, G.L. "Equivalence classes of polynomials over finite fields", Acta Arith. 31 (1976), 113-123.
8. Mullen, G.L. "Weak equivalence of functions over a finite field!', Acta Arith. 35 (1978), 157-170.
9. Mullen, G.L. "Equivalence classes of matrices over finite fields", Lin. Alg. \& its Apps. 27 (1979), 61-68.
10. Mullen, G.L. "Equivalence classes of matrices over a finite fiedd", Internat. J. Math. \& Math. Sci. 2 (1979), 487-481.
